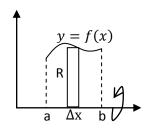
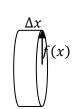

A. Menghitung Benda Putar


Metode Cakram

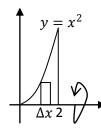
1. Daerah $R = \{(x,y) | a \le x \le b, 0 \le y \le f(x)\}$ diputar terhadap sumbu x. Berapa volume benda tersebut?

Untuk menghitung volume benda putar gunakan pendekatan iris, hampiri, jumlahkan, dan ambil limitnya.



Jika irisan berbentuk persegi panjang dengan tinggi f(x) dan alas Δx diputar terhadap sumbu x akan diperoleh suatu cakram lingkaran dengan tebal Δx dan jari-jari f(x). sehingga

$$\Delta V \approx \pi f^2(x) \Delta x$$

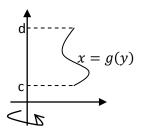

Volume benda putar dihampiri oleh jumlah volume cakram. Dengan mengambil limitnya diperoleh

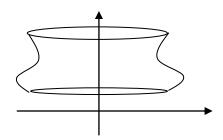
$$V = \pi \int_{a}^{b} f^{2}(x) dx$$

Contoh:Tentukan volume benda putar yang terjadi jika daerah R yang dibatasi oleh $y=x^2$, sumbu x, dan garis x = 2 diputar terhadap sumbu x.

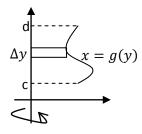
Jawab:

Jika irisan diputar terhadap sumbu x akan diperoleh cakram dengan jari-jari x^2 dan tebal Δx .


Sehingga


$$\Delta V \approx \pi (x^2)^2 \Delta x = \pi x^4 \Delta x$$

Volume benda putar

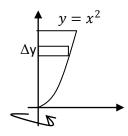

$$V = \pi \int_{0}^{2} x^{4} dx = \frac{\pi}{5} x^{5} \Big|_{0}^{2} = \frac{32\pi}{5}$$

2. Daerah $R = \{(x, y) | c \le y \le d, 0 \le x \le g(x)\}$ diputar terhadap sumbu y?

Untuk menghitung volume benda putar gunakan pendekatan iris, hampiri, jumlahkan, dan ambil limitnya.

Jika irisan berbentuk persegi panjang dengan tinggi g(y) dan alas Δy diputar terhadap sumbu y akan diperoleh suatu cakram lingkaran dengan tebal Δy dan jari-jari g(y). Sehingga

$$\Delta V \approx \pi g^2(y) \Delta y$$


Volume benda putar dihampiri oleh jumlah volume cakram. Dengan mengambil limitnya diperoleh

$$V = \pi \int_{c}^{d} g^{2}(y) dy$$

Contoh: Tentukan volume benda putar yang terjadi jika daerah yang dibatasi oleh $y=x^2$ dan garis y = 4, sumbu y diputar terhadap sumbu y.

Jawab:

Jika irisan dengan tinggi \sqrt{y} dan tebal Δy diputar terhadap sumbu y akan diperoleh cakram dengan jari-jari \sqrt{y} dan tebal Δy . Sehingga

$$\Delta V \approx \pi \left(\sqrt{y}\right)^2 \Delta y = \pi y \Delta y$$

Volume benda putar

$$V = \pi \int_{0}^{4} y dy = \frac{\pi}{2} y^{2} \Big|_{0}^{4} = 8\pi$$