
19
Connecting to MySQL from
an ASP.NET/C# Application

MySQL allows users to access its databases from a variety of applications. If you reviewed chapters 17
or 18, you’ve seen how you can connect to MySQL from PHP and Java. In both cases, you can imple-
ment these types of applications from within any Web or application environment that supports
the particular language. However, MySQL provides access from another type of application, the
type that is implemented within the context of the Microsoft .NET Framework. The .NET Framework
is an application development and implementation environment that supports a wide range of
technologies. The framework is made up primarily of a library of code that can be utilized by a
variety of application languages, such as C#, Visual Basic .NET, and JScript .NET. The .NET Framework
also defines an extensive system of data types that facilitate the interoperability of languages that
use the framework. The framework also provides the Common Language Runtime (CLR), which
maintains the execution of applications developed through the .NET library.

An important component of the .NET Framework is ASP.NET, which allows you to create dynamic
Web pages similar to what you’ll find with Java and JSP. However, because ASP.NET is part of the
.NET Framework, you can utilize the .NET library when developing Web-based applications. In
addition, you can use any of the languages supported by .NET to create your application. In this
chapter, you learn how to create an ASP.NET application based on C#. The reason that C# has been
chosen is because it is the most powerful language supported by the .NET Framework and the
only language that was developed with .NET in mind. (A language such as Visual Basic .NET was
updated with .NET in mind, but not created for .NET.) By using C# and ASP.NET to develop your
Web pages, you can create robust, powerful applications that can include a rich assortment of fea-
tures and functionality. As a way to introduce you to ASP.NET and C#, and how you can access a
MySQL database from within your application, this chapter covers the following topics:

❑ Introduces you to ASP.NET and C# and how they communicate with a MySQL server and
its databases

❑ Explains how to build an ASP.NET/C# application that connects to a MySQL database,
retrieves data from that database, inserts data into the database, modifies the data, and
then deletes the data

22_579509 ch19.qxd 3/1/05 10:07 AM Page 723

TEAM LinG - Live, Informative, Non-cost and Genuine !

Introduction to ASP.NET/C#
ASP.NET is a server-side technology that allows you to provide dynamic Web content to your users. Working
in conjunction with the .NET Framework, ASP.NET is a component that is attached to your Web server,
allowing you to display ASP.NET Web pages on any browser just like basic HTML pages. To build an
ASP.NET application, you can use a full-fledged programming language such as C#. A programming language
such as C# is far more powerful and extensive than a server-side scripting languages such as PHP and
VBScript. As a result, you can build applications that extend far beyond the capabilities of those built
with simple server-side scripting languages.

Just like Java, C# is an object-oriented programming (OOP) language. The C# language is based on the
concept of encapsulating code and the data that it manipulates into defined objects. Each object is based
on an object class that specifies how that object can be built. An object, then, is an instance of the class
from which it is derived.

In C#, an object is made up of properties and methods. Properties represent data that describe the object.
The property values are what distinguish multiple instances of an object class from one another. Methods
perform some type of action on that data. A method is similar to a function in the way in which it per-
forms a predefined task. For example, suppose that you have a class named CompactDisk. The class
might include three properties, one to identify the CD, one to identify the number in stock, and one to
identify the number on order. The class also includes a method that calculates the total number of CDs
that will be available by adding the values in the last two properties. As you can see, the three properties
contain data about the CD and the method performs an action on that data. Together, these elements
make up the CompactDisk class. You can then create an object based on the new class and assign unique
values to the properties.

Of course, the CompactDisk example is an over-simplification of how objects work within C#; however,
it should provide you with at least an overview of how properties and methods work. Although a thorough
discussion of OOP is beyond the scope of this book, it’s important that you recognize that C# is based on
these concepts and that everything you do in C# is within the context of objects. For example, suppose
that you retrieve data from a MySQL database and you now want to process that data so that you can
display each row in your application. When you retrieve that data, it is stored in an object. You can then
use methods defined on that object to access the data in that result set.

In order for an ASP.NET application to access data in MySQL database, it must be able to interface with
that database. One way you can establish this interface is through the use of Open Database Connectivity
(ODBC) and Connector/ODBC. ODBC is a call-level API that allows an application to connect with a
wide range of SQL databases. By using ODBC, an ASP.NET application can connect to the database, send
SQL statements, and retrieve data. Because ODBC can communicate with different database products,
ASP.NET applications are very portable, which means that you don’t have to modify a lot of code if you
were to switch the database product used to support the application. However, it does mean that you
need a product-specific driver that completes the ODBC connection from the ASP.NET application to the
database. As a result, MySQL AB provides Connector/ODBC, an ODBC-specific driver that implements
the functionality supported by ODBC.

To implement an ASP.NET application, you must have ASP.NET installed on your system where your Web
server resides, along with Connector/ODBC. You can create the files by using Visual Studio.NET or a
text editor. For the purposes of the chapter, it is assumed that you are using a text editor and saving the
files with an .aspx file extension. Although most ASP.NET applications often use other types of files,
such as code-behind files, this chapter uses only the .aspx files to demonstrate how to connect to a
MySQL database. Now take a look at how you actually create those files.

724

Chapter 19

22_579509 ch19.qxd 3/1/05 10:07 AM Page 724

TEAM LinG - Live, Informative, Non-cost and Genuine !

This chapter was written based on the following configuration: the MySQL ODBC 3.51 driver and
Visual Studio.NET installed on a Windows XP computer, configured with Internet Information
Systems (IIS). Details about the installation and configuration of your operating system, IIS, and
Visual Stuio.NET are beyond the scope of the book. Be sure to view the necessary product documentation
when setting up your application environment. For more information about the MySQL ODBC driver,
go to www.mysql.com. For information about .NET, ASP.NET, and IIS, go to
www.microsoft.com.

Building an ASP.NET/C# Application
When you create an ASP.NET data-driven application, you must take several steps to set up the applica-
tion and access the database. The first step is to establish the page language and .NET namespaces to
use. From there, you can create a connection to the database, issue an SQL statement, and, if appropriate,
process the results returned by the statement. Those results can then be displayed on your Web page.
ASP.NET and the .NET Framework support numerous classes and statements that allow you to perform
each of these tasks. In the remaining part of the chapter, you learn about each aspect of database access,
from importing classes to closing connections. You also create an ASP.NET application that accesses data
in the DVDRentals database. If you created the PHP application in Chapter 17 or the JSP application in
Chapter 18, you’ll find that the application in this chapter achieves the same results.

The examples in this chapter focus on the C# code used to create a basic Web-based application.
However, the principles behind connecting to a database and accessing data can apply to any Web or
non-Web application written in other programming languages.

Setting up the ASP.NET Web Page
When you begin an ASP.NET page, you should include the necessary directives to specify the programming
language and namespaces that will be used for the file. In both cases, you use statements that begin with
an opening directive tag (<%@) and end with a closing directive tag (%>). To specify the language, you
should use a Page directive similar to the one shown in the following statement:

<%@ Page language=”c#” %>

The directive simply states that C# will be used for all the scripts on the page. From there, you can declare
which namespaces will be used for the file. A namespace is a group of classes that share similar functionality.
For example, the following statement imports the System.Data namespace into the page:

<%@ Import Namespace=”System.Data” %>

By including this directive in your ASP.NET page, the System.Data namespace is made available to all
the C# code on the page. However, the directive doesn’t actually import all the classes in the namespace
into the page, but instead creates a reference to the namespace so that classes can be used by the application.
The directives tell the application where to look for those classes.

Declaring and Initializing Variables
C# is a strongly typed application language, which means that each variable must be explicitly declared
and a data type must be assigned to that variable. By declaring a variable, you’re specifying that a

725

Connecting to MySQL from an ASP.NET/C# Application

22_579509 ch19.qxd 3/1/05 10:07 AM Page 725

TEAM LinG - Live, Informative, Non-cost and Genuine !

placeholder be created in memory that holds the value of that variable. To declare a variable, you must
specify the type and the variable name. For example, the following statement declares the cdId variable
as an int type:

int cdId;

Once a variable is declared, you need to assign a value to it for that variable to be used within the code.
The process of assigning a value is referred to as initializing the variable. For most variables, you can ini-
tialize them by specifying a single equal sign (=) plus the value that should be assigned, as shown in the
following example:

cdId = 42;

In this case, the value 42 is assigned to cdId. You can also declare and initialize a variable within one
statement:

int cdId = 42;

This, of course, makes your code simpler; however, you might not always be able to initialize a variable
at the time that you declare it, depending on the scope that you want the variable to have. Scope deter-
mines the lifetime of the variable and is determined when the variable is declared. If you declare a vari-
able within a block of code, the variable is available only to that block and to any blocks nested within
the outer block. The outer block defines the scope of that variable. (A block of code is a set of C# state-
ments that are enclosed in curly brackets.) As a result, if you want a variable to be available to all code,
but you cannot assign a value to the variable until a specific operation within a block of code is com-
pleted, you should declare the variable outside any blocks of code and initialize the variable when the
value is available. You see examples of this later in the chapter.

You can also declare and initialize string variables in the same way that you initialize other variables, as
shown in the following example:

string strName;

As you can see, the statement declares a variable named strName that is based on the String class. You
can then initialize the variable by defining the string value that should be assigned to the variable, as the
following statement demonstrates:

strName = “Strauss”;

Notice that the string value is enclosed in double quotes. You must always use quotes when working
with string values. As you saw with the int type variable, you can also declare and initialize a string
variable in one statement:

string strName = “Strauss”;

It should be noted that, when initializing a string variable, you’re actually creating an object based on the
String class. The new object contains the string value, which you then access through the variable. For
this reason, you can also use the String type name (instead of string) when declaring a variable, as
shown in the following statement:

726

Chapter 19

22_579509 ch19.qxd 3/1/05 10:07 AM Page 726

TEAM LinG - Live, Informative, Non-cost and Genuine !

String strName = “Strauss”;

In C#, the keyword string is actually an alias for the String class, so you can use either string or
String when specifying the variable type.

A String object is not the only type of object that can be associated with a variable. You can specify
nearly any class name in your variable declaration. Most classes can act as types when declaring a vari-
able. For example, suppose that you want to declare a variable based on the Book class. You can declare
it by specifying the name of the class as the type, as shown in the following statement:

Book newBook;

The statement declares a variable named newBook, which is based on the Book class. When declaring a
variable of this sort, you must often explicitly create the object that will be associated with the variable.
Unlike string variables in which the String object is automatically created when you initialize the
variable to a string, most objects require a more formal initialization. To associate the variable with an
object, you must initialize the variable to the new object, as shown in the following statement:

newBook = new Book();

Notice that the statement includes the new keyword. Whenever you explicitly initialize a variable in this
way, you must use the new keyword. This tells the compiler to create an object based on the specified
class. The new keyword is followed by a constructor, which in this case is Book(). A constructor is a spe-
cial type of method defined within the class. A constructor always has the same name as the class and is
used to create objects based on that class.

As with other types of variables, you can also declare and initialize an object-related variable in one
statement, as shown in the following statement:

Book newBook = new Book();

Once you declare and initialize an object-related variable, you can use that variable to access the methods
and properties associated with the new object.

For some classes, you can initialize a variable that uses yet another approach to create the object that is
associated with that variable. In these cases, you use a method in one class to create an object in a different
class. One example of this approach is used is when you retrieve data from a database. Later in the chapter,
you see examples of how this and other types of variables are initialized, but before you move on to that, you
first learn how to establish a connection to a MySQL database.

Connecting to a MySQL Database
To establish a connection from within your ASP.NET application, you should take the following three
steps:

1. Define the connection parameters.

2. Create the connection based on the connection parameters.

3. Open the connection.

727

Connecting to MySQL from an ASP.NET/C# Application

22_579509 ch19.qxd 3/1/05 10:07 AM Page 727

TEAM LinG - Live, Informative, Non-cost and Genuine !

In the first step, you simply define a string variable that contains the parameters necessary to connect to
the MySQL database. For example, the following C# statement declares and initializes the string variable
strConn:

string strConn = “driver={MySQL ODBC 3.51 Driver}; server=localhost;” +
“database=BookDB; uid=bookapp; password=bookpw”;

If you want to split the statement into multiple lines, as has been done here, you enclose each portion of
the statement line in double quotes. In addition, for each line other than the last line, you end the line
with a plus sign. This indicates that the two lines are to be concatenated when executed. Only the final
line is terminated with a semi-colon.

The parameters assigned to the strConn variable include the name of the MySQL Connector/ODBC
driver, the computer on which the MySQL server is running, the applicable database, the user account to
use to access the database, and the password for that account.

Once you have declared and initialized the variable, you can use that variable to create a connection
object and assign that object to a second variable, as shown in the following statement:

OdbcConnection conn = new OdbcConnection(strConnection);

This statement creates an object based on the OdbcConnection class, which includes the methods neces-
sary to open and close the connection. The strConnection variable is passed as an argument in the
OdbcConnection() class constructor. As a result, the new object will be created based on those connec-
tion parameters. This object is then assigned to the conn variable, which can then be used to access the
methods available in the new OdbcConnection() object.

Once the object has been created and assigned to the variable, you can use the variable to open the
connection:

conn.Open();

As you would expect, the Open() method opens the connection to the MySQL database, using the
parameters assigned to the OdbcConnection object. Once you’ve established the connection, you can
issue SQL statements against the database defined in the connection, which in this case is BookDB.

Retrieving Data from a MySQL Database
One of the most common SQL statements that you’re likely to issue from within your ASP.NET applica-
tion is the SELECT statement. By using this statement, you can retrieve data that can then be displayed
on your Web pages. However, issuing a SELECT statement is not enough to display the data. You need
additional mechanisms that pass that SELECT statement to the MySQL server and that then process the
results returned by the statement.

When you’re retrieving data from a MySQL database into your ASP.NET application, you generally fol-
low a specific set of steps:

1. Declare and initialize a string variable that creates the SELECT statement.

2. Declare and initialize an OdbcCommand variable that is associated with a new OdbcCommand
object. The new object should be based on the string variable associated with the SELECT state-
ment and on the variable associated with the connection object.

728

Chapter 19

22_579509 ch19.qxd 3/1/05 10:07 AM Page 728

TEAM LinG - Live, Informative, Non-cost and Genuine !

3. Use the ExecuteReader() method of the new OdbcCommand object to execute the SELECT
statement and to create an OdbcDataReader object to store the result set. The object should then
be assigned to a variable based on the OdbcDataReader class.

4. Use methods within the OdbcDataReader variable to process the results, normally within some
sort of conditional structure.

Now take a closer look at each step. The first step creates a SELECT statement that is assigned to a
String variable. For example, in the following statement, a variable named selectSql is defined:

string selectSql = “SELECT CDID, CDName FROM CDs”;

Putting the SELECT statement in a variable in this way makes it easier to work with the statement in
other places in the code. Once the variable has been declared and initialized, you should then create an
OdbcCommand object and assign that to a variable. The OdbcCommand object contains the methods that
you will need to execute your SELECT statement. The following variable is declared and then initialized
by creating an OdbcCommand object:

OdbcCommand comm = new OdbcCommand(selectSql, conn);

The OdbcCommand() constructor includes two arguments. The first is the selectSql variable, which
contains the SELECT statement. The second argument is the conn variable, which you saw in an earlier
example. The variable is associated with the OdbcConnection object that defines the parameters neces-
sary to connect to the database. As a result, a new OdbcCommand object will be created that will include
the SELECT statement and the connection parameters. This new object is then assigned to the comm vari-
able. You can now use the comm variable to access methods in the new OdbcCommand object. For exam-
ple, you can use the ExecuteReader() method to execute the SELECT statement and create an
OdbcDataReader object that contains the result set, as shown in the following statement:

OdbcDataReader dataReader = comm.ExecuteReader();

The statement declares the dataReader variable, which is based on the OdbcDataReader class. The
variable is associated with the new OdbcDataReader object created by the ExecuteReader() method.
You can now use the DataReader variable to call the methods in the OdbcDataReader object to process
your result set.

Processing the Result Set
Once you have a result set to work with, you must process the rows so that they can be displayed in a
usable format. However, C#, like other procedural application languages, cannot easily process sets of
data, so you must set up your code to be able to process one row at a time. You can do this by setting up
a loop condition and by using an OdbcDataReader method that supports the row-by-row processing.
For example, you can use the while command to set up the loop and the Read() method to process the
rows, as shown in the following example:

while(dataReader.Read())
{

int cdId = (int) dataReader[“CDID”];
string cdName = (string) dataReader[“CDName”];

}

729

Connecting to MySQL from an ASP.NET/C# Application

22_579509 ch19.qxd 3/1/05 10:07 AM Page 729

TEAM LinG - Live, Informative, Non-cost and Genuine !

The while command tells C# to continue to execute the block of statements as long as the current condi-
tion evaluates to true. The condition in this case is defined by dataReader.Read(). The dataReader
variable (which is associated with an OdbcDataReader object) allows you to call the Read() method.
The method references each row in the results set, one row at a time, starting with the first row. Every
time the while loop is executed, Read() points to the next row.

Each value is retrieved from the OdbcDataReader object by using the name of column, as it was returned
by the SELECT statement. The value is then assigned to a related variable. To better understand how this
works, you can look at each element of the statement in reverse order. For example, the first statement in
the while loop assigns a value to the cdId variable. If you look at the end of the statement, notice that it
retrieves its value from the CDID column. (The name of the column is enclosed in brackets.) The dataReader
variable is used to call that value from the result set stored in the object associated with the variable. This
is then preceded by int, which is enclosed in parentheses. This indicates that the value retrieved from
the database should be converted to a value compatible with the C# int type. The value is then assigned
to the cdId variable, which is declared as an int variable.

This process is used for each column returned by SELECT statement. In the case of the example above,
only two columns are returned by the statement. This process is then repeated for each row in the result
set. To help illustrate this, suppose that the first row returned by your query contains the following
values: CDID = 101 and CDName = Bloodshot.

When the while loop is executed the first time, the first call to the Read() method points to the first row
in the result set, which is stored in the OdbcDataReader object that was created specifically to hold this
result set. Because the dataReader variable is associated with that OdbcDataReader object, you can use
that variable to access the data stored in the object as well as the methods defined on that object (as
inherited from the OdbcDataReader class). You can then retrieve the value from each column within
each row. For example, you can retrieve the CDID value in the first row. As a result, the cdId variable is
set to a value of 101. For each column returned by the Read() method for a particular row, the column
value is assigned to the applicable variable. The column-related variables can then be used to display the
actual values returned by the SELECT statement.

Once you retrieve the values into the variables, you would normally include within your while loop the
structure necessary to display those values. This is often done within the context of an HTML table that
provides the necessary rows and columns for the returned data. In a Try It Out section later in this
chapter, you see an example of how this is done.

Manipulating String Data
After you have retrieved string data from a database, you’ll often find that you want to manipulate that
data in some way. Because all string data is associated with String objects, you can use the methods
and properties defined in the String class to take some sort of action on that data. Two class elements
that are particularly useful are the Length property and the Equals() method. To demonstrate how
both of these elements work, first take a look at the following statement:

string compName = “Strauss”;

The statement declares a string variable named compName, whose purpose is to represent a composer’s
name. Initially, the value Strauss is assigned to the variable. Suppose now that you want to determine
whether the current value assigned to the variable exceeds zero characters. To do so, you can invoke the
Length property to determine the number of characters, as shown in the following statement:

730

Chapter 19

22_579509 ch19.qxd 3/1/05 10:07 AM Page 730

TEAM LinG - Live, Informative, Non-cost and Genuine !

if (compName.Length > 0)
{

<take action if length is greater than zero>
}

The Length property is used as a condition in an if statement. If the variable contains more than zero
characters, the condition evaluates to true and the statements within the if block are executed. The
Length property is useful for testing whether a variable is currently an empty string or actually contains
a value. Based on that information, you can then execute specific statements.

In addition to the Length property, the Equals() method can be very useful in setting up if conditions.
The Equals() method compares two strings and returns a value of true if the strings are equal and a
value of false if they are not. To use this method, you must specify the first string, then add the Equals()
method, and then specify the second string as an argument in that method. For example, the following
statement compares the Chopin string to the string in the compName variable:

if (“Chopin”.Equals(compName))
{

<take action if values are equal>
}

The reason that the Equals() method can be used with the string Chopin is because C# automatically
treats a literal string value as an object, even when used as it is used in this example. As a result, you can
call methods from the String class simply by specifying the string value, followed by a period, and then
followed by the method. You can then pass the second string as an argument to the method. In this case,
because the variable is currently associated with the value Strauss, the statement returns a value of
false.

When working with string data, there might be times when you want to concatenate the string value in a
variable with another string value. In that case, you would use the plus/equal signs (+=) to indicate that
the value to the right of these signs should be concatenated to the value on the left. For example, the follow-
ing statement adds Ricard to the value in the compName variable:

compName += “, Ricard”;

This statement results in one value: Strauss, Ricard. If you were to use the equal sign without the
plus sign, a new value would be assigned to the variable, resulting in the value Ricard (preceded by a
comma) replacing the value Strauss.

Converting Values
When working with data in an ASP.NET application, particularly when retrieving data from a database
or inserting data into a database, you will often find that you need to convert a value from one type to
another. For values that are already of a similar type, you merely need to cast the value into the appro-
priate type. For example, if you retrieve string data from a MySQL database, you merely need to specify
the string keyword (in parentheses) when assigning that value to a variable. You already saw an exam-
ple of this earlier in the chapter when you retrieved integer and string data. The following statement
uses an OdbcDataReader object (assigned to the dataReader variable) to retrieve the value from the
FName column in a result set:

string fName = (string) dataReader[“FName”];

731

Connecting to MySQL from an ASP.NET/C# Application

22_579509 ch19.qxd 3/1/05 10:07 AM Page 731

TEAM LinG - Live, Informative, Non-cost and Genuine !

For the purposes of this example, assume that values in the FName column are stored as strings. Because
the data is in a similar format, you merely need to specify the string keyword (in parentheses) before the
dataReader variable name. The column value is then cast into a C# string value that is assigned to
the fName variable, which has also been declared as a string type variable.

When working with values of dissimilar types, you must specifically convert the value to the correct
type. Normally you can do this by using a method from the class type on which the value is based. For
example, suppose that you want to convert a date that is saved as a String value into a DateTime
value. To do so, you can use the Parse() method of the DateTime class to convert that value, as shown
in the following example:

DateTime dtBDay = DateTime.Parse(strBDay);

In this case, the strBDay variable holds a date value that is stored as a string. The Parse() method converts
the string to a DateTime value, which is then assigned to a variable that is declared with the DateTime type.

Another method that is useful is the ToString() method, which converts a value to a string. For example,
suppose that you want to convert a DateTime value to a string. You can use the ToString() method
along with the DateTime variable, as shown in the following example:

string strBDay = dtBDay.ToString(“MM-dd-yyyy”);

Because the dtBDay variable is associated with the DateTime class, you can use the ToString() method
from that class to convert the data. Notice that, as one of the arguments to the method, you specify the
format in which you want the value converted. You can then assign the string value returned by the method
to the strBDay variable.

In addition to the String and DateTime classes, the ToString() and Parse() methods are available to
most type classes. In addition, other methods are available to each class for converting values from one
type to another. Be sure to check the C# documentation if there is a conversion that you want to make
that is not shown here.

Working with HTML Forms
When setting up your Web-based application, you often need to pass data from the client browser to the
server. This is usually done through the use of a form, which is an element on an HTML page that allows
a user submit data that can be passed on to the server. For example, a form can be used to allow a user to
log on to an application. The user can submit an account name and password, which the form then
sends to a specified location.

An HTML form supports two types of posting methods: POST and GET. The POST method sends the data
through an HTTP header. An HTTP header is a mechanism that allows commands and data to be sent
to and from the browser and server. The GET method adds the data to a URL. Because the data is added to
the URL, it is visible when the URL is displayed, which can create some security issues The POST method
is often preferred because the POST data is hidden.

A thorough discussion about HTML forms and HTTP headers is beyond the scope of this book.
However, there are plenty of resources that describe forms, headers, and all other aspects of HTML and
HTTP extensively. If you’re not familiar with how to work with forms and headers, be sure to read the
appropriate documentation.

732

Chapter 19

22_579509 ch19.qxd 3/1/05 10:07 AM Page 732

TEAM LinG - Live, Informative, Non-cost and Genuine !

Like many other server-side programming languages, ASP.NET and C# have built-in mechanisms that
automatically process the data submitted by a form. As a result, you can access the values stored in form
parameters by using the Request object from within your C# code. To give you a better sense of how
this works, the following example demonstrates this process. Suppose that your application includes an
HTML form that contains an input element named department, as shown in the following code:

<input type=”text” name=”department”>

Because the input element is a text type, the user enters a value into a text box and that value is assigned
to the parameter named department when the form is submitted. The parameter value is then made
available to the ASP.NET application. You can then use the Form property of the Request object to
retrieve that value, as the following statement demonstrates:

String strDept = Request.Form[“department”];

The value entered into the form is returned as a string value that is assigned to a string variable named
strDept. From there, you can use the strDept variable in other C# statements as you would any other
string value.

Redirecting Browsers
Web application pages can sometimes decide that the user should be redirected to another page. This means
that the current page stops processing and the server loads a new page and processes it. This process is usu-
ally part of a condition that specifies that, if a certain result is received, an action must be taken based on that
result. For example, suppose that you want to redirect a user if that user enters Classical in the department
<input> element (which is then assigned to the strDept variable). You can use the Redirect() method in
the Response object to redirect the user to another page, as shown in the following statement:

if(“Classical”.equals(strDept))
{

Response.Redirect(“ClassicalSpecials.aspx”);
}

First, an if statement is created to compare the strDept value to Classical. If the two string values are
equal, the condition evaluates to true and the if statement is executed. In this case, the Redirect()
method in the Response object is called and the user is redirected to the page specified as an argument
to the method. As a result, the ClassicalSpecials.aspx page is displayed.

Including ASP.NET Files
There might be times when you want to execute C# code that is in a file separate from your current file.
For example, suppose that your application includes code that is repeated often. You can put that code in
a file separate from your primary file and then call that file from the primary file. The second file is
referred to as a include file, and you can simply reference it from your primary file to execute the code in
the include file.

To reference an include file from within your current .aspx file, you must use the #Include command,
followed by the File setting, which specifies the name of the include file. (If the file is located someplace

733

Connecting to MySQL from an ASP.NET/C# Application

22_579509 ch19.qxd 3/1/05 10:07 AM Page 733

TEAM LinG - Live, Informative, Non-cost and Genuine !

other than the local directory, you must also specify the path.) The following if statement uses the
#Include command to execute the C# code in the ClassicalSpecials.aspx file:

if(“Classical”.equals(strDept))
{

%>
<!-- #Include File=”ClassicalSpecials.aspx” -->
<%

}

The first thing to notice is that the #Include command is enclosed in special opening (<!--) and closing
(-->) tags. These tags are HTML comment tags that can be used to include a file. Most C# code in an
ASP.NET page is enclosed in opening (<%) and closing (%>) scriptlet tags. As a result, you must close a
scriptlet before including the file, and then re-open the scriptlet, as necessary.

The preceding example also includes an if statement. The if condition specifies that the strDept value
must equal Classical. If the condition is true, the include file is accessed and the script in the file is
executed as though it were part of the current file. It would be the same as if the code in the include file
actually existed within the primary file.

Managing Exceptions
To handle errors that occur when a statement is executed, C# uses a system based on the Exception
class. When an error occurs, an exception is generated, which is a special class that can contain an error
message. If your code includes ways to handle that exception, some sort of action is taken. For example,
if an exception is generated, you might have it logged to a file or displayed to the user.

To work with exceptions, you can enclose your C# code in try/catch blocks. The try block includes all
the primary application code, and the catch block includes the code necessary to handle the exceptions.
At its very basic, a try/catch block looks like the following:

try
{

<C# application code>
}
catch(Exception ex)
{

throw ex;
}

As you can see, two blocks have been created: the try block and the catch block. The try block includes
all your basic program code, and the catch block processes the exception. The catch() method takes
two arguments. The first is the name of the exception that is being caught, and the second is a variable
that references the exception. The variable can then be used within the catch block.

In reality, you can include multiple catch blocks after the try block. In the example above, the Exception
argument represents all .NET exceptions. However, you can specify individual exceptions, rather than
all exceptions. For example, you can specify the SystemException class if you want to catch any excep-
tions thrown at runtime. In which case, your catch block would begin with the following:

734

Chapter 19

22_579509 ch19.qxd 3/1/05 10:07 AM Page 734

TEAM LinG - Live, Informative, Non-cost and Genuine !

catch(SystemException se)

If within the catch block you specify a throw statement, as shown in the preceding example, the applicable
caller within the application server handles the exception. In some cases, the exception message is dis-
played to the user, depending on where the exception is occurs. If you want other action to be taken, you
would create the necessary statements in the catch block.

Now that you’ve been introduced to many of the basic C# elements that you can use when retrieving and
displaying data from a MySQL database, you’re ready to build an application.

Creating a Basic ASP.NET/C# Application
In the Try It Out sections in this chapter, you build a simple Web application that allows you to view the
transactions in the DVDRentals database. The application also allows you to add a transaction, edit that
transaction, and then delete it from the database. As you’ll recall when you designed the DVDRentals
database, transactions are actually a subset of orders. Each order is made up of one or more transaction,
and each transaction is associated with exactly one order. In addition, each transaction represents exactly
one DVD rental. For example, if someone were to rent three DVDs at the same time, that rental would
represent one order that includes three transactions.

The application that you build in this chapter is very basic and does not represent a complete application,
in the sense that you would probably want your application to allow you to create new orders, add DVDs
to the database, as well as add and edit other information. However, the purpose of this application is
merely to demonstrate one way that you can connect to a MySQL database from within C# and ASP.NET,
how you retrieve data, and how you manipulate data. The principles that you learn here can then be
applied to any C# application that must access data in a MySQL database.

When creating a Web application such as an ASP.NET application, you will usually find that you are
actually programming in three or four different languages. For example, you might use C# for the dynamic
portions of your application, HTML for the static portions, SQL for data access and manipulation, and
JavaScript to perform basic page-related functions. The application that you create in this chapter uses
all four languages. At first this might seem somewhat confusing; however, the trick is to think about each
piece separately. If you are new to these technologies, try doing each piece and then integrating them.
The application is fully integrated and can be run and examined to see how these technologies work. Keep
in mind, however, that the focus of the Try It Out sections is to demonstrate C# and SQL, so you will not
find detailed explanations about the JavaScript and HTML. However, you cannot develop an ASP.NET
application without including some HTML, and JavaScript is commonly implemented in Web-based appli-
cations. As a result, in order to show you a realistic application, HTML and JavaScript are included, but
a discussion of these two technologies is well beyond the scope of this book. Fortunately, there are ample
resources available for both of them, so be sure to consult the appropriate documentation if there is an
HTML or JavaScript concept that you do not understand.

To support the application that you create in this chapter, you’ll need two include files, one that contains
HTML styles and one that contains the JavaScript necessary to support several page-related functions.
You can download the files from the Wrox Web site at www.wrox.com, or you can copy them from here.
The first of these files is dvdstyle.css, which controls the HTML styles that define the look and feel of the
application’s Web pages. The styles control the formatting of various HTML attributes that can be applied
to text and other objects. The following code shows the contents of the dvdstyle.css file.

735

Connecting to MySQL from an ASP.NET/C# Application

22_579509 ch19.qxd 3/1/05 10:07 AM Page 735

TEAM LinG - Live, Informative, Non-cost and Genuine !

table.title{background-color:#eeeeee}

td.title{background-color:#bed8e1;color:#1a056b;font-family:sans-serif;font-weight:
bold;font-size: 12pt}

td.heading{background-color:#486abc;color:#ffffff;font-family:sans-serif;font-
weight: bold;font-size: 9pt}

td.item{background-color:#99ff99;color:#486abc;font-family:sans-serif;font-weight:
normal;font-size: 8pt}

input.delete{background-color:#990000;color:#99ffff;font-family:sans-serif;font-
weight: normal;font-size: 8pt}

input.edit{background-color:#000099;color:#99ffff;font-family:sans-serif;font-
weight: normal;font-size: 8pt}

input.add{background-color:#000099;color:#99ffff;font-family:sans-serif;font-
weight: normal;font-size: 8pt}

td.error{background-color:#ff9999;color:#990000;font-family:sans-serif;font-weight:
bold;font-size: 9pt}

When you create an HTML element in your code, you can reference a particular style in the dvdstyle.css
file, and then that style is applied. For example, the dvdstyle.css file includes the following style definition:

td.item{background-color:#99ff99;color:#486abc;font-family:sans-serif;font-weight:
normal;font-size: 8pt}

The td.item keywords identify the style definition. The td refers to the type of style definition, which
in this case is a cell within a table, and item is the unique name given to this particular definition. The
options defined within the paragraph are the various styles that apply to this definition. You can then
reference this style definition in your HTML code. For example, if you are creating a table and you want
a cell within that table to use this style, you would reference the item style name.

Whether you copy the file from the Web site or create the file yourself, you should save the file to the same
directory where your ASP.NET pages are stored. You can then modify the styles to meet your own needs.

The second file that you need to support the application is the dvdrentals.js file, which contains the
JavaScript support functions for the web form submission. These functions allow the program to manip-
ulate the command values and also the values of the form’s action parameter. By using this technique, a
user button-click can redirect the form to a different page. The following code shows the contents of the
dvdrentals.js file:

function doEdit(button, transactionId)
{

button.form.transaction_id.value = transactionId;
button.form.command.value = “edit”;
button.form.action = “edit.aspx”;
button.form.submit();

}

function doAdd(button)

736

Chapter 19

22_579509 ch19.qxd 3/1/05 10:07 AM Page 736

TEAM LinG - Live, Informative, Non-cost and Genuine !

{
button.form.transaction_id.value = -1;
button.form.command.value = “add”;
button.form.action = “edit.aspx”;
button.form.submit();

}

function doDelete(button, transactionId)
{

var message = “Deleting this record will permanently remove it.\r\n” +
“Are you sure you want to proceed?”;

var proceed = confirm(message);

if(proceed)
{

button.form.transaction_id.value = transactionId;
button.form.command.value = “delete”;
button.form.submit();

}
}

function doCancel(button)
{

button.form.command.value = “view”;
button.form.action = “index.aspx”;
button.form.submit();

}

function doSave(button, command)
{

button.form.command.value = command;
button.form.submit();

}

The dvdrentals.js includes numerous function definitions. For example, the following JavaScript statement
defines the doEdit() function:

function doEdit(button, transactionId)
{

button.form.transaction_id.value = transactionId;
button.form.command.value = “edit”;
button.form.action = “edit.aspx”;
button.form.submit();

}

The doEdit() function can be called from within your HTML code, usually through an <input> element
that uses a button click to initiate the function. The doEdit() function takes two parameters: button
and transactionId. The button parameter is used to pass the HTML button object which references
the form element into the JavaScript function, and the transactionId parameter holds the transaction
ID for the current record. The transactionId value, along with a command value of edit, is submitted
to the form in the edit.aspx file when that file is launched. Again, whether you copy the file from the
Web site or create the file yourself, you should save the dvdrentals.js file to the same directory where
your ASP.NET files are stored in your Web server.

737

Connecting to MySQL from an ASP.NET/C# Application

22_579509 ch19.qxd 3/1/05 10:07 AM Page 737

TEAM LinG - Live, Informative, Non-cost and Genuine !

Once you’ve ensured that the dvdstyle.css and dvdrentals.js file have been created and added to the
appropriate directory, you’re ready to begin creating your application. The first file that you create —
index.aspx — provides the basic structure for the application. The file contains the C# statements neces-
sary to establish the connection to the DVDRentals database, retrieve data from the database, and then
display that data. The page will list all the transactions that currently exist in the DVDRentals database.
In addition, the index.aspx file will provide the foundation on which additional application functionality
will be built in later Try It Out sections. You can download any of the files used for the DVDRentals
application created in this chapter at the Wrox Web site at www.wrox.com.

In the Try It Out sections that you use to create the DVDRentals application, it is assumed that you are
using a text editor to create your .aspx files. However, if you’re using the Visual Studio .NET development
environment to create your application, the process for creating the files is slightly different, although
the fundamental elements within the file are still the same. In most cases, an ASP.NET application will
consist of multiple files, with the C# script placed in a code-behind file. This allows you to separate the
presentation HTML from the actual C# code. However, the DVDRentals application uses only single
.aspx files in order to clearly demonstrate each concept in as simple and straightforward way as possible.
This approach also allows you to easily compare this application to the applications in chapters 17 and 18.

Try It Out Creating the index.aspx File
The following steps describe how to create the index.aspx file, which establishes a connection to the
DVDRentals database and retrieves transaction-related data:

1. The first part of the index.aspx file specifies the language and the classes that will be used by
the ASP.NET page. Open a text editor and enter the following code:

<%@ Page language=”c#” %>
<%@ Import Namespace=”System” %>
<%@ Import Namespace=”System.Web” %>
<%@ Import Namespace=”System.IO” %>
<%@ Import Namespace=”System.Collections” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.Odbc” %>

2. After you specify the classes, set up the basic HTML elements that provide the structure for the
rest of the page. This includes the page header, links to the dvdstyle.css and dvdrentals.js files,
and the initial table structure in which to display the data retrieved from the DVDRentals
database. Enter the following code:

<html>
<head>

<title>DVD - Listing</title>
<link rel=”stylesheet” href=”dvdstyle.css” type=”text/css”>
<script language=”JavaScript” src=”dvdrentals.js”></script>
</script>

</head>

<body>

<p></p>

<table cellSpacing=0 cellPadding=0 width=619 border=0>

738

Chapter 19

22_579509 ch19.qxd 3/1/05 10:07 AM Page 738

TEAM LinG - Live, Informative, Non-cost and Genuine !

<tr>
<td>

<table height=20 cellSpacing=0 cellPadding=0 width=619 bgcolor=#bed8e1
border=0>

<tr align=left>
<td valign=”bottom” width=”400” class=”title”>

DVD Transaction Listing
</td>

</tr>
</table>

<table cellSpacing=”2” cellPadding=”2” width=”619” border=”0”>
<tr>

<td width=”250” class=”heading”>Order Number</td>
<td width=”250” class=”heading”>Customer</td>
<td width=”250” class=”heading”>DVDName</td>
<td width=”185” class=”heading”>DateOut</td>
<td width=”185” class=”heading”>DateDue</td>
<td width=”185” class=”heading”>DateIn</td>

</tr>

3. Next, you must declare two variables that are used to connect to the database and to retrieve
data. Add the following statements to your file:

<%
// Declare and initialize variables for database operations

OdbcConnection odbcConnection = null;
OdbcCommand odbcCommand = null;

4. The next section of the file first initiates a try/catch block to catch any exception that might have
been thrown. From there, you can create the connection to the MySQL server and the DVDRentals
database. Add the following code after the code you added in Step 2:

// Wrap database-related code in a try/catch block to handle errors
try
{

// Create and open the connection
String strConnection = “driver={MySQL ODBC 3.51 Driver};” +

“server=localhost;” +
“database=DVDRentals;” +
“uid=mysqlapp;” +
“password=pw1”;

odbcConnection = new OdbcConnection(strConnection);

odbcConnection.Open();

The user account specified in this section of code — mysqlapp — is an account that you created
in Chapter 14. The account is set up to allow you to connect from the local computer. If you did
not set up this account or will be connecting to a host other than local host, you must create the
correct account now. If you want to connect to the MySQL server with a hostname or username
other than the ones shown here, be sure to enter the correct details. (For information about creating
user accounts, see Chapter 14.)

739

Connecting to MySQL from an ASP.NET/C# Application

22_579509 ch19.qxd 3/1/05 10:07 AM Page 739

TEAM LinG - Live, Informative, Non-cost and Genuine !

You might decide, for reasons of security, not to store the user account name and password in the
index.aspx file, as is done here. Instead, you might store the information in an include file or a code-behind
file, or use some other method to pass the connection parameters to the MySQL server. Regardless of
which method you use, you must still ensure that you are passing all the proper parameters to the server.

5. In the following section you create the query that will retrieve data from the DVDRentals
database and assign the results of that query to a variable. Add the following code to your file:

// Construct the SQL statement
String selectSql = “SELECT “ +

“Transactions.TransID, “ +
“Transactions.OrderID, “ +
“Transactions.DVDID, “ +
“Transactions.DateOut, “ +
“Transactions.DateDue, “ +
“Transactions.DateIn, “ +
“Customers.CustFN, “ +
“Customers.CustLN, “ +
“DVDs.DVDName “ +
“FROM Transactions, Orders, Customers, DVDs “ +
“WHERE Orders.OrderID = Transactions.OrderID “ +
“AND Customers.CustID = Orders.CustID “ +
“AND DVDs.DVDID = Transactions.DVDID “ +
“ORDER BY Transactions.OrderID DESC, “ +
“Customers.CustLN ASC, Customers.CustFN ASC, “ +
“Transactions.DateDue DESC, DVDs.DVDName ASC”;

odbcCommand = new OdbcCommand(selectSql, odbcConnection);

OdbcDataReader odbcDataReader = odbcCommand.ExecuteReader();

6. The next step is to loop through the results returned by your query. Add the following code to
your application file:

// Loop through the result set
while(odbcDataReader.Read())
{

// Retrive the columns from the result set into variables
int transId = (int) odbcDataReader[“TransID”];
int orderId = (int) odbcDataReader[“OrderID”];
int dvdId = (int) (short) odbcDataReader[“DVDID”];

object obj;
String dateOutPrint = “”;
String dateDuePrint = “”;
String dateInPrint = “”;

obj = odbcDataReader[“DateOut”];

if(!obj.GetType().Equals(typeof(DBNull)))
{

DateTime dateOut = (DateTime) obj;
dateOutPrint = dateOut.ToString(“MM-dd-yyyy”);

740

Chapter 19

22_579509 ch19.qxd 3/1/05 10:07 AM Page 740

TEAM LinG - Live, Informative, Non-cost and Genuine !

}

obj = odbcDataReader[“DateDue”];

if(!obj.GetType().Equals(typeof(DBNull)))
{

DateTime dateDue = (DateTime) obj;
dateDuePrint = dateDue.ToString(“MM-dd-yyyy”);

}

obj = odbcDataReader[“DateIn”];

if(!obj.GetType().Equals(typeof(DBNull)))
{

DateTime dateIn = (DateTime) obj;
dateInPrint = dateIn.ToString(“MM-dd-yyyy”);

}

String custFirstName = (String) odbcDataReader[“CustFN”];
String custLastName = (String) odbcDataReader[“CustLN”];
String dvdName = (String) odbcDataReader[“DVDName”];

7. Now put the customer names into a more readable format and ensure that null values are not
displayed as DVD names. Add the following code to your page:

// Format the result set into a readable form and assign variables
String customerName = “”;
if(custFirstName != null)

customerName += custFirstName + “ “;

if(custLastName != null)
customerName += custLastName;

if(dvdName == null)
dvdName = “”;

8. Next, insert the values that are retrieved from the database into an HTML table structure. Add
the following code to the ASP.NET file:

// Print each value in each row in the HTML table
%>

<tr height=”35” valign=”top”>
<td class=”item”>

<nobr>
<%=orderId%>
</nobr>

</td>
<td class=”item”>

<nobr>
<%=customerName%>
</nobr>

</td>
<td class=”item”>

<nobr>

741

Connecting to MySQL from an ASP.NET/C# Application

22_579509 ch19.qxd 3/1/05 10:07 AM Page 741

TEAM LinG - Live, Informative, Non-cost and Genuine !

<%=dvdName%>
</nobr>

</td>
<td class=”item”>

<nobr>
<%=dateOutPrint%>
</nobr>

</td>
<td class=”item”>

<nobr>
<%=dateDuePrint%>
</nobr>

</td>
<td class=”item”>

<nobr>
<%=dateInPrint%>
</nobr>

</td>
</tr>

9. The final section of the file closes the connection and the C# code. It also closes the <table>,
<body>, and <html> elements on the Web page. Add the following code to the end of the
ASP.NET file:

<%
}

odbcDataReader.Close();

if(odbcCommand != null)
odbcCommand.Dispose();

if(odbcConnection != null)
odbcConnection.Dispose();

}
catch(Exception ex)
{

throw ex;
}

%>
</table>

</td>
</tr>
</table>
</body>
</html>

10. Save the index.aspx file to the DVDApp Web application directory.

11. Open your browser and go to the address http://localhost/DVDApp/index.asp. Your
browser should display a page similar to the one shown in the Figure 19-1.

742

Chapter 19

22_579509 ch19.qxd 3/1/05 10:07 AM Page 742

TEAM LinG - Live, Informative, Non-cost and Genuine !

Figure 19-1

If you find that you cannot connect to the MySQL server when trying to open the ASP.NET file,
it might be because of the password encryption method used for the MySQL user account.
Beginning with MySQL 4.1, a different method is used to encrypt passwords than was used in
previous versions. However, some client applications have not yet implemented this new encryption
method. As a result, when you try to pass the password from the ASP.NET application to MySQL,
there is an encryption mismatch. You can test whether this is a problem by using the mysql
client utility — logging in with the mysqlapp user account name and the pw1 password — to
access the MySQL server. If you’re able to log on to the server with mysql utility, then you know
that the account is working fine; in which case, encryption mismatch is probably the problem.
To remedy this, open the mysql client utility as the root user and execute the following SQL
statement:

SET PASSWORD FOR ‘mysqlapp’@’localhost’ = OLD_PASSWORD(‘pw1’);

The OLD_PASSWORD() function saves that password using the old encryption method, which
will make the password compatible with the way your ASP.NET application has been implemented.

How It Works
The first step that you took in this exercise was to create a page directive that specifies C# as the language
to be used for the page:

<%@ Page language=”c#” %>

To set up the directive, you enclosed it in opening and closing directive tags, added the Page keyword,
followed by the language setting. The actual language — C# — follows the equal sign and is enclosed in
double quotes. After the page directive, you set up several import directives such as the following:

<%@ Import Namespace=”System” %>

743

Connecting to MySQL from an ASP.NET/C# Application

22_579509 ch19.qxd 3/1/05 10:07 AM Page 743

TEAM LinG - Live, Informative, Non-cost and Genuine !

In this case, you specified Import rather than Page and then defined the Namespace setting. The names-
pace represents the set of related classes that you plan to use within your ASP.NET page. You created an
import directive for each namespace that you want to associate with the Web page.

After your page directive, you set up the opening HTML section of your index.aspx file. The <head> sec-
tion establishes the necessary links to the dvdstyle.css and dvdrentals.js files. You then added a <body>
section that includes two HTML <table> elements. The first table provides a structure for the page title —
DVD Transaction Listing — and the second table provides the structure for the data that will be displayed
on the page. The data includes the order number, customer name, DVD name, and dates that the DVD
was checked out, when it is due back, and, if applicable, when it was returned. As a result, the initial
table structure that is created in this section sets up a row for the table headings and a cell for each heading.

For more information about HTML, file linking from within HTML, style sheets, and JavaScript functions,
refer to the appropriate documentation.

Once you set up your HTML structure, you began the main C# section of the page, which you indicating
by including an opening scriptlet tag. Following the tag, you declared two variables:

OdbcConnection odbcConnection = null;
OdbcCommand odbcCommand = null;

The odbcConnection variable is based on the OdbcConnection class, and the odbcCommand variable is
based on the OdbcCommand class. You use these variables later in your code to reference objects that allow
you to create a connection and retrieve data from a MySQL database. Initially, you set the value of each
variable to null. However, this only serves as a marker to indicate the current setting of the variable.
Because both of the variables are object-related, until you assign an object to them, they cannot be used.

Once you declared the variables, you initiated the try/catch blocks by adding the following code:

try
{

The try/catch blocks are used to catch any exceptions that might be generated if a C# statement does
not execute properly. After you set up the try block, you created the statements necessary to establish a
connection to the database:

String strConnection = “driver={MySQL ODBC 3.51 Driver};” +
“server=localhost;” +
“database=DVDRentals;” +
“uid=mysqlapp;” +
“password=pw1”;

odbcConnection = new OdbcConnection(strConnection);

odbcConnection.Open();

In the first statement, you declared a string variable and then assigned to that variable the parameters
necessary to connect to the DVDRentals database. The driver setting refers to the Connector/ODBC
driver that is available from MySQL AB. (Be sure to refer to the MySQL documentation for information
on how to set up that driver.)

744

Chapter 19

22_579509 ch19.qxd 3/1/05 10:07 AM Page 744

TEAM LinG - Live, Informative, Non-cost and Genuine !

In the next statement, you assigned a new OdbcConnection object to the odbcConnection variable.
You included as an argument in the OdbcConnection() constructor the strConnection variable. As
a result, the connection information is added to the new OdbcConnection object. You then used the
odbcConnection variable to call the Open() method in the OdbcConnection object. The method used
the connection parameters assigned to the object to connect to the database.

Once you established your connection, you declared a string variable named selectSql and assigned
the necessary SELECT statement to that variable:

String selectSql = “SELECT “ +
“Transactions.TransID, “ +
“Transactions.OrderID, “ +
“Transactions.DVDID, “ +
“Transactions.DateOut, “ +
“Transactions.DateDue, “ +
“Transactions.DateIn, “ +
“Customers.CustFN, “ +
“Customers.CustLN, “ +
“DVDs.DVDName “ +
“FROM Transactions, Orders, Customers, DVDs “ +
“WHERE Orders.OrderID = Transactions.OrderID “ +
“AND Customers.CustID = Orders.CustID “ +
“AND DVDs.DVDID = Transactions.DVDID “ +
“ORDER BY Transactions.OrderID DESC, “ +
“Customers.CustLN ASC, Customers.CustFN ASC, “ +
“Transactions.DateDue DESC, DVDs.DVDName ASC”;

As you can see, this is a basic SELECT statement that joins the Transactions, Orders, Customers, and
DVDs tables in the DVDRentals database. You then created a new OdbcCommand object and assigned it
to the odbcCommand variable, as shown in the following statement:

odbcCommand = new OdbcCommand(selectSql, odbcConnection);

The OdbcCommand() constructor includes two arguments: the selectSql variable and the
odbcConnection. As a result, the data assigned to these variables is used by the constructor to create a
new OdbcCommand object, which is then assigned to the odbcCommand variable. You can then use that
variable to access the ExecuteReader() method of the OdbcCommand object, as you did in the following
statement:

OdbcDataReader odbcDataReader = odbcCommand.ExecuteReader();

The ExecuteReader() method executes the SELECT statement and creates an OdbcDataReader object,
which is then assigned to the odbcDataReader variable. The new object contains the result set returned
by the SELECT statement, so you can use the odbcDataReader variable to access the result set, which
you did in a while loop:

while(odbcDataReader.Read())
{

int transId = (int) odbcDataReader[“TransID”];
int orderId = (int) odbcDataReader[“OrderID”];
int dvdId = (int) (short) odbcDataReader[“DVDID”];

745

Connecting to MySQL from an ASP.NET/C# Application

22_579509 ch19.qxd 3/1/05 10:07 AM Page 745

TEAM LinG - Live, Informative, Non-cost and Genuine !

The while loop first uses the odbcDataReader variable to access the Read() method. If the method
points to a row in the result set, the while condition evaluates to true. Each time a while loop is executed,
the Read() method points to the next row in the result set. You then used the while loop to assign values
from the result set to related variable. For many of these variables, you were able to cast the value returned
from the database into the type used by the variable. For example, you cast the value returned by the
TransID variable to an int type, and the value is then assigned to the transId variable.

Notice that the process for casting the DVDID value is a little different from the other variables. This is
because the DVDID value is stored as a SMALLINT type. As a result, you must first cast it to a short type,
and then cast it to an int type in order to assign the value to the dvdId variable, which is itself an int type.

For date-related values, you had to take a different approach, as shown in the following statements:

object obj;
String dateOutPrint = “”;
String dateDuePrint = “”;
String dateInPrint = “”;

obj = odbcDataReader[“DateOut”];

if(!obj.GetType().Equals(typeof(DBNull)))
{

DateTime dateOut = (DateTime) obj;
dateOutPrint = dateOut.ToString(“MM-dd-yyyy”);

}

First, you declared the variables necessary to work with the date values. Basically, you want to convert
the value from MySQL DATE values to C# string values. For each date value, you first assigned the
value to the obj variable. Then you set up an if block that includes a condition that specifies that the
obj variable should not be of the type DBNull. When ASP.NET extracts DATE values from a MySQL
database, values of 0000-00-00 or null column values are converted to type DBNull. To check that this is
not the case, you use the GetType() and Equals() methods of the Object class. As an argument to the
Equals() method, you specified the typeof() function, which is used to identify that type, which in
this case is DBNull. Also, because you preceded the condition with an exclamation point (!), the value
returned from the database can not be of the type DBNull. In other words, it cannot have a value of
0000-00-00, which is the default value in a MySQL DATE column that is defined as NOT NULL.

If the if condition evaluates to true, the date value that has been assigned to the obj variable is then
assigned to the dateOut variable as a DateTime value. However, ultimately, you want to work with this
value as a string, so you took one more step, which was to convert the dateOut value to a string, which
was then assigned to the dateOutPrint variable.

Next, you declared a new string variable to hold the entire customer name. At the same time, you initiated
the variable as an empty string, as shown in the following statement:

String customerName = “”;

The customerName variable has been set as an empty string to ensure that if any part of a customer
name is null, that null value is not displayed. That way, when you begin formatting the names, you can
test for the existence of null values and assign names to the customerName variable only if the values
are not null. If they are null, then only an empty string will be displayed or only one name, with no null

746

Chapter 19

22_579509 ch19.qxd 3/1/05 10:07 AM Page 746

TEAM LinG - Live, Informative, Non-cost and Genuine !

values appended to the name. As a result, after you initiated the variables, you then began concatenating
the names, starting with the first name, as shown in the following if statement:

if(custFirstName != null)
customerName += custFirstName + “ “;

The statement first checks whether the customer’s first name is not null. If the condition evaluates to true,
the value in the custFirstName variable, plus a space (enclosed in the pair of double quotes), is added
to the customerName variable. Note that when a plus sign precedes an equal sign, the existing variable
value is added to the new values, rather than being replaced by those values. This is better illustrated by
the next if statement, which then adds the last name to the first name:

if(custLastName != null)
customerName += custLastName;

In this case, unless the first name is null, the customerName variable currently holds the first name value,
along with a space, which is then added to the last name value. As a result, the customerName variable
now holds the customer’s full name, displayed as first name, space, then last name.

You also used an if statement to ensure that the dvdName variable contains a string, rather than a null,
as shown in the following statement:

if(dvdName == null)
dvdName = “”;

The reason for this is again to ensure that a null value is not displayed on the Web page, but rather a
blank value if the DVD name is null.

Once you have formatted the values in the way that you want, you can use the variables to display those
values in an HTML table structure. This structure follows the same structure that is defined at the begin-
ning of the file, thus providing the column heads for the rows that you now add. Keep in mind that you
are still working within the while loop created earlier. So every step that you take at this point still
applies to each individual row that is returned by the Read() method.

To create the necessary row in the table, you used the scriptlet closing tag (%>) to get out of C# mode and
back into HTML mode. You then created a cell definition for each value that is returned by the result set
(and subsequently assigned to a variable). For example, you used the following definition in for first cell
in the first row of the table (not counting the heading):

<td class=”item”>
<nobr>
<%=orderId%>
</nobr>

</td>

You used the <td> and </td> elements to enclose the individual cell within the row. The <nobr> and
</nobr> elements indicate that there should be no line break between the two tags. Notice that squeezed
between all that is a C# variable that is enclosed by opening (<%=) and closing (%>) expression tags. As a
result, the value of the orderId variable will be displayed in that cell.

747

Connecting to MySQL from an ASP.NET/C# Application

22_579509 ch19.qxd 3/1/05 10:07 AM Page 747

TEAM LinG - Live, Informative, Non-cost and Genuine !

This process is repeated for each value in the row and repeated for each row until the while statement
loops through all the rows in the result set. After the while loop, you closed or disposed of the necessary
objects:

odbcDataReader.Close();

if(odbcCommand != null)
odbcCommand.Dispose();

if(odbcConnection != null)
odbcConnection.Dispose();

The Close() method closes the an object, whereas the Dispose() method closes the object and also
releases any related resources. You should always close or dispose of any objects that you no longer
need. After you closed the objects, you ended the try block (by using a closing curly bracket), and then
you created a catch block to catch all exceptions:

catch(Exception ex)
{

throw ex;
}

Any exception thrown from within the try block will now be printed to a Web page. After you set up
the catch block, you closed out the HTML elements and saved the file. You then opened the file in your
browser and viewed the transactions in the DVDRentals database. As you discovered, you can view the
transactions, but you cannot modify them. So now you can explore what steps you can take to allow
your application to support data modification operations.

Inserting and Updating Data in a MySQL Database
Earlier in the chapter, you looked at how to retrieve data from a MySQL database. In this section, you
look at how to insert and update data. The process you use for adding either insert or update functionality
is nearly identical, except that, as you would expect, you use an INSERT statement to add data and an
UPDATE statement to modify data.

Inserting and updating data is different from retrieving data in a couple ways. For one thing, when you
execute a SELECT statement, you use the ExecuteReader() method of the OdbcCommand class to execute
the query. The data returned by the SELECT statement is then added to a new OdbcDataReader object.
However, when you execute a data modification statement, you simply call the ExecuteNonQuery()
method.

To better understand how the process works, take a look at it one step at a time. First, as you did with
the SELECT statement, you should declare a string variable and assign your SQL statement to that variable,
as shown in the following example:

String insertSql = “INSERT INTO CDs (CDName, InStock) VALUES (?,?)”;

What you probably notice immediately is that question marks are used in place of each value to be
inserted. Later in the process, you create statements that insert values in place of the question marks.
However, you must first create an OdbcCommand object and assign it to a variable, as shown in the fol-
lowing statement:

748

Chapter 19

22_579509 ch19.qxd 3/1/05 10:07 AM Page 748

TEAM LinG - Live, Informative, Non-cost and Genuine !

OdbcCommand comm = new OdbcCommand(insertSql, conn);

The OdbcCommand() constructor takes two arguments: insertSql and conn. (Assume for this example
that the conn variable references an OdbcConnection object that contains the necessary parameters.)
Once you create the OdbcCommand object, you must create an OdbcParameter array that will be used to
assign values to the question mark parameters in the INSERT statement:

OdbcParameter [] param = new OdbcParameter[2];

When you create an array, you’re creating an object that can hold sets of values. In this case, the object is
based on the OdbcParameter class. To create an array, you must add a set of square brackets when you
declare the variable and when you call the constructor to create the new object. However, when calling
the constructor, you must also specify the number of parameters. The example above specifies two
parameters, which coincides with the number of question mark parameters in the INSERT statement.

After you assign the new OdbcParameter array to the param variable, you can use that variable to work
with the individual parameters within the array. To work with individual parameters, you refer to them
by number, in the order in which they are added to the INSERT statement. The number references start
at 0 and go on up. For example, if your array includes two parameters, you reference the first parameter
by using 0 and the second parameter by using 1.

For each parameter, you must create an OdbcParameter object and then assign a value to the object, as
shown in the following statements:

param[0] = new OdbcParameter(“”, OdbcType.VarChar);
param[0].Value = cdName;
param[1] = new OdbcParameter(“”, OdbcType.Int);
param[1].Value = inStock;

The first statement assigns a new object to the first parameter referenced by the param variable. Notice
that 0 is used to reference that parameter. The OdbcParameter constructor takes two arguments. The
first is an empty string to act as a placeholder for a value to be passed to it. The second argument defines
the data type to be used for the parameter value. In the first statement, the type is OdbcType.VarChar.

Once you create a new OdbcParameter object for the parameter, you can use the Value property of the
object to assign a value to the parameter. In the example above, a variable is assigned to the parameter.
For the first parameter, the cdName variable is used to assign a value. For the second parameter, the
inStock variable is used.

Once you have assigned values to your parameters, you must add them to your OdbcCommand object,
which you access through the comm variable. To add the value to the object, you must use the Parameters
property and the Add() method, as shown in the following statements:

comm.Parameters.Add(param[0]);
comm.Parameters.Add(param[1]);

As you can see, the Add() method take the param variable, along with the parameter number, as an
argument. As a result, that parameter is added to the OdbcCommand object. From there, you can execute
the INSERT statement. To do this, you use the comm variable to call the ExecuteNonQuery() method of
the OdbcCommand object, as the following statement demonstrates:

comm.ExecuteNonQuery();

749

Connecting to MySQL from an ASP.NET/C# Application

22_579509 ch19.qxd 3/1/05 10:07 AM Page 749

TEAM LinG - Live, Informative, Non-cost and Genuine !

ASP.NET inserts the parameter values into the INSERT statement and sends it to the MySQL database.
You could have just as easily executed an UPDATE statement in place of the INSERT statement, and the
process would have been the same. It should also be noted that you can use this procedure to execute a
SELECT statement if you want to pass values into the statement as you did with the INSERT statement
above. If you use this method, you must still use the ExecuteReader() method as you saw with other
SELECT statements, and you must process the result set. In the following Try It Out sections, you see
how all these processes work.

Adding Insert and Update Functionality to Your
Application

So far, your DVDRentals application displays only transaction-related information. In this section, you
add to the application so that it also allows you to add a transaction to an existing order and to modify
transactions. To support the added functionality, you must create three more files — edit.aspx, insert.aspx,
and update.aspx — and you must modify the index.aspx file. Keep in mind that your index.aspx file acts
as a foundation for the rest of the application. You should be able to add a transaction and edit a transac-
tion by first opening the index.aspx file and then maneuvering to wherever you need to in order to
accomplish these tasks.

The first additional file that you create is the edit.aspx file. The file serves two roles: adding transactions
to existing orders and editing existing transactions. These two operations share much of the same func-
tionality, so combining them into one file saves duplicating code. If you’re adding a new transaction, the
Web page will include a drop-down list that displays each order number and the customer associated
with that order, a drop-down list that displays DVD titles, a text box for the date the DVD is rented, and
a text box for the date the DVD should be returned. The default value for the date rented text box is the
current date. The default value for the date due text box is three days from the current date.

If you’re editing a transaction, the Web page will display the current order number and customer, the
rented DVD, the date the DVD was rented, the date it’s due back, and, if applicable, the date that the
DVD was returned.

The edit.aspx Web page will also contain two buttons: Save and Cancel. The Save button saves the new
or updated record and returns the user to the index.aspx page. The Close button cancels the operation,
without making any changes, and returns the user to the index.aspx page.

After you create the edit.aspx page, you then create the insert.aspx file and the update.aspx file in Try It
Out sections that follow this one. From there, you modify the index.aspx page to link together the different
functionality. Not take a look at how to create the edit.aspx file.

Try It Out Creating the edit.aspx File
The following steps describe how to create the edit.aspx file, which will support adding new transac-
tions to a record and editing existing transactions:

1. As with the insert.aspx file, you must specify the language and import the necessary classes into
your application. Use your text editor to start a new file, and enter the following code:

<%@ Page language=”c#”%>
<%@ Import Namespace=”System” %>
<%@ Import Namespace=”System.Web” %>

750

Chapter 19

22_579509 ch19.qxd 3/1/05 10:07 AM Page 750

TEAM LinG - Live, Informative, Non-cost and Genuine !

<%@ Import Namespace=”System.IO” %>
<%@ Import Namespace=”System.Collections” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.Odbc” %>

2. Next, you must declare and initialize a number of variables. Later in the code, you use these
variables to perform different tasks, such as processing and verifying the data retrieved by a
form. Add the following statements to your file:

<%
// Initialize variables with parameters retrieved from the form
String command = Request.Form[“command”];
String transactionIdString = Request.Form[“transaction_id”];
String transIdString = Request.Form[“TransID”];
String orderIdString = Request.Form[“OrderID”];
String dvdIdString = Request.Form[“DVDID”];
String dateOutString = Request.Form[“DateOut”];
String dateDueString = Request.Form[“DateDue”];
String dateInString = Request.Form[“DateIn”];

// Declare and initialize variables with default values
OdbcConnection odbcConnection = null;

DateTime dateDue = DateTime.MinValue;
DateTime dateOut = DateTime.MinValue;
DateTime dateIn = DateTime.MinValue;

int orderId = -1;
int dvdId = -1;
String error = “”;
int transId = -1;

String selectSql;
OdbcCommand odbcCommand;
OdbcDataReader odbcDataReader;

3. As you did with the index.aspx file, you must establish a connection to the MySQL server and
select the database. Add the following code to the edit.aspx file:

// Wrap database-access code in try/catch block to handle errors
try
{

// Create and open the connection
String strConnection = “driver={MySQL ODBC 3.51 Driver};” +

“server=localhost;” +
“database=DVDRentals;” +
“uid=mysqlapp;” +
“password=pw1;”;

odbcConnection = new OdbcConnection(strConnection);

odbcConnection.Open();

751

Connecting to MySQL from an ASP.NET/C# Application

22_579509 ch19.qxd 3/1/05 10:07 AM Page 751

TEAM LinG - Live, Informative, Non-cost and Genuine !

4. Next, the file should process the new or edited transactions when the user clicks the Save button.
The first step in doing this is to check for missing parameters and reformat the date information.
Enter the following C# code:

// Process the save and savenew commands
if(“save”.Equals(command) || “savenew”.Equals(command))
{

// Check for missing parameters and reformat values for MySQL
if(transIdString != null)

transId = int.Parse(transIdString);

if(orderIdString != null)
orderId = int.Parse(orderIdString);

if(orderId == -1)
error += “Please select an \”Order\”
”;

if(dvdIdString != null)
dvdId = int.Parse(dvdIdString);

if(dvdId == -1)
error += “Please select a \”DVD\”
”;

if((dateDueString != null) && (dateDueString.Length > 0))
dateDue = DateTime.Parse(dateDueString);

else
error += “Please enter a \”Date Due\”
”;

if((dateOutString != null) && (dateOutString.Length > 0))
dateOut = DateTime.Parse(dateOutString);

else
error += “Please enter a \”Date Out\”
”;

if((dateInString != null) && (dateInString.Length > 0))
dateIn = DateTime.Parse(dateInString);

Note that the application does not check the format of the date submitted by users. Normally, an
application would include some type of mechanism to ensure that submitted dates are in a
usable format.

5. Then you can carry out the update or insert by calling the applicable include files. (These files
are created in later Try It Out sections.) Once the code in the applicable include file runs, you
should redirect users back to the index.aspx page. Enter the following code in your file:

if(error.Length == 0)
{

if(“save”.Equals(command))
{

// Run the update in update.aspx
%>

<!-- #Include File=”update.aspx” -->
<%

}
else
{

// Run the insert in insert.aspx
%>

<!-- #Include File=”insert.aspx” -->

752

Chapter 19

22_579509 ch19.qxd 3/1/05 10:07 AM Page 752

TEAM LinG - Live, Informative, Non-cost and Genuine !

<%
}

// Redirect the application to the listing page
Response.Redirect(“index.aspx”);

}
}

6. The next step is to set up the file to support adding or updating a record when the user has been
redirected to this page from the index.aspx page. This is done as part of the else statement in
an if...else structure. This particular section sets up the default values for a new record. Add
the following code to your file:

else
{

// If it is a new record, initialize the variables to default values
if(“add”.Equals(command))
{

transId = 0;
orderId = 0;
dvdId = 0;
dateOutString = DateTime.Today.ToString(“MM-dd-yyyy”);
dateDueString = DateTime.Today.AddDays(3).ToString(“MM-dd-yyyy”);
dateInString = “”;

}

7. Next you must set up the file with the values necessary to support editing a record. This
involves retrieving records to set an initial value for a number of variables. Add the following
code to your ASP.NET file:

else
{

// If it is an existing record, read from database

if(transactionIdString != null)
{

// Build query from transactionId value passed down from form
transId = int.Parse(transactionIdString);

selectSql = “SELECT “ +
“OrderID, “ +
“DVDID, “ +
“DateOut, “ +
“DateDue, “ +
“DateIn “ +
“FROM Transactions “ +
“WHERE TransID = ?”;

// Execute query
odbcCommand = new OdbcCommand(selectSql, odbcConnection);

OdbcParameter odbcParameter = new OdbcParameter(“”, OdbcType.Int);
odbcParameter.Value = transId;
odbcCommand.Parameters.Add(odbcParameter);

// Populate the variables for display into the form

753

Connecting to MySQL from an ASP.NET/C# Application

22_579509 ch19.qxd 3/1/05 10:07 AM Page 753

TEAM LinG - Live, Informative, Non-cost and Genuine !

odbcDataReader = odbcCommand.ExecuteReader();

if(odbcDataReader.Read())
{

orderId = (int) odbcDataReader[“OrderID”];
dvdId = (int) (short) odbcDataReader[“DVDID”];

object obj = odbcDataReader[“DateOut”];

if(!obj.GetType().Equals(typeof(DBNull)))
{

dateOut = (DateTime) obj;
dateOutString = dateOut.ToString(“MM-dd-yyyy”);

}
else

dateOutString = “”;

obj = odbcDataReader[“DateDue”];

if(!obj.GetType().Equals(typeof(DBNull)))
{

dateDue = (DateTime) obj;
dateDueString = dateDue.ToString(“MM-dd-yyyy”);

}
else

dateDueString = “”;

obj = odbcDataReader[“DateIn”];

if(!obj.GetType().Equals(typeof(DBNull)))
{

dateIn = (DateTime) obj;
dateInString = dateIn.ToString(“MM-dd-yyyy”);

}
else

dateInString = “”;
}

// Close objects
odbcDataReader.Close();

if(odbcCommand != null)
odbcCommand.Dispose();

}
}

}
%>

8. Now you must create the HTML section of your form to allow users to view and enter data.
This section includes a form to pass data to C# and the table structure to display the form. Add
the following code to your ASP.NET file:

<html>
<head>

<title>DVD - Listing</title>
<meta http-equiv=”Content-Type” content=”text/html; charset=windows-1252”>

754

Chapter 19

22_579509 ch19.qxd 3/1/05 10:07 AM Page 754

TEAM LinG - Live, Informative, Non-cost and Genuine !

<link rel=”stylesheet” href=”dvdstyle.css” type=”text/css”>
<script language=”JavaScript” src=”dvdrentals.js”></script>

</head>

<body>

<form name=”mainForm” method=”post” action=”edit.aspx”>
<input type=”hidden” name=”command” value=”view”>
<input type=”hidden” name=”TransID” value=”<%=transId%>”>

<p></p>

<table cellspacing=”0” cellPadding=”0” width=”619” border=”0”>
<tr>

<td>
<table height=”20” cellspacing=”0” cellPadding=”0” width=”619”

bgcolor=”#bed8e1” border=”0”>
<tr align=left>

<td valign=”bottom” width=”400” class=”title”>
DVD Transaction

</td>
<td align=”right” width=”219” class=”title”> </td>

</tr>
</table>

<%if(error.Length > 0){%>
<table cellspacing=”2” cellPadding=”2” width=”619” border=”0”>
<tr>

<td width=”619” class=”error”><%=error%></td>
</tr>
</table>
<%}%>

9. Now create the first row of your form, which allows users to view and select an order ID. Enter
the following code in your file:

<table cellspacing=”2” cellPadding=”2” width=”619” border=”0”>
<tr>

<td width=”250” class=”heading”>Order</td>
<td class=”item”>

<select name=”OrderID”>
<option value=”-1”>Select Order</option>

<%
// Retrieve data to populate drop-down list

selectSql = “SELECT Orders.OrderID, Orders.CustID, “ +
“Customers.CustFN, Customers.CustLN “ +
“FROM Orders, Customers “ +
“WHERE Customers.CustID = Orders.CustID “ +
“ORDER BY Orders.OrderID DESC”;

// Execute the query
odbcCommand = new OdbcCommand(selectSql, odbcConnection);

odbcDataReader = odbcCommand.ExecuteReader();

// Loop through the results

755

Connecting to MySQL from an ASP.NET/C# Application

22_579509 ch19.qxd 3/1/05 10:07 AM Page 755

TEAM LinG - Live, Informative, Non-cost and Genuine !

while(odbcDataReader.Read())
{

// Assigned returned values to the variables
int orderId1 = (int) odbcDataReader[“OrderID”];;
String custFirstName = (String) odbcDataReader[“CustFN”];
String custLastName = (String) odbcDataReader[“CustLN”];

// Format the data for display
String customerName = “”;

if(custFirstName != null)
customerName += custFirstName + “ “;

if(custLastName != null)
customerName += custLastName;

// If the order ID matches the existing value mark, it as selected

if(orderId1 != orderId)
{

%>
<option value=”<%=orderId1%>”><%=orderId1%> -

<%=customerName%></option>
<%

}
else
{

%>
<option selected value=”<%=orderId1%>”><%=orderId1%> -

<%=customerName%></option>
<%

}
}

// Close objects
odbcDataReader.Close();

if(odbcCommand != null)
odbcCommand.Dispose();

%>
</select>

</td>
</tr>

10. The second row of your form allows users to view and select a DVD to associate with your
transaction. Add the following code to your edit.aspx file.

