680

To release the resources related to shader objects and programs, you can
delete those objects by calling the respective deletion function. If either the
shader program or object is currently active when it’s deleted, the object is
only marked for deletion. It is deleted when the program is no longer in use,
or the shader object is detached from all shader program objects.

void glDeleteShader(GLuint shader);

Deletes shader. If shader is currently linked to one or more active shader
programs, the object is tagged for deletion and deleted once the shader
program is no longer being used by any shader program.

void glDeleteProgram(GLuint program);

Deletes program immediately if not currently in use in any context, or
tagged for deletion when the program is no longer in use by any contexts.

To determine if an identifier is currently in use as either a shader program
or object, calling gllsProgram() or glisShader() will return a boolean value
indicating if the identifier is in use.

GLboolean glIsProgram(GLuint program);

Returns GL_TRUE if program is the name of a shader program. If program
is zero, or non-zero and not the name of a shader object, GL_FALSE is
returned.

GLboolean glIsShader(GLuint shader);

Returns GL_TRUE if shader is the name of a shader object. If shader is zero,
or non-zero and not the name of a shader object, GL_FALSE is returned.

To aid in shader development, the OpenGL call glValidateProgram() can
help verify that a shader will execute given the current OpenGL state.
Depending upon the underlying OpenGL implementation, program
validation may also return hints about performance characteristics or other
useful information specific to that shader’s execution for that OpenGL
implementation. You would validate a program in the same manner you

Chapter 15: The OpenGL Shading Language

would compile it by merely calling glValidateProgram() once all of the
necessary shader objects were attached to the shader program. Similarly,
you can query the results of the validation step by calling glGetProgramiv()
with an argument of GL_VALIDATE_STATUS.

void glValidateProgram(GLuint program);

Validates program against the current OpenGL state settings. After
validation, the value of GL_VALIDATE_STATUS will be set to either GL_
TRUE, indicating that the program will execute in the current OpenGL
environment, or GL_FALSE otherwise. The value of GL_VALIDATE_
STATUS status can be queried by calling glGetProgramiv().

The OpenGL Shading Language

This section provides an overview of the shading language used within
OpenGL, commonly called GLSL. GLSL shares many traits with C++ and
Java, and is used for authoring both vertex and fragment shaders, although
certain features are only available for one type of shader. We will first
describe GLSL’s requirements, types, and other language constructs that are
shared between vertex and fragment shaders, and then discuss the features
unique to each type of shader.

Creating Shaders with GLSL

The Starting Point

A shader program, just like a “C” program, starts execution in main(). Every
GLSL shader program begins life as:

void
main ()

{

// Your code goes here

}

The “//” construct is a comment and terminates at the end of the current
line. “C”-type, multi-line comments—the /* and */ type—are also supported.

Creating Shaders with GLSL

681

682

However, unlike ANSI “C,” main() does not return an integer value; it is
declared void.

While this is a perfectly legal GLSL vertex- or fragment-shader program that
compiles and even runs, its functionality leaves something to be desired.
We will continue by describing variables and their operation.

Also, as with C and its derivative languages, statements are terminated with
a semicolon.

Declaring Variables

GLSL is a strongly typed language; that is, every variable must be declared
and have an associated type. Variable names conform to the same rules as
those for C: You can use letters, numbers, and the underscore character
(L) to compose variable names. A digit cannot be the first character in a
variable name.

Table 15-1 shows the basic types available in GLSL.

Type Description

float IEEE-like floating-point value
int signed integer value

uint unsigned integer value

bool Boolean value

Table 15-1 Basic Data Types in GLSL

An additional set of types is named samplers, which are used as opaque
handles for accessing texture maps. The various types of samplers and their
uses are discussed in “Accessing Texture Maps in Shaders” on page 707.

Note: An OpenGL implementation is not required to implement these
types as stringently as one might like. As long as their operation
is semantically and operationally correct, the underlying
implementation may vary. For example, integers may be stored in
floating-point registers. It is not a good idea to assume particular
numeric outcomes, such as the maximum-sized integer value
being 21°, based upon these types.

Chapter 15: The OpenGL Shading Language

Variable Scoping

While all variables must be declared, they may be declared any time before
their use (unlike “C,” where they must be the first statements in a block of
code). The scoping rules of GLSL closely parallel those of C++:

e Variables declared outside of any function definition have global scope
and are visible to all functions within the shader program.

e Variables declared within a set of curly braces (e.g., function definition,
block following a loop or “if” statement, and so on) exist within the
scope of those braces only.

e Loop iteration variables, such as i in the loop

for (int 1 = 0; 1 < 10; ++1) {
// loop body
}

are only scoped for the body of the loop.