<tr>
<td class=”heading”>DVD</td>
<td class=”item”>

<select name=”DVDID”>
<option value=”-1”>Select DVD</option>

<%
// Retrieve data to populate drop-down list

756

Chapter 19

22_579509 ch19.qxd 3/1/05 10:07 AM Page 756

TEAM LinG - Live, Informative, Non-cost and Genuine !

selectSql = “SELECT DVDID, DVDName FROM DVDs ORDER BY DVDName”;

odbcCommand = new OdbcCommand(selectSql, odbcConnection);

odbcDataReader = odbcCommand.ExecuteReader();

// Loop through the result set
while(odbcDataReader.Read())
{

int dvdId1 = (int) (short) odbcDataReader[“DVDID”];
String dvdName = (String) odbcDataReader[“DVDName”];

if(dvdName == null) dvdName = “”;

if(dvdId1 != dvdId)
{

%>
<option value=”<%=dvdId1%>”><%=dvdName%></option>

<%
}
else
{

%>
<option selected value=”<%=dvdId1%>”><%=dvdName%></option>

<%
}

}

// Close objects
odbcDataReader.Close();

if(odbcCommand != null)
odbcCommand.Dispose();

if(odbcConnection != null)
odbcConnection.Dispose();

%>
</select>

</td>
</tr>

11. Next, create three more rows in your table, one for each date-related value. Enter the following code:

<tr>
<td class=”heading”>Date Out</td>
<td class=”item”>

<input type=”text” name=”DateOut” value=”<%=dateOutString%>” size=”50”>
</td>

</tr>
<tr>

<td class=”heading”>Date Due</td>
<td class=”item”>

<input type=”text” name=”DateDue” value=”<%=dateDueString%>” size=”50”>

757

Connecting to MySQL from an ASP.NET/C# Application

22_579509 ch19.qxd 3/1/05 10:07 AM Page 757

TEAM LinG - Live, Informative, Non-cost and Genuine !

</td>
</tr>
<%if((!”add”.Equals(command)) && (!”savenew”.Equals(command))){%>
<tr>

<td class=”heading”>Date In</td>
<td class=”item”>

<input type=”text” name=”DateIn” value=”<%=dateInString%>” size=”50”>
</td>

</tr>
<%}%>

12. Now add the Save and Cancel buttons to your form by appending the following code to your file:

<tr>
<td colspan=”2” class=”item” align=”center”>

<table cellspacing=”2” cellPadding=”2” width=”619” border=”0”>
<tr>

<td align=”center”>
<%if((“add”.Equals(command)) || (“savenew”.Equals(command))){%>
<input type=”button” value=”Save” class=”add”

onclick=”doSave(this, ‘savenew’)”>
<%}else{%>
<input type=”button” value=”Save” class=”add”

onclick=”doSave(this, ‘save’)”>
<%}%>

</td>
<td align=”center”>

<input type=”button” value=”Cancel” class=”add”
onclick=”doCancel(this)”>

</td>
</tr>
</table>

</td>
</tr>

13. Close the various HTML elements and catch any exceptions by entering the following code:

</table>
</td>

</tr>
</table>
</form>
</body>
</html>
<%
}
catch(Exception ex)
{

throw ex;
}
%>

14. Save the edit.aspx file to the appropriate Web application directory.

758

Chapter 19

22_579509 ch19.qxd 3/1/05 10:07 AM Page 758

TEAM LinG - Live, Informative, Non-cost and Genuine !

How It Works
In this exercise, you created the edit.aspx file, which supports the insert and update functionality in your
DVDRentals application. The first step you took to set up the file was to add the page and import direc-
tives necessary to specify the language and .NET classes to be used on your page. These are the same classes
that you import for the index.aspx file. Once you set up the page and import directives, you declared and
initialized a number of variables. The first set of variables is associated with values returned by the HTML
form. For example, the following C# statement retrieves the command value returned by a form:

String command = Request.Form[“command”];

The statement uses the Form property of the Request object to retrieve the command value. The value is
returned as a string and assigned to the command variable, which has been declared as a String type.

Once you assigned the form parameter values to the necessary variables, you then declared and initial-
ized several variables used later in the code to display initial values in form. For example, one of the
variables that you declared was dateDue:

DateTime dateDue = DateTime.MinValue;

The variable is declared as a DateTime type and is assigned a value from the DateTime class. The value
is based on the MinValue property, which is the earliest date/time value (midnight on January 1, 0001)
in the range of values supported by the DateTime class. The MinValue property is a fixed value and is
used to provide an initial setting for the dateDue variable. This is done to prepare the variable for pro-
cessing later in the code, as you’ll see in that section of the file.

In the next set of variables that you declared, you initialized several of them with a value of -1, as shown in
the following statement:

int orderId = -1;

The -1 value is used simply to ensure that no value is assigned that might conflict with a value retrieved
by the database. As you’ll see later in the code, the orderId variable is associated with the order ID as it
is stored in the Transactions table and the Orders table of the DVDRentals database. Only positive inte-
ger values are used for order IDs. As a result, by assigning an integer other than a positive integer, you’re
ensuring that the initial variable value will not conflict with an actual value.

Once you declared and initialized the necessary variables, you set up and opened your connection, as
you did in the index.aspx file. From there, you set up if...else statement blocks that begin with the
following if condition:

if(“save”.Equals(command) || “savenew”.Equals(command))

The if statement specifies two conditions. The first condition uses the Equals() method to compare the
string saved to the current value in the command variable. If the values are equal, the condition evaluates
to true. The second condition also uses the Equals() method to compare the string savenew to the command
variable. If the values are equal, the condition evaluates to true. Because the conditions are connected by
the or (||) operator, either condition can be true for the if statement to be executed. If neither condition
is true, the else statement is executed.

The save and savenew command values are issued when you click the Save button. You learn more
about that button shortly.

759

Connecting to MySQL from an ASP.NET/C# Application

22_579509 ch19.qxd 3/1/05 10:07 AM Page 759

TEAM LinG - Live, Informative, Non-cost and Genuine !

The if...else statements contain a number of if...else statements embedded in them. Before getting
deeper into the code that makes up all these statements, first take a look at a high overview of the logic
behind these statements. It will give you a bigger picture of what’s going on and should make under-
standing the individual components a little easier. The following pseudo-code provides an abbreviated
statement structure starting with the outer if statement described previously:

if command = save or savenew, continue (if !=, go to else)
{

if transactionIdString != null, assign to transID
if OrderIdString != null, assign to orderId
if OrderIdString = -1, return error message
if dvdIdString != null, assign to dvdId
if dvdIdString = -1, return error message
if dateDueString != null and length > 0, assign to dateDue

else return error message
if dateOutString != null and length > 0, assign to dateOut

else return error message
if dateInString != null and length > 0, assign to dateIn
if no error, continue
{

if command = save, include update.aspx
else include insert.aspx

redirect to index.aspx
}

}
else (if command != save or savenew)
{

if command = add, continue (if !=, go to else)
{

initialize variables (x 6)
}
else (if command != add)
{

if transactionIdString != null
{

process query
if query results exist, fetch results
{

assign variables (x 2)
if date != null and != DBNull, assign to variable

else set date to empty string (x 3)
}

}
}

}

As you can see, the action taken depends on the values in the command and transactionIdString
variables. The outer if statement basically determines what happens when you try to save a record, and
the outer else statement determines what happens when you first link to the page from the index.aspx
page. Embedded in the else statement is another set of if...else statements. The embedded if state-
ment determines what happens if you want to add a transaction, and the embedded else statement
determines what happens if you want to update a transaction.

760

Chapter 19

22_579509 ch19.qxd 3/1/05 10:07 AM Page 760

TEAM LinG - Live, Informative, Non-cost and Genuine !

Now take a closer look at these statements. You’ve already seen the opening if statement. A number of
embedded if statements follow the outer if statement. For example, the following statements convert a
string value to an integer value and set up an error condition:

if(orderIdString != null)
orderId = int.Parse(orderIdString);

if(orderId == -1)
error += “Please select an \”Order\”
”;

The first if statement defines the condition that the orderIdString value should not be null. If the con-
dition evaluates to true, the Parse() method of the int class is used to assign a value to the orderId
variable. The Parse() methods converts the string value to an integer value, which is then assigned to
the int variable.

The next if statement specifies the condition that orderId should equal a value of -1. If the condition
evaluates to true, an error message is returned, telling the user to select a value. (You assigned the value -1
to the variable earlier in the page, and the default value that you set up in the order ID and DVD drop-down
lists is -1.)

This section of code also includes embedded if...else statements. The if statement includes two con-
ditions, as shown in the following code:

if((dateDueString != null) && (dateDueString.Length > 0))
dateDue = DateTime.Parse(dateDueString);

else
error += “Please enter a \”Date Due\”
”;

The if condition specifies that the dateDueString value cannot be null and the value must have a length
greater than zero characters. If both these conditions are met, the dateFormat variable is used to call the
Parse() method of the DateTime class. The converted value is then assigned to the dateDue variable.
If either of the two if conditions evaluate to false, the else statement is executed and ASP.NET returns
an error to the user.

The next step that you took was to use the Length property to determine whether the error variable con-
tained any characters. If the error variable is empty, the condition evaluates to true, which means that it
contains no error messages and the rest of the code should be processed. This means that a file should be
included in the page, as shown in the following code:

if(error.Length == 0)
{

if(“save”.Equals(command))
{

%>
<!-- #Include File=”update.aspx” -->

<%
}
else
{

%>
<!-- #Include File=”insert.aspx” -->

<%
}

761

Connecting to MySQL from an ASP.NET/C# Application

22_579509 ch19.qxd 3/1/05 10:07 AM Page 761

TEAM LinG - Live, Informative, Non-cost and Genuine !

If there are no error messages returned by the previous code, the embedded if...else statements are
then applied. If the command value is save, the update.aspx file code is executed; otherwise the insert.aspx
file code is executed. (You create these files in later Try It Out sections.) Once the statements in the appli-
cable include file are executed, the following statement is executed:

Response.Redirect(“index.aspx”);

The statement uses the Redirect() method of the Response object to redirect the user to index.aspx,
which is specified as an argument in the method. This completes the outer if statement that initiates
this section of code. However, if the if statement is not applicable (command does not equal save or
savenew), ASP.NET executes the outer else statement.

The outer else statement is made up of its own embedded if...else statements. The if statement
applies if the command variable currently holds the value add, as shown in the following code:

if(“add”.Equals(command))
{

transId = 0;
orderId = 0;
dvdId = 0;
dateOutString = DateTime.Today.ToString(“MM-dd-yyyy”);
dateDueString = DateTime.Today.AddDays(3).ToString(“MM-dd-yyyy”);
dateInString = “”;

}

If command is set to add, this means that you are creating a new transaction. To prepare the Web page
with the variables it needs to properly display the form when you open the page, you set a number of
variables to specific values. For example, you set transId to 0, which is an unused number and so does
not match any current transaction IDs.

Now take a look at the dateOutString variable. The goal here is to assign the current date to the variable
and to assign that date as a string value. The first step is retrieve the current date by using the Today prop-
erty of the DateTime object. You then use the ToString() method of the DateTime class to convert the
value into a string in the format specified as an argument in the method. As a result, the current date, as
a string value, is assigned to the dateOutString variable.

Next take a look at the dateDueString variable. This is similar to the dateOutString variable except
that it contains an additional element: it adds three days to the current date. It accomplishes this by using
the AddDays() method, which specifies that three days should be added to the current date. The date that
is three days out from the current date is then converted to a string and assigned to the dateDueString
variable.

After you set up the variables for the embedded if statement, you then added the necessary statements
to the embedded else statement. You began the else block with another if statement that verifies that
the transactionIdString variable is not null, as shown in the following code:

if(transactionIdString != null)

If the value is not null (a value does exist), the remaining part of the if statement is executed. This
means that you are editing an existing transaction, in which case, the transactionIdString variable
identifies that transaction. However, the value is returned as a string, but transaction IDs are stored in

762

Chapter 19

22_579509 ch19.qxd 3/1/05 10:07 AM Page 762

TEAM LinG - Live, Informative, Non-cost and Genuine !

the database as integers. As a result, you used the Parse() method to convert the string to an integer
value. From there, you created a SELECT statement and assigned it to the selectSql variable:

selectSql = “SELECT “ +
“OrderID, “ +
“DVDID, “ +
“DateOut, “ +
“DateDue, “ +
“DateIn “ +
“FROM Transactions “ +
“WHERE TransID = ?”;

As you can see, the SELECT statement includes a question mark placeholder. To assign a variable to the
parameter, you first created an OdbcCommand object and assigned it to the odbcCommand variable. From
there you created an OdbcParameter object, assigned a value to the parameter, and added the parameter
to the OdbcCommand object, as shown in the following code:

odbcCommand = new OdbcCommand(selectSql, odbcConnection);

OdbcParameter odbcParameter = new OdbcParameter(“”, OdbcType.Int);
odbcParameter.Value = transId;
odbcCommand.Parameters.Add(odbcParameter);

odbcDataReader = odbcCommand.ExecuteReader();

Because you are assigning only one parameter to the OdbcCommand object, you do not have to create an
OdbcParameter array. Instead, you simply create the OdbcParameter object and use that object to add
the parameter to the OdbcCommand object. From there, you were able to use the ExecuteReader() method
to execute the SELECT statement and return a result set to the odbcDataReader variable.

Once you set up the SELECT statement and its parameters and then executed the statement, you processed
the result set by using the Read() method of the OdbcDataReader object to assign values to the variables.
This process included formatted date values to be used by the form. The methods that you used here to
format the date values is similar to what you’ve used in other parts of the application. However, when
processing the result set, you did not need to use a while loop because only one row is returned by the
query. As a result, you can use a simple if statement to specify the Read() method.

After you set up the data to populate the form, you have completed the if...else block of code. If
necessary, refer back to the summary code that is provided at the beginning of this description. This pro-
vides a handy overview of what is going on.

The next section of code that you created set up the HTML for the Web page. As with the index.aspx file,
the HTML section includes header information that links to the dvdstyle.css file and the dvdrentals.js
file. The section also includes a <form> element and two <input> elements:

<form name=”mainForm” method=”post” action=”edit.aspx”>
<input type=”hidden” name=”command” value=”view”>
<input type=”hidden” name=”TransID” value=”<%=transId%>”>

A form is an HTML structure that allows a user to enter or select data and then submit that data. The
data can then be passed on to other Web pages or to the C# code. This particular form uses the post
method to send data (method=”post”) and sends that data to the current page (action=”edit.aspx”).

763

Connecting to MySQL from an ASP.NET/C# Application

22_579509 ch19.qxd 3/1/05 10:07 AM Page 763

TEAM LinG - Live, Informative, Non-cost and Genuine !

Beneath the form, you added two <input> elements that create the initial values to be inserted into
the command and transaction_id parameters. The command parameter is set to view, and the
transaction_id parameter is set to the value contained in the transId variable. To use the variable to
set the transaction_id value, you must enclose the variable in C# opening and closing expression tags
so the value can be used by the form. Also note that the input type for both <input> elements is hidden,
which means that the user does not actually see these two elements. Instead, they serve only as a way to
pass the command and transaction_id values, which is done in the background. The user does not
enter these values.

Forms are a common method used in HTML to pass data between pages. It is also useful for passing
values between HTML and C#. For more information about forms, consult the applicable HTML
documentation.

After you defined the form, you then set up the table to display the heading DVD Transaction at the top
of the page. From there, you added another table whose purpose is to display error messages, as shown
in the following code:

<%if(error.Length > 0){%>
<table cellspacing=”2” cellPadding=”2” width=”619” border=”0”>
<tr>

<td width=”619” class=”error”><%=error%></td>
</tr>
</table>
<%}%>

The HTML table structure is preceded by C# opening and closing scriptlet tags so that you can use an if
statement to specify a condition in which the table will be displayed. The if statement specifies that the
error variable must contain a string whose length is greater than zero characters. This is done by using
the Length property to determine the length of the error value and then comparing the length to zero.
If the condition evaluates to true, the table is created and the error is printed. At the end of the table, you
again used a pair of opening and closing scriptlet tags to add the closing bracket of the if statement.