Variable Initialization

Variables may also be initialized when declared. For example:

int i, numParticles = 1500;
float force, g = -9.8;
bool falling = true;

Integer constants may be expressed as octal, decimal, or hexadecimal
values. An optional minus sign before a numeric value negates the constant,
and a trailing ‘v’ or ‘U’ denotes an unsigned integer value.

Floating-point values must include a decimal point, unless described in
scientific format (e.g., 3E-7), and may optionally include an ‘f’ or ‘F’ suffix
asin “C.”

Boolean values are either true or false, and can be initialized to either of those
values or as the result of a operation that resolves to a boolean expression.

Constructors

As mentioned, GLSL is a strongly typed language, even more so than C++.
In general, there is no implicit conversion between values, except in a few
cases. For example,

int £ = 10.0;

will result in a compilation error due to assigning a constant floating-point
value to an integer variable. Integer values and vectors will be implicitly

Creating Shaders with GLSL

683

684

converted into the equivalent floating-point value or vector. Any other
conversion of values requires using a conversion function (a C++-like
constructor). For example,

float £ = 10.0;
int ten = int(f);

uses the int() function to do the conversion. Likewise, the other types
also have conversion functions: float(), uint(), bool(). These functions also
illustrate another feature of GLSL: operator overloading, whereby each
function takes various input types, but all use the same base function name.
We will discuss more on functions in a bit.

Aggregate Types

Three of GLSL's primitive types can be combined to better match core
OpenGL’s data values and to ease computational operations.

First, GLSL supports vectors of two, three, or four dimensions for each of the
primitive types. Also, matrices of floats are available. Table 15-2 lists the
valid vector and matrix types.

Base Type 2-D vec 3-D vec 4-D vec Matrix Types

float vec2 vec3 vec4 mat2, mat3, mat4
mat2x2, mat2x3, mat2x4,
mat3x2, mat3x3, mat3x4
mat4x2, matdx3, mat4dx4

int ivec2 ivec3 ivec4d —
uint uvec2 uvec3 uvec4 —
bool bvec2 bvec3 bvec4 —

Table 15-2 GLSL Vector and Matrix Types
Matrix types that list both dimensions, such as mat4x3, use the first value
to specify the number of columns, the second the number of rows.

Variables declared with these types can be initialized similar to their scalar
counterparts:

vec3 velocity = vec3(0.0, 2.0, 3.0);

Chapter 15: The OpenGL Shading Language

and converting between types is equally accessible:

ivec3 steps = ivec3(velocity);

Vector constructors can also be used to truncate or lengthen a vector. If a
longer vector is passed into the constructor of a smaller vector, the vector is
truncated to the appropriate length.

vecd color;
vec3 RGB = vec3(color); // now RGB only has three elements

Likewise, vectors are lengthened in somewhat the same manner. Scalar
values can be promoted to vectors, as in

vec3 white = vec3(1.0); // white = (1.0, 1.0, 1.0)
vecd translucent = vecd (white, 0.5);

Matrices are constructed in the same manner and can be initialized to either
a diagonal matrix or a fully populated matrix.

In the case of diagonal matrices, a single value is passed into the constructor,
and the diagonal elements of the matrix are set to that value, with all others
being set to zero, as in

4.0 0.0 0.0
m = mat3(4.0) = (0.0 4.0 0.0

0.0 0.0 4.0

Matrices can also be created by specifying the value of every element in the
matrix in the constructor. Values can be specified by combinations of scalars
and vectors, as long as enough values are provided, and each column is
specified in the same manner. Additionally, matrices are specified in
column-major order, meaning the values are used to populate columns
before rows (which is the opposite of how “C” initializes two-dimensional
arrays).

For example, we could initialize a 3 x 3 matrix in any of the following ways:

mat3 M = mat3 (1.0, 2. .0,

4.0, 5. .0,

7.0, 8. .0)

vecl3 columnl = vec3(1.0, 2.0, 3.0);

vecl3 column2 = vec3(4.0, 5.0, 6.0);
8.0

vec3 column3 vec3 (7.0, , 9.0);

mat3 M = mat3 (columnl, column2, column3);

Creating Shaders with GLSL

685

686

Oor even

vec2 columnl = vec2(1.0, 2.0);
vec2 column?2 vec2(4.0, 5.0);
vec2 column3 vec2 (7.0, 8.0);

mat3 M = mat3 (columnl, 3.0
column2, 6.0
column3, 9.0

all yielding the same matrix

1.0 4.0 7.0
M= 1205080
3.0 6.0 9.0

Accessing Elements in Vectors and Matrices

The individual elements of vectors and matrices can be accessed and
assigned. Vectors support two types of element access: a named-component
method and an array-like method. Matrices use a two-dimensional array-
like method.