Once you have established a way for error messages to be displayed, you set up the table that will be
used to display the part of the form that they user sees. The first row of the form will contain a drop-
down list of order IDs — along with the customer names associated with those orders — that the user
will be able to select from when adding a transaction. To populate this drop-down list, you retrieved
data from the database, processed the data, and formatted the customer name. The methods used for
retrieving and processing the data are the same methods that you’ve already used in the application.
Once you retrieved the value, you added another form element to you Web page, but this form element
is visible to the user:

if(orderId1 != orderId)
{

%>
<option value=”<%=orderId1%>”><%=orderId1%> -

<%=customerName%></option>
<%

}
else
{

%>

764

Chapter 19

22_579509 ch19.qxd 3/1/05 10:07 AM Page 764

TEAM LinG - Live, Informative, Non-cost and Genuine !

<option selected value=”<%=orderId1%>”><%=orderId1%> -
<%=customerName%></option>
<%

The form element shown here is an <option> element. An <option> element allows a user to select from
a list of options in order to submit data to the form. There are actually two <option> elements here, but
only one is used. This is because C# if...else statements enclose the <option> elements. The if state-
ment condition specifies that orderId1 should not equal orderId. If they are not equal, the if statement
is executed and the first <option> element is used, otherwise the second <option> element is used. The
second element includes the selected option, which means that the current order ID is the selected option
when the options are displayed.

The orderId1 variable receives its value from the results returned by the SELECT statement used to populate
the <option> element. The orderId variable receives its value from the SELECT statement that is used to
assign values to variables once it has been determined that the user is editing an existing transaction. (This
occurs when the if...else statements earlier in the code are processed.) If the two values are equal, the
second <option> element is used, which means that the current order ID is displayed when this page is loaded.
If the two values are not equal, which is the condition specified in the if statement, no order ID is displayed,
which you would expect when creating a new record.

The next row that you created for your form table allows users to select from a list of DVD names. The
same logic is used to create the drop-down list available to the users. The only difference is that, because
only DVD names are displayed, no special formatting or concatenation is required to display the values.

After you created your two rows that display the drop-down lists to the users, you created three date-
related rows. Each row provides a text box in which users can enter the appropriate dates. For example,
the first of these rows includes the following form element:

<input type=”text” name=”DateOut” value=”<%=dateOutString%>” size=”50”>

As you can see, this is an <input> element, similar to the ones that you created when you first defined
the form. Only the input type on this one is not hidden, but instead is text, which means that a text box
will be displayed. The name of the text box is DateOut. This is actually the name of the parameter that
will hold the value that the user submits. The initial value displayed in the text box depends on the
value of the dateOutString variable. For new records, this value is the current date, and for existing
records, this is the value as it currently exists in the database. (Both these values are determined in the
earlier C# code.)

Once you completed setting up the various form elements, you added two more elements: one for the
Save button and one for the Cancel button. For example, your code for the Save button is as follows:

<td align=”center”>
<%if((“add”.Equals(command)) || (“savenew”.Equals(command))){%>
<input type=”button” value=”Save” class=”add” onclick=”doSave(this, ‘savenew’)”>
<%}else{%>
<input type=”button” value=”Save” class=”add” onclick=”doSave(this, ‘save’)”>
<%}%>

</td>

A button is also an <input> element on a form, but the type is specified as button. The value for this element
determines the name that appears on the button, which in this case is Save. The class option specifies

765

Connecting to MySQL from an ASP.NET/C# Application

22_579509 ch19.qxd 3/1/05 10:07 AM Page 765

TEAM LinG - Live, Informative, Non-cost and Genuine !

the style that should be used in the button, as defined in the dvdstyle.css file, and the onclick option
specifies the action to be taken. In this case, the action is to execute the doSave() function, which is
defined in the dvdrentals.js file.

Notice that there are again two <input> elements, but only one is used. If the command value equals add
or savenew, the first <input> element is used, otherwise the second <input> element is used. When
you click the Save button, the doSave() function is called. The function takes one argument, this, which
is a self-referencing value that indicates that the action is related to the current HTML input button.
When the function is executed, it submits the form to the edit.aspx file and sets the command parameter
value to savenew or save, depending on which <input> option is used. Based on the command value,
the C# code is processed once again, only this time, the first if statement (in the large if...else con-
struction) evaluates to true and that statement is executed. Assuming that there are no errors, the date
values are reformatted for MySQL, the C# code in the update.aspx or insert.aspx include file is executed,
and the user is redirected to the index.aspx page.

As you can see, the edit.aspx page provides the main logic that is used to insert and update data.
However, as the code in this page indicates, you must also create the include files necessary to support
the actual insertion and deletion of data. In the next Try It Out section, you create the insert.aspx file. The
file contains only that script that is necessary to insert a record, based on the values provided by the user
in the edit.aspx form.

Try It Out Creating the insert.aspx file
The following steps describe how to create the insert.aspx file:

1. In your text editor, create a new file and enter the following code:

<%
// Build the INSERT statement with parameter references
String insertSql = “INSERT INTO Transactions (OrderID, DVDID, DateOut, DateDue)
VALUES (?, ?, ?, ?)”;

odbcCommand = new OdbcCommand(insertSql, odbcConnection);

OdbcParameter [] odbcInsertParameters = new OdbcParameter[4];

// Set the parameters
odbcInsertParameters[0] = new OdbcParameter(“”, OdbcType.Int);
odbcInsertParameters[0].Value = orderId;
odbcInsertParameters[1] = new OdbcParameter(“”, OdbcType.Int);
odbcInsertParameters[1].Value = dvdId;
odbcInsertParameters[2] = new OdbcParameter(“”, OdbcType.Date);
odbcInsertParameters[2].Value = dateOut;
odbcInsertParameters[3] = new OdbcParameter(“”, OdbcType.Date);
odbcInsertParameters[3].Value = dateDue;

odbcCommand.Parameters.Add(odbcInsertParameters[0]);
odbcCommand.Parameters.Add(odbcInsertParameters[1]);
odbcCommand.Parameters.Add(odbcInsertParameters[2]);
odbcCommand.Parameters.Add(odbcInsertParameters[3]);

// Execute the INSERT statement

766

Chapter 19

22_579509 ch19.qxd 3/1/05 10:07 AM Page 766

TEAM LinG - Live, Informative, Non-cost and Genuine !

odbcCommand.ExecuteNonQuery();

if(odbcCommand != null)
odbcCommand.Dispose();

if(odbcConnection != null)
odbcConnection.Dispose();

%>

2. Save the insert.aspx file to the appropriate Web application directory.

How It Works
In this exercise, you created the insert.aspx file, which is an include file for edit.aspx. The first step you
took in creating the insert.aspx file was to assign an INSERT statement to the insertSql variable:

String insertSql = “INSERT INTO Transactions (OrderID, DVDID, DateOut, DateDue)
VALUES (?, ?, ?, ?)”;

Instead of including the values to be inserted into the MySQL database, the statement includes four
question mark placeholders. Values for the placeholders are defined later in the file.

After you created the INSERT statement, you initialized the odbcCommand variable. You also declared
and initiated an OdbcParameter array, as shown in the following statement:

odbcCommand = new OdbcCommand(insertSql, odbcConnection);

OdbcParameter [] odbcInsertParameters = new OdbcParameter[4];

odbcInsertParameters[0] = new OdbcParameter(“”, OdbcType.Int);
odbcInsertParameters[0].Value = orderId;

To set up the new OdbcCommand object, you used the values assigned to the insertSql variable and the
odbcConnection variable. When you set up the OdbcParameter array, you specified that four parame-
ters were to be included in the array. You then defined each of the parameters by first creating an
OdbcParameter object and then assigning a value to the Value property associated with that object. For
example, you assigned the orderId variable to the first parameter, which is referred by the 0 designator.

Your next step was to add each parameter to the OdbcCommand object. You did this by using the object’s
Parameters property and Add() method, as shown in the following statement:

odbcCommand.Parameters.Add(odbcInsertParameters[0]);

You repeated this step for each parameter, and then you used the following statement to execute the
INSERT statement:

odbcCommand.ExecuteNonQuery();

The statement uses the ExecuteNonQuery() method to execute the INSERT statement. The method is
associated with the OdbcCommand object assigned to the odbcCommand variable.

In addition to creating the insert.aspx file, you must also create the update.aspx file. This file will work
just like the insert.aspx file in that it is included in the edit.aspx file. This has the same effect as including

767

Connecting to MySQL from an ASP.NET/C# Application

22_579509 ch19.qxd 3/1/05 10:07 AM Page 767

TEAM LinG - Live, Informative, Non-cost and Genuine !

the statements directly into the edit.aspx file. In the following Try it Out section, you create the
update.aspx file.

Try It Out Creating the update.aspx file
The following steps describe how to create the update.aspx file:

1. Open a new file in your text editor, and enter the following code:

<%
// Build the UPDATE statement with parameters references
String updateSql = “UPDATE Transactions SET OrderID = ?, DVDID = ?, DateOut = ?,
DateDue = ?, DateIn = ? WHERE TransID = ?”;

odbcCommand = new OdbcCommand(updateSql, odbcConnection);

OdbcParameter [] odbcUpdateParameters = new OdbcParameter[6];

// Set the parameters
odbcUpdateParameters[0] = new OdbcParameter(“”, OdbcType.Int);
odbcUpdateParameters[0].Value = orderId;
odbcUpdateParameters[1] = new OdbcParameter(“”, OdbcType.Int);
odbcUpdateParameters[1].Value = dvdId;
odbcUpdateParameters[2] = new OdbcParameter(“”, OdbcType.Date);
odbcUpdateParameters[2].Value = dateOut;
odbcUpdateParameters[3] = new OdbcParameter(“”, OdbcType.Date);
odbcUpdateParameters[3].Value = dateDue;

// Provide a default value for the DateIn column if no value is provided
if(!dateIn.Equals(DateTime.MinValue))
{

odbcUpdateParameters[4] = new OdbcParameter(“”, OdbcType.Date);
odbcUpdateParameters[4].Value = dateIn;

}
else
{

odbcUpdateParameters[4] = new OdbcParameter(“”, OdbcType.VarChar);
odbcUpdateParameters[4].Value = “0000-00-00”;

}

odbcUpdateParameters[5] = new OdbcParameter(“”, OdbcType.Int);
odbcUpdateParameters[5].Value = transId;

odbcCommand.Parameters.Add(odbcUpdateParameters[0]);
odbcCommand.Parameters.Add(odbcUpdateParameters[1]);
odbcCommand.Parameters.Add(odbcUpdateParameters[2]);
odbcCommand.Parameters.Add(odbcUpdateParameters[3]);
odbcCommand.Parameters.Add(odbcUpdateParameters[4]);
odbcCommand.Parameters.Add(odbcUpdateParameters[5]);

// Execute the UPDATE statement
odbcCommand.ExecuteNonQuery();

if(odbcCommand != null)

768

Chapter 19

22_579509 ch19.qxd 3/1/05 10:07 AM Page 768

TEAM LinG - Live, Informative, Non-cost and Genuine !

odbcCommand.Dispose();

if(odbcConnection != null)
odbcConnection.Dispose();

%>

2. Save the update.aspx file to the appropriate Web application directory.

How It Works
In this exercise, you created the update.aspx file. The file uses the same types of objects and methods that
you used in the insert.aspx file. First, you created an UPDATE statement that you assigned to the updateSql
variable. Then you created an OdbcCommand object that you assigned to the odbcCommand variable. From
there, you created an OdbcParameter array to hold the parameters to be used in the UPDATE statement. The
process of assigning values to the parameters is similar to what you used when creating the insert.aspx file.
However, there was one new element that you had not used:

if(!dateIn.Equals(DateTime.MinValue))
{

odbcUpdateParameters[4] = new OdbcParameter(“”, OdbcType.Date);
odbcUpdateParameters[4].Value = dateIn;

}
else
{

odbcUpdateParameters[4] = new OdbcParameter(“”, OdbcType.VarChar);
odbcUpdateParameters[4].Value = “0000-00-00”;

}

First, you determined whether the value in the dateIn variable is equal to the value stored in the
MinValue property of the DateTime class. If the dateIn value does not equal the MinValue date, then
the if block is executed, otherwise the else block is executed. The if block specifies that the value
in the dateIn variable should be assigned to the fifth parameter (number 4). This process is the same
as you saw in for the other parameters. The else block specifies that the value used for the parameter
should use the OdbcType.VarChar data type and should have the value of 0000-00-00, which is the
default value of a MySQL DATE column that is configured as NOT NULL. This step is taken in case someone
updates a transaction but does not include a DateIn value. This way, the default value is entered into
the column.

Now that you have created the insert.aspx file and the update.aspx file, only one step remains to set up
your application to insert and update data. You must modify the index.aspx file so that it includes the
functionality necessary to link the user to the edit.aspx page. The following Try It Out section explains
how to modify the index.aspx file. It then walks you through the process of inserting a transaction and
then modifying that transaction.

Try It Out Modifying the index.aspx File
The following steps describe how to modify the index.aspx file to support the insert and update operations:

1. In your text editor, open the index.aspx file. Add a form, an <input> element, and a cell defini-
tion to your HTML code. Add the following code (shown with the gray screen background) to
your file:

769

Connecting to MySQL from an ASP.NET/C# Application

22_579509 ch19.qxd 3/1/05 10:07 AM Page 769

TEAM LinG - Live, Informative, Non-cost and Genuine !

<html>
<head>

<title>DVD - Listing</title>
<link rel=”stylesheet” href=”dvdstyle.css” type=”text/css”>
<script language=”JavaScript” src=”dvdrentals.js”></script>
</script>

</head>

<body>

<form name=”mainForm” method=”post” action=”index.aspx”>
<input type=”hidden” name=”command” value=”view”>
<input type=”hidden” name=”transaction_id” value=””>

<p></p>

<table cellSpacing=0 cellPadding=0 width=619 border=0>
<tr>

<td>
<table height=20 cellSpacing=0 cellPadding=0 width=619 bgcolor=#bed8e1

border=0>
<tr align=left>

<td valign=”bottom” width=”400” class=”title”>
DVD Transaction Listing

</td>
<td align=”right” width=”219” class=”title”>

<input type=”button” value=”New Transaction” class=”add”
onclick=”doAdd(this)”>

</td>
</tr>
</table>

<table cellSpacing=”2” cellPadding=”2” width=”619” border=”0”>
<tr>

<td width=”250” class=”heading”>Order Number</td>
<td width=”250” class=”heading”>Customer</td>
<td width=”250” class=”heading”>DVDName</td>
<td width=”185” class=”heading”>DateOut</td>
<td width=”185” class=”heading”>DateDue</td>
<td width=”185” class=”heading”>DateIn</td>
<td width=”99” class=”heading”> </td>

</tr>

When adding code to you file, be sure to add it in the position shown here.