Components of a vector can be accessed by name, as in

float red = color.r;
float v_y = velocity.y;

or using a zero-based index scheme. The following yield identical results to
the above:

float red = color[0];
float v_y = velocity[1l];

In fact, as shown in Table 15-3, there are three sets of component names
available, all of which do the same thing. The multiple sets are useful for
clarifying the operations that you're doing.

Component Accessors Description

& zw components associated with positions

(r, 8, b, a) components associated with colors

S tLpq components associated with texture coordinates
Table 15-3 Vector Component Accessors

Chapter 15: The OpenGL Shading Language

A common use for component-wise access to vectors is for swizzling
components, as you might do with colors, perhaps for color space
conversion. For example, you could do the following to specify a luminance
value based on the red component of an input color:

vec3 luminance = color.rrr;

Likewise, if you needed to move components around in a vector, you
might do:

color = color.abgr; // reverse the components of a color

The only restriction is that only one set of components can be used with a
variable in one statement. That is, you can’t do:

vecd color = otherColor.rgz;// Error: ‘z’ is from a
// different group

Also, a compile-time error will be raised if you attempt to access an element
that’s outside of what the type supports. For example,

vec2 pos;
float zPos = pos.z; // Error: no ‘z’ component in 2D vectors

Matrix elements can be accessed using the array notation. Either a single
scalar value or an array of elements can be accessed from a matrix:

matd m = matd(2.0);
vecd zVec = m[2];
float yScale = m[1][1]; // or m[l].y works as well

Structures

You can also logically group together collections of different types in a
structure. Structures are convenient for passing groups of associated data
into functions. When a structure is defined, it automatically creates a new
type, and implicitly defines a constructor function that takes the types of
the elements of the structure as parameters.

struct Particle {
float lifetime;
vec3 position;
vec3 velocity;
Y

Particle p = Particle(10.0, pos, vel); // pos, vel are vec3's

Likewise, to reference elements of a structure, use the familiar “dot”
notation as you would in “C.”

Creating Shaders with GLSL

687

688

Arrays

GLSL also supports one-dimensional arrays of any type, including
structures. As with “C,” arrays are indexed using brackets ([]). The range of
elements in an array of size nis O ... n—1. Unlike “C,” however, negative
array indices are not permitted, nor are two-dimensional arrays.

Arrays can be declared sized or unsized. You might use an unsized array as
a forward declaration of an array variable and later redeclare it to the
appropriate size. Array declarations use the bracket notation, as in:

float coeff[3]; // an array of 3 floats
float[3] coeff; // same thing
int indices[]; // unsized. Redeclare later with a size

Arrays are first-class types in GLSL, meaning they have constructors and can
be used as function parameters and return types. To statically initialize an
array of values, you would use a constructor in the following manner:

float coeff[3] = float[3](2.38, 3.14, 42.0);
The dimension value on the constructor is optional.

Additionally, similar to Java, GLSL arrays have an implicit method for
reporting their number of elements: the length() method. If you would like
to operate on all the values in an array, here is an example using the
length() method:

for (int i = 0; 1 < coeff.length(); ++i) {
coeff[i] *= 2.0;
}

Storage Qualifiers

Types can also have modifiers that affect their behavior. There are four
modifiers defined in GLSL, as shown in Table 15-4.

Type Modifier Description

const Labels a variable as a read-only, compile-time constant.

in Specifies that the variable is an input to the shader stage.
out Specifies that the variable is an output from a shader stage.
uniform Specifies that the value is passed to the shader from the

application and is constant across a given primitive.

Table 15-4 GLSL Type Modifiers

Chapter 15: The OpenGL Shading Language

Note: In GLSL versions prior to 1.30, vertex shader input variables were
qualified with the keyword “attribute.” Likewise, fragment shader
input variables (which correspond to vertex shader outputs) were
qualified with the “varying” keyword. In anticipation of potentially
adding more shading stages, both of those keywords were replaced by
the more generic “in” and “out” variations. In Version 1.40, both
“attribute” and “varying” were removed (though they remain
accessible using the GL_ARB_compatibility extension).

All storage qualifiers are valid for globally scoped variables. Additionally,
const is applicable to local variables and function parameters.

Const Storage Qualifier

Just as with “C,” the const type modifier indicates that the variable is read-
only. For example, the statement

const float Pi = 3.141529

sets the variable Pi to an approximation of n. With the addition of the const
modifier, it becomes an error to write to a variable after its declaration, so
they must be initialized when declared.

In Storage Qualifier

The in modifier is used to qualify inputs into a shader stage. Those inputs
may be vertex attributes (for vertex shaders) or interpolated variables (for
fragment shaders).