2. Next, add an HTML table cell and an <input> element to the area of code that prints out the
values returned by the database. Add the following code (shown with the gray screen back-
ground) to your file:

<td class=”item”>
<nobr>

770

Chapter 19

22_579509 ch19.qxd 3/1/05 10:07 AM Page 770

TEAM LinG - Live, Informative, Non-cost and Genuine !

<%=dateInPrint%>
</nobr>

</td>
<td class=”item” valign=”center” align=”center”>

<input type=”button” value=”Edit” class=”edit” onclick=”doEdit(this,
<%=transId%>)”>

</td>
</tr>

3. Now you must close the form, which you do near the end of the file. To close the form, you must
use a </form> element. Add the following code (shown with the gray screen background) to
the end of the ASP.NET file:

</table>
</td>

</tr>
</table>
</form>
</body>
</html>

4. Save the index.aspx file.

5. Open your browser and go to the address http://localhost/DVDApp/index.aspx. Your
browser should display a page similar to the one shown in the Figure 19-2.

Figure 19-2

6. Click the New Transaction button at the top of the page. Your browser should display a page
similar to the one shown in the Figure 19-3.

771

Connecting to MySQL from an ASP.NET/C# Application

22_579509 ch19.qxd 3/1/05 10:07 AM Page 771

TEAM LinG - Live, Informative, Non-cost and Genuine !

Figure 19-3

7. Now add a transaction to an existing order. In the Order drop-down list, select 13 - Peter Taylor.
In the DVD drop-down list, select Out of Africa. Click Save. You’re returned to the index.aspx
page. The new transaction should now be displayed at the top of the list.

8. Next you can edit the new transaction. In the row of the transaction that you just added, click
the Edit button. Your browser should display a page similar to the one shown in the Figure 19-4.

Figure 19-4

9. In the Date In text box, type the same date that is in the Date Due text box. Be certain to type the
date in the same format that is used for the other date-related text boxes. Click the Save button.
You should be returned to the index.aspx page.

How It Works
In this exercise, you added a form to your index.aspx file. This is similar to the form that you added to
the edit.aspx file. The main difference between the two is that, in this form, the transaction_id value

772

Chapter 19

22_579509 ch19.qxd 3/1/05 10:07 AM Page 772

TEAM LinG - Live, Informative, Non-cost and Genuine !

is set to an empty string. This is because no ID is necessary initially, but you want the parameter to exist
so that a vehicle has been provided to pass that ID through the form when you submit the form.

Once you created the form, you added the following HTML cell definition and <input> element at the
top of the page:

<td align=”right” width=”219” class=”title”>
<input type=”button” value=”New Transaction” class=”add” onclick=”doAdd(this)”>

</td>

As you can see, the input type is button and it calls the JavaScript doAdd() function. The function links
the user to the edit.aspx page, allowing the user to create a new transaction. At the same time, the function
passes a command value of add to the edit.aspx page. That way, the edit.aspx page knows that a new
transaction is being created and responds accordingly. You next added the following code to the initial
table structure created in the HTML code:

<td width=”99” class=”heading”> </td>

This creates an additional column head in the table to provide a column for the Edit button that will be
added to each row returned by your query results. Finally, you added the actual cell and button to your
table definition, as shown in the following code:

<td class=”item” valign=”center” align=”center”>
<input type=”button” value=”Edit” class=”edit” onclick=”doEdit(this,

<%=transId%>)”>
</td>

The Edit button calls the doEdit() function, which passes the transaction ID to the form and links the
user to the edit.aspx page. At the same time, the function passes the command value of edit so that when
the edit.aspx page opens, it has the information it needs to allow the user to edit a current record.

Once you modified and saved the file, you opened the index.aspx page, created a transaction, and then
edited that transaction. However, the application still does not allow you to delete a transaction. As a
result, the next section describes how you can set up C# statements to delete data.

Deleting Data from a MySQL Database
Deleting MySQL data from within your ASP.NET application is just like inserting and updating data.
You must use the same C# statement elements. For example, suppose that you want to delete a CD listing
from a table name CDs. The ID for the specific CD is stored in the cdId variable. You can use the following
statements to set up your application to delete the data:

String deleteSQL = “DELETE FROM CDs WHERE CDID = ?”;
OdbcCommand comm = new OdbcCommand(deleteSQL, conn);
OdbcParameter param = new OdbcParameter(“”, OdbcType.Int);
param.Value = cdId;
comm.Parameters.Add(param);
comm.ExecuteNonQuery();

As with inserting and updating data, you first assign the SQL statement to a variable (deleteSql). You
then create an OdbcCommand object that is based on the deleteSql variable and a variable that is associated

773

Connecting to MySQL from an ASP.NET/C# Application

22_579509 ch19.qxd 3/1/05 10:07 AM Page 773

TEAM LinG - Live, Informative, Non-cost and Genuine !

with the connection (conn). From there, you define your parameter and add it to the OdbcCommand
object. Finally, you use the ExecuteNonQuery() method in the OdbcCommand class to execute the
DELETE statement.

As you can see, deleting data is no more difficult than updating or inserting data. The key to any of
these types of statements is to make sure that you set up your variables in such a way that the correct
information can be passed to the SQL statement when it is being executed. In the next Try It Out section,
you see how you can delete a transaction from your database. To do so, you modify the index.aspx file
and then create a delete.aspx include file.

Try It Out Modifying the index.aspx File and Creating the delete.aspx File
The following steps describe how to set up delete capabilities in your DVDRentals application:

1. First, add a column head to your table so that you can include a Delete button for each row. The
button will be added next to the Edit button you added in the previous Try It Out section. Add
the following code (shown with the gray screen background) to your file:

<tr>
<td width=”250” class=”heading”>Order Number</td>
<td width=”250” class=”heading”>Customer</td>
<td width=”250” class=”heading”>DVDName</td>
<td width=”185” class=”heading”>DateOut</td>
<td width=”185” class=”heading”>DateDue</td>
<td width=”185” class=”heading”>DateIn</td>
<td width=”99” class=”heading”> </td>
<td width=”99” class=”heading”> </td>

</tr>

2. Next, add the code necessary to initialize variables and call the delete.aspx include file. Add the
following code (shown with the gray screen background) to your file:

<%
// Declare and initialize variables with parameters retrieved from the form

String command = Request.Form[“command”];
String transactionIdString = Request.Form[“transaction_id”];

// Declare and initialize variables for database operations
OdbcConnection odbcConnection = null;
OdbcCommand odbcCommand = null;

// Wrap database-related code in a try/catch block to handle errors
try
{

// Create and open the connection
String strConnection = “driver={MySQL ODBC 3.51 Driver};” +

“server=localhost;” +
“database=DVDRentals;” +
“uid=mysqlapp;” +
“password=pw1”;

odbcConnection = new OdbcConnection(strConnection);

odbcConnection.Open();

774

Chapter 19

22_579509 ch19.qxd 3/1/05 10:07 AM Page 774

TEAM LinG - Live, Informative, Non-cost and Genuine !

// Process the delete command
if(transactionIdString != null)
{

int transactionId = int.Parse(transactionIdString);

if(“delete”.Equals(command))
{

// Include the delete.aspx file
%>

<!-- #Include File=”delete.aspx” -->
<%

}
}

3. Now add the actual Delete button by adding the following code (shown with the gray screen
background) to your file:

<td class=”item”>
<nobr>
<%=dateInPrint%>
</nobr>

</td>
<td class=”item” valign=”center” align=”center”>

<input type=”button” value=”Edit” class=”edit” onclick=”doEdit(this,
<%=transId%>)”>

</td>
<td class=”item” valign=”center” align=”center”>

<input type=”button” value=”Delete” class=”delete”
onclick=”doDelete(this, <%=transId%>)”>

</td>
</tr>

4. Save the index.aspx file

5. Create a new file named delete.aspx in your text editor, and enter the following code:

<%
// Build the DELETE statement with a transactionId parameter reference
String deleteSQL = “DELETE FROM Transactions WHERE TransID = ?”;

odbcCommand = new OdbcCommand(deleteSQL, odbcConnection);

// Set the TransID parameter
OdbcParameter odbcParameter = new OdbcParameter(“”, OdbcType.Int);
odbcParameter.Value = transactionId;
odbcCommand.Parameters.Add(odbcParameter);

// Execute the DELETE statement
odbcCommand.ExecuteNonQuery();

if(odbcCommand != null)
odbcCommand.Dispose();

%>

775

Connecting to MySQL from an ASP.NET/C# Application

22_579509 ch19.qxd 3/1/05 10:07 AM Page 775

TEAM LinG - Live, Informative, Non-cost and Genuine !

6. Save the delete.aspx file to the appropriate Web application directory.

7. Open your browser and go to the address http://localhost/DVDApp/index.aspx. Your
browser should display a page similar to the one shown in the Figure 19-5.

Figure 19-5

8. Click the Delete button in the row that contains the transaction that you created in a previous
Try It Out section (Order number 13, DVD name Out of Africa). A message box similar to the one
in Figure 19-6 appears, confirming whether you want to delete the record.

Figure 19-6

9. Click OK to delete the record. The index.aspx file should be redisplayed, with the deleted file no
longer showing.

How It Works
In this exercise, you first created an additional column head for a column what will hold the Delete button
for each row. You then entered the following code:

String command = Request.Form[“command”];
String transactionIdString = Request.Form[“transaction_id”];

776

Chapter 19

22_579509 ch19.qxd 3/1/05 10:07 AM Page 776

TEAM LinG - Live, Informative, Non-cost and Genuine !

Both statements use the Form property of the Request object to retrieve parameter values from the form.
The values are then assigned to the appropriate variables, which can then be used in your C# code just
like any other variables. Next, you added the code necessary to include the delete.aspx file (which you
created in a later step):

if(transactionIdString != null)
{

int transactionId = int.Parse(transactionIdString);

if(“delete”.Equals(command))
{

%>
<!-- #Include File=”delete.aspx” -->

<%
}

}

The first if condition verifies that the transactionIdString variable contains a value. If the condition
evaluates to true, the if block is executed. Next, you used the Parse() method of the int class to convert
the transactionIdString value to an integer and assign it to the transactionId variable. The next
if condition specifies that the command value must equal delete in order to proceed. If the condition
evaluates to true, the delete.aspx file is included in the current file. This means that the C# statements in
delete.aspx are executed as though they are actually part of the insert.aspx file.

The last code that you added to the index.aspx file is the HTML cell definition and <input> element
necessary to add the Delete button to each row displayed on the page:

<td class=”item” valign=”center” align=”center”>
<input type=”button” value=”Delete” class=”delete” onclick=”doDelete(this,

<%=transId%>)”>
</td>

As you can see, the input type is button (type=”button”), the button is named Delete (value=”Delete”),
the style is delete (class=”delete”), and the doDelete() function is executed when the button is
clicked. The doDelete() function takes two parameters. The this parameter merely indicates that it is
the current button that is being referenced. The second parameter passes the value in the transId variable
to the transactionId parameter associated with the form. That way, ASP.NET knows which record to
delete when the DELETE statement is executed.

Now your application should be complete, at least this part of the application. You can view, insert, update,
and delete transactions. In addition, you can build on this application if you want to extend your appli-
cation’s functionality. The code used to create this application is available online at www.wrox.com, and
you can use and modify that code as necessary. Keep in mind, however, that at the heart of your application
is the MySQL database that manages the data that you need to run your application. The better you
understand MySQL and data management, the more effective your applications can be.

Summary
This chapter introduced you to ASP.NET, the .NET Framework, and the C# programming language and
provided you with the details necessary to connect to a MySQL database, retrieve data from that

777

Connecting to MySQL from an ASP.NET/C# Application

22_579509 ch19.qxd 3/1/05 10:07 AM Page 777

TEAM LinG - Live, Informative, Non-cost and Genuine !

database, and modify that data — all from within your ASP.NET application. You learned how to create a
basic data-driven application that connected to a specific database on a MySQL server, executed SQL
statements against that database, and displayed data on a Web page. Specifically, the chapter covered the
following topics:

❑ Specifying the ASP.NET classes to include in your application

❑ Connecting to the MySQL server and selecting a database

❑ Using if statements to test conditions and take actions

❑ Retrieving data, formatting data, and then displaying data

❑ Inserting data into your database

❑ Updating existing data in your database

❑ Deleting data from your database

This chapter has attempted to provide you with an overview of how to connect to a MySQL database
and access data from within an ASP.NET/C# application. Keep in mind, however, that C#, ASP.NET, and
the .NET Framework provide an extensive development environment that supports a wide array of
functionality and features. As a result, this chapter barely scratches the surface with regard to showing
you the capabilities of an ASP.NET data-driven application. However, regardless of the type of ASP.NET/C#
application you create, the fundamentals of object-oriented programming and database connectivity are
the same. As a result, you are always working within the context of objects. These objects provide the
structure for everything from establishing database connections to assigning string values to variables.
So what you’ve learned in this chapter can be applied to any of your ASP.NET/C# applications.

Exercises
In this chapter, you learned how to connect to a MySQL database, retrieve data, and manipulate data
from within an ASP.NET application. To assist you in better understanding how to perform these tasks,
the chapter includes the following exercises. To view solutions to these exercises, see Appendix A.

1. You are setting up a new .aspx file. You add a page directive to your file to indicate that the code
will be written in C#. You want the file to use classes from the System.Data.Odbc namespace.
What statement should you use to import the namespace into your file?

2. You are setting up the database connection for your ASP.NET page. You declare a string variable
named strConn. You then assign database connection parameters to the variable. The parameters
include the ODBC driver name, the name of the MySQL server, the database, the user account
name, and a password for that account. You now want to declare a variable named odbcConn
and assign a new OdbcConnection object to that variable. The new object should be based on
the strConn variable. What statement should you use to declare and initialize the odbcConn
variable?

3. You want to open the connection that you created in Step 2. What statement should you use?

4. After you establish a connection to the database, you want to issue a SELECT statement against
that database. You declare a string variable named selectSql and assign the SELECT statement
to that variable. You now want to declare a variable named odbcComm and assign a new

778

Chapter 19

22_579509 ch19.qxd 3/1/05 10:07 AM Page 778

TEAM LinG - Live, Informative, Non-cost and Genuine !

OdbcCommand object to the variable. The new object should be based on the selectSql and
odbcConn variables. What statement should you use to declare and initialize the odbcComm
variable?

5. You now want to execute the SELECT statement and assign the result set to a variable named
odbcReader, which is based on the OdbcDataReader class. What statement should you use?

6. You plan to include a file named change.aspx in your primary .aspx file. What directive should you
add to your primary file to include change.aspx?

7. You plan to redirect users to a file named new.aspx. What statement should you use to redirect
users?

779

Connecting to MySQL from an ASP.NET/C# Application

22_579509 ch19.qxd 3/1/05 10:07 AM Page 779

TEAM LinG - Live, Informative, Non-cost and Genuine !