Fragment shaders can further qualify their input values using some
additional keywords that are valid only in combination with the in
keyword. Those keywords are described in Table 15-5.

in Keyword Qualifier Description

centroid Forces the sampling of a fragment input variable to be
within the area covered by the primitive for the pixel
when multisampling is enabled.

smooth Interpolates the fragment input variable in a
perspective-correct manner.

Table 15-5 Additional in Keyword Qualifiers (for Fragment Shader Inputs)

Creating Shaders with GLSL

689

690

in Keyword Qualifier Description

flat Doesn’t interpolate the fragment input (i.e., the input
will be the same for all fragments, as in flat shading).

noperspective Linearly interpolates the fragment variable.

Table 15.5 (continued) Additional in Keyword Qualifiers (for Fragment Shader Inputs)

For example, if you would like a flat-shaded, centroid-sampled fragment
input, you would specify

flat centroid in fragment;

in your fragment shader.

Out Storage Qualifier

The out modifier is used to qualify outputs from a shader stage—for
example, the transformed homogenous coordinates from a vertex shader, or
the final fragment color from a fragment shader.

Vertex shaders can further qualify their output values using the centroid
keyword, which has the same meaning here as for fragment inputs. In
addition, any vertex shader output qualified by centroid must have a
matching fragment shader input variable that is also centroid qualified (i.e.,
the fragment shader has to have a variable with the identical declaration as
in the vertex shader).

Uniform Storage Qualifier

The uniform modifier specifies that a variable’s value will be specified by the
application before the shader’s execution and does not change across the
primitive being processed. Uniform variables are shared between vertex and
fragment shaders and must be declared as global variables. Any type of
variable, including structures and arrays, can be specified as uniform.

Consider a shader that uses an additional color in shading a primitive. You
might declare a uniform variable to pass that information into your shaders.
In the shaders, you would make the declaration:

uniform vecd4 BaseColor;

Within your shaders, you can reference BaseColor by name, but to set its
value in your application, you need to do a little extra work. The GLSL

Chapter 15: The OpenGL Shading Language

compiler creates a table of all uniform variables when it links your shader
program. To set BaseColor’s value from your application, you need to obtain
the index of BaseColor in the table, which is done using the
glGetUniformLocation() routine.

GLint glGetUniformLocation(GLuint program, const char *name)

Returns the index of the uniform variable name associated with the shader
program. name is a null-terminated character string with no spaces. A value
of minus one (-1) is returned if name does not correspond to a uniform
variable in the active shader program, or if a reserved shader variable name
(those starting with g1_ prefix) is specified.

name can be a single variable name, an element of an array (by including
the appropriate index in brackets with the name), or a field of a structure
(by specifying name, then “.” followed by the field name, as you would in
the shader program). For arrays of uniform variables, the index of the first
element of the array may be queried either by specifying only the array
name (for example, “arrayName”), or by specifying the index to the first
element of the array (as in “arrayName[0]”).

The returned value will not change unless the shader program is relinked
(see glLinkProgram()).

Once you have the associated index for the uniform variable, you can set the
value of the uniform variable using the glUniform*() or glUniformMatrix*()
routines.

void glUniform{1234}{if ui}(GLint location, TYPE value);
void glUniform{1234}{if ui}v(GLint location, GLsizei count,
const TYPE *values);
void glUniformMatrix{234}fv(GLint location, GLsizei count,
GLboolean transpose, const GLfloat *values);
void glUniformMatrix{2x3,2x4,3x2,3x4,4x2,4x3}tv(GLint location,
GLsizei count, GLboolean transpose,
const GLfloat *values);

Sets the value for the uniform variable associated with the index location
The vector form loads count sets of values (from one to four values,

depending upon which glUniform*() call is used) into the uniform

Creating Shaders with GLSL

691

Advanced

692

variables starting location. If location is the start of an array, count
sequential elements of the array are loaded.

The floating-point forms can be used to load a single float, a floating-point
vector, an array of floats, or an array of vectors of floats.

The integer forms can be used to update a single integer, an integer vector,
an array of integers, or an array of integer vectors. Additionally, individual
and arrays of texture samplers can also be loaded.

For glUniformMatrix{234}fv(), count sets of 2 x 2, 3 x 3, or 4 x 4 matrices
are loaded from values.

For glUniformMatrix{2x3,2x4,3x2,3x4,4x2,4x3}tv(), count sets of like-
dimensioned matrices are loaded from values. If transpose is GL_TRUE,
values are specified in row-major order (like arrays in “C”); or if GL_FALSE
is specified, values are taken to be in column-major order (ordered in the
same manner as glLoadMatrix()).

Example 15-4 demonstrates obtaining a uniform variable’s index and
assigning values.
Example 15-4 Obtaining a Uniform Variable’s Index and Assigning Values

GLint timeLoc; /* Uniform index for variable “time” in shader */
GLfloat timeValue; /* Application time */

timeLoc = glGetUniformLocation (program, “time”);
glUniformlf (timeLoc, timeValue) ;

Uniform variables can also be declared within named uniform blocks that
enable sharing and other features for shaders. Those uniform variables
aren’t accessible using the routines we just discussed, and they require usage
of other routines described in the next section.

Uniform Blocks

Advanced

As your shader programs become more complex, it’s likely that the number
of uniform variables they use will increase. Often the same uniform value is

Chapter 15: The OpenGL Shading Language

used within several shader programs. As uniform locations are generated
when a shader is linked (i.e., when glLinkProgramy() is called), the indices
may change, even though (to you) the values of the uniform variables

are identical. Uniform buffer objects provide a method to optimize both
accessing uniform variables and enabling sharing of uniform values across
shader programs.

As you might imagine, that given uniform variables can exist both in your
application and in a shader, you'll need to both modify your shaders and
use OpenGL routines to set up uniform buffer objects.

Note: Uniform blocks were added into OpenGL Version 3.1.

Specifying Uniform Variables Blocks in Shaders

To access a collection of uniform variables using routines such as
glMapBuffer() (see “Buffer Objects” in Chapter 2 for more details), you
need to slightly modify their declaration in your shader. Instead of
declaring each uniform variable individually, you group them, just as you
would do in a structure, in a uniform block. A uniform block is specified
using the uniform keyword. You then enclose all the variables you want in
that block within a pair of braces, as shown in Example 15-5.

Example 15-5 Declaring a Uniform Variable Block

uniform Matrices {
mat4d ModelView;
mat4 Projection;
mat4d Color;

Y

All types, with the exception of samplers, are permitted to be within a
uniform block. Additionally, uniform blocks must be declared at global
scope.

Uniform Block Layout Control

A variety of qualifiers are available to specify how to lay out the variables
within a uniform block. These qualifiers can be used either for each
individual uniform block or to specify how all subsequent uniform blocks
are arranged (after specifying a layout declaration). The possible qualifiers
are detailed in Table 15-6.

Uniform Blocks

693

694

Layout Qualifier Description

shared Specify that the uniform block is shared among
multiple programs. (This is the default sharing
setting).

packed Lay out the uniform block to minimize its

memory use; however, this generally disables
sharing across programs.

std140 Use the default layout as described in the
OpenGL specification for uniform blocks.

row_major Cause matrices in the uniform block to be stored
in a row-major element ordering.

column_major Specify matrices should be stored in a column-
major element ordering. (This is the default
ordering.)

Table 15-6 Layout Qualifiers for Uniform Blocks

For example, to specify that a single uniform block is shared and has row-
major matrix storage, you would declare it in the following manner:

layout (shared, row_major) uniform { ... };

The multiple qualifying options must be separated by commas within the
parentheses. To affect the layout of all subsequent uniform blocks, use the
following construct:

layout (packed, column_major) uniform;

With this specification, all uniform blocks declared after that line will use
that layout until the global layout is changed, or unless they include a
layout override specific to their declaration.

Accessing Uniform Variables Declared in a Uniform Block

While uniform blocks are named, the uniform variables declared within
them are not qualified by that name. That is, a uniform block doesn’t
scope a uniform variable’s name, so declaring two variables of the same
name within two uniform blocks of different names will cause an error.
Using the block name is not necessary when accessing a uniform variable,
however.

Chapter 15: The OpenGL Shading Language

Accessing Uniform Blocks from Your Application

Because uniform variables form a bridge to share data between shaders
and your application, you need to find the offsets of the various uniform
variables inside the named uniform blocks in your shaders. Once you know
the location of those variables, you can initialize them with data, just as you
would any type of buffer object (using calls such as glBufferData(), for
example).

To start, let’s assume that you already know the names of the uniform blocks
used inside the shaders in your application. The first step in initializing
the uniform variables in your uniform block is to obtain the index of the
block for a given program. Calling glGetUniformBlockIndex() returns an
essential piece of information required to complete the mapping of uniform
variables into your application’s address space.

GLuint glGetUniformBlockIndex(GLuint program,
const char *uniformBlockName)

Returns the index of the named uniform block specified by
uniformBlockName associated with program. If uniformBlockName is not
a valid uniform block of program, GL_INVALID_INDEX is returned.

To initialize a buffer object to be associated with your uniform block, you'll
need to bind a buffer object to a GL_UNIFORM_BUFFER target using the
glBindBuffer() routine (see “Creating Buffer Objects” in Chapter 2 for
details).

Once we have a buffer object initialized, we need to determine

how large to make it to accommodate the variables in the named
uniform block from our shader. To do so, we use the routine
glGetActiveUniformBlockiv(), requesting the GL_UNIFORM_BLOCK_
DATA_SIZE, which returns the size of the block as generated by the
compiler (the compiler may decide to eliminate uniform variables that
aren’t used in the shader, depending on which uniform block layout
you've selected). glGetActiveUniformBlockiv() can be used to obtain
other parameters associated with a named uniform block. See “The
Query Commands” in Appendix B for the complete list of options.

After obtaining the index of the uniform block, we need to associate a buffer
object with that block. The most common method for doing so is to call

Uniform Blocks

695

696

either glBindBufferRange() or, if all the buffer storage is used for the
uniform block, glBindBufferBase().

void glBindBufferRange(GLenum target, GLuint index, GLuint buffer,
GLintptr offset, GLsizeiptr size);
void glBindBufferBase(GLenum target, GLuint index, GLuint buffer);

Associates the buffer object buffer with the named uniform block
associated with index. target can either be GL_UNIFORM_BUFFER (for
uniform blocks) or GL_TRANSFORM_FEEDBACK_BUFFER (for use with
transform feedback; see “Transform Feedback” on page 722). index is the
index associated with a uniform block. offset and size specifty the starting
index and range of the buffer that is to be mapped to the uniform buffer.

Calling glBindBufferBase() is identical to calling glBindBufferRange()
with offset equal to zero and size equal to the size of the buffer object.

These calls can generate various OpenGL errors: A GL_INVALID_VALUE is
generated if size is less than zero; if offset + size is greater than the size of
the buffer; if either offset or size is not a multiple of 4; or if index is less than
zero, or greater than or equal to the value returned when querying GL_
MAX_UNIFORM_BUFFER_BINDINGS.

Once the association between a named uniform block and a buffer object is
made, you can initialize or change values in that block by using any of the
commands that affect a buffer’s values, as described in “Updating Data
Values in Buffer Objects” in Chapter 2.

You may also want to specify the binding for a particular named uniform
block to a buffer object, as compared to the process of allowing the linker
to assign a block binding and then querying the value of that assignment
after the fact. You might follow this approach if you have numerous shader
programs will share a uniform block. It avoids having the block be assigned
a different index for each program. To explicitly control a uniform block’s
binding, call glUniformBlockBinding() before calling glLinkProgram().

GLint gUniformBlockBinding(GLuint program,
GLuint uniformBlockIndex,
GLuint uniformBlockBinding)

Explicitly assigns uniformBlockIndex to uniformBlockBinding for program.

Chapter 15: The OpenGL Shading Language

The layout of uniform variables in a named uniform block is controlled by
the layout qualifier specified when the block was compiled and linked. If
you used the default layout specification, you will need to determine the
offset and date-store size of each variable in the uniform block. To do so,
you will use the pair of calls: glGetUniformIndices(), to retrieve the index
of a particular named uniform variable, and glGetActiveUniformsiv(), to
get the offset and size for that particular index, as shown in Example 15-6.

void glGetUniformIndices(GLuint program, GLsizei uniformCount,
const char **uniformNames, GLuint *uniformindices);

Returns the indices associated with the uniformCount uniform variables
specified by name in the array uniformNames in the array uniformIndices
for program. Each name in uniformNames is assumed to be NULL
terminated, and both uniformNames and uniformIndices have uniformCount
elements in each array.

If a name listed in uniformNames is not the name of an active uniform
variables, the value GL_INVALID_INDEX is returned in the corresponding
element in uniformIndices.

Example 15-6 Initializing Uniform Variables in a Named Uniform Block: ubo.c

/* Vertex and fragment shaders that share a block of uniforms
** named “Uniforms” */

const char* vShader = {
“#version 140\n”
“uniform Uniforms {“
" vec3 translation;”
" float scale;”
" vecd rotation;”
» bool enabled;”
\\};II
“in vec2 vPos;”
“in vec3 vColor;”
“out vecd fColor;”
“void main()"”

\\{\\

" vec3 pos = vec3(vbPos, 0.0);”
» float angle = radians(rotation[0]);”
n vec3 axis = normalize(rotation.yzw);”

n mat3 I = mat3(1.0);”

n mat3 S = mat3(0, -axis.z, axis.y, ™

Uniform Blocks

697

" axis.z, 0, -axis.x, “

n -axis.y, axis.x, 0);:”
n mat3 uuT = outerProduct(axis, axis);”
" mat3 rot = uuT + cos(angle)* (I - uuT) + sin(angle)*S;"”

" pos *= gcale;”
» pos *= rot;”
" pos += translation;”
n fColor = vecd4(scale, scale, scale, 1);”
» gl_Position = vecd(pos, 1);”
w } "
Y

const char* fShader = {
“#version 140\n”
“uniform Uniforms {“
" vec3 translation;”
N float scale;”
n vecd rotation;”
n bool enabled;”
\\};II
“in vecd4 fColor;”
“out vecd color;”
“void main()”
\\{\\
" color = fColor;”
\\}Il

Y

/* Helper function to convert GLSL types to storage sizes */
size_t

TypeSize(GLenum type)

{

size_t size;

#define CASE(Enum, Count, Type) \
case Enum: size = Count * sizeof (Type); break

switch(type) {

CASE (GL_FLOAT, 1, GLfloat);
CASE (GL_FLOAT_VEC2, 2, GLfloat);
CASE(GL_FLOAT_VEC3, 3, GLfloat);
CASE(GL_FLOAT_VEC4, 4, GLfloat);
CASE(GL_INT, 1, GLint);
CASE(GL_INT_VEC2, 2, GLint);
CASE(GL_INT_VEC3, 3, GLint);
CASE(GL_INT_VEC4, 4, GLint);
CASE (GL_UNSIGNED_INT, 1, GLuint);

698 Chapter 15: The OpenGL Shading Language

CASE(GL_UNSIGNED_INT VEC2, 2, GLuint);
CASE(GL_UNSIGNED_INT_ VEC3, 3, GLuint);
CASE(GL_UNSIGNED_INT VEC4, 4, GLuint);
CASE (GL_BOOL, 1, GLboolean);
CASE (GL_BOOL_VEC2, 2, GLboolean);
CASE (GL_BOOL_VEC3, 3, GLboolean);
CASE (GL_BOOL_VEC4, 4, GLboolean);
CASE(GL_FLOAT_MAT2, 4, GLfloat);
CASE (GL_FLOAT MAT2x3, 6, GLfloat);
CASE(GL_FLOAT MAT2x4, 8, GLfloat);
CASE (GL_FLOAT MAT3, 9, GLfloat);
CASE (GL_FLOAT MAT3x2, 6, GLfloat);
CASE(GL_FLOAT_ MAT3x4, 12, GLfloat);
CASE(GL_FLOAT_MAT4, 16, GLfloat);
CASE (GL_FLOAT MAT4x2, 8, GLfloat);
CASE(GL_FLOAT_ MAT4x3, 12, GLfloat);
default:

fprintf (stderr, “Unknown type: 0x%$x\n”, type);
exit(EXIT_FAILURE);
break;

}

#undef CASE

return size;

void
init ()

{

GLuint program;
glClearColor(1, 0, 0, 1);

/* Compile and load vertex and fragment shaders (see
** T,oadProgram.c */

program = LoadProgram(vShader, fShader);
glUseProgram(program) ;

/* Initialize uniform values in uniform block “Uniforms” */
{

GLuint uboIndex;

GLint uboSize;

GLuint ubo;

GLvoid “*buffer;

/* Find the uniform buffer index for “Uniforms”, and
** determine the block’s sizse*/

Uniform Blocks

699

uboIndex = glGetUniformBlockIndex(program, “Uniforms”);

glGetActiveUniformBlockiv(program, uboIndex,
GL_UNIFORM_BLOCK_DATA_SIZE, &uboSize);

buffer = malloc(uboSize);

if (buffer == NULL) {
fprintf(stderr, “Unable to allocate buffer\n”);
exit (EXIT FAILURE);
}
else {
enum { Translation, Scale, Rotation,
Enabled, NumUniforms };

/* Values to be stored in the buffer object */

GLfloat scale = 0.5;
GLfloat translation[] = { 0.1, 0.1, 0.0 };
GLfloat rotation[] = { 90, 0.0, 0.0, 1.0 };

GLboolean enabled = GL_TRUE;

/* Since we know the names of the uniforms
** in our block, make an array of those values */

const char* names[NumUniforms] = {
“translation”,
“scale”,
“rotation”,
“enabled”
Y

/* Query the necessary attributes to determine
** where in the buffer we should write
** the values */

GLuint indices [NumUniforms] ;
GLint size[NumUniforms];
GLint offset [NumUniforms];
GLint type [NumUniforms] ;

glGetUniformIndices(program, NumUniforms,
names, indices);

glGetActiveUniformsiv(program, NumUniforms, indices,
GL_UNIFORM_OFFSET, offset);

glGetActiveUniformsiv(program, NumUniforms, indices,
GL_UNIFORM_SIZE, size);

glGetActiveUniformsiv(program, NumUniforms, indices,
GL_UNIFORM_TYPE, type);

700 Chapter 15: The OpenGL Shading Language

/* Copy the uniform values into the buffer */

memcpy (buffer + offset[Scale], &scale,
size[Scale] * TypeSize(typel[Scale]));

memcpy (buffer + offset[Translation], &translation,
size[Translation] * TypeSize(typel[Translation]));

memcpy (buffer + offset[Rotation], &rotation,
size[Rotation] * TypeSize(typel[Rotation]));

memcpy (buffer + offset[Enabled], &enabled,
size[Enabled] * TypeSize(type[Enabled]));

/* Create the uniform buffer object, initialize
** jtg storage, and associated it with the shader
** program */
glGenBuffers(1, &ubo);
glBindBuffer(GL_UNIFORM_BUFFER, ubo);
glBufferData(GL_UNIFORM_BUFFER, uboSize,

buffer, GL_STATIC_RAW) ;

glBindBufferBase(GL_UNIFORM_BUFFER, uboIndex, ubo);

Computational Invariance

GLSL does not guarantee that two identical computations in different
shaders will result in exactly the same value. The situation is no different
than for computational applications executing on the CPU, where the
order of compiled instructions may result in tiny differences due to the
accumulation order of instructions. These tiny errors may be an issue for
multipass algorithms that expect positions to be computed exactly the
same for each shader pass. GLSL has a method of enforcing this type of
invariance between shaders by using the invariant keyword.

invariant Qualifier

The invariant qualifier may be applied to any output varying variables of a
vertex shader. The variable may be a built-in variable or a user-defined one.
For example:

invariant gl_Position;

invariant centroid varying vec3 Color;

Uniform Blocks

701

702

As you may recall, varying variables are used to pass data from a vertex
shader into a fragment shader. Invariant variables must be declared
invariant in both the vertex and fragment shader. The invariant keyword
may be applied at any time before use of the variable in the shader and may
be used to modify previously declared variables.

For debugging, it may be useful to impose invariance on all varying
variables in shader. This can be accomplished by using the vertex shader
preprocessor pragma

#pragma STDGL invariant(all)

Global invariance in this manner is useful for debugging; however, it may
likely have an impact on the shader’s performance. Guaranteeing invariance
usually disables optimizations that may have been performed by the GLSL
compiler.

Statements

The real work in a shader is done by computing values and making
decisions. In the same manner as C++, GLSL has a rich set of operators for
constructing arithmetic operations for computing values and a standard set
of logical constructs for controlling shader execution.

Arithmetic Operations

No text describing a language is complete without the mandatory table of
operator precedence (see Table 15-7). The operators are ordered in decreasing
precedence. In general, the types being operated on must be the same, and
for vector and matrices, the operands must be of the same dimension.

Precedence Operators Accepted Types Description
1 () — Grouping of operations
2 [] arrays Array subscripting
() functions Function calls and constructors
. (period) structures Structure field or method access
++ - int, float, vec*, mat* Post-increment and -decrement
3 ++ - int, float, vec*, mat* Pre-increment and -decrement
+-1 int, float, vec*, mat* Unary operations: explicit positive

or negative value, negation

Table 15-7 GLSL Operators and Their Precedence

Chapter 15: The OpenGL Shading Language

Precedence Operators Accepted Types Description

4 */ int, float, vec*, mat* Multiplicative operations

5 + - int, float, vec*, mat* Additive operations

6 < > <= >= int, float, vec*, mat* Relational operations

7 == = int, float, vec*, mat* Equality operations

8 && bool Logical and operation

9 AN bool Logical exclusive-or operation
10 [l bool Logical or operation

11 a?b:c bool Selection operation (inline “if”

int, float, vec*, mat* operation; if (a) then (b) else (c))

12 = int, float, vec*, mat* Assignment
= -= Arithmetic assignment
*= /=
13 , (comma) — Sequence of operations

Table 15-7 (continued) GLSL Operators and Their Precedence

Note: This table lists all currently implemented operators of GLSL. Various
operations that exist in C++ (%, the modulus operator, for example)
are currently reserved but not implemented in GLSL.

Overload Operators

Most operators in GLSL are overloaded, meaning that they operate on a
varied set of types. Specifically, arithmetic operations (including pre- and
post-increment and -decrement) for vectors and matrices are well-defined
in GLSL. For example, to multiply a vector and a matrix (recalling that the
order of terms is important—matrix multiplication is non-commutative, for
all you math-heads), use the following operation:

vec3 v;
mat3 m;
vecld result = v * m;

The normal restrictions apply, that the dimensionality of the matrix and

the vector must match. Additionally, scalar multiplication with a vector and
matrix will produce the expected result. One notable exception is that the
multiplication of two vectors will result in component-wise multiplication

Uniform Blocks

703

704

of components; however, multiplying two matrices will result in normal
matrix multiplication.

vec2 a, b, c;

mat2 m, u, v;

c=a *b; //c=(a.x*b.x, a.y*b.y)

m=u*v; //m= (Uyp*VootUgs*V1oUoo*Vo1+Uo1* V11
Ugy *Voe+tUu11*VyoU10*Vo1tU11*Vyy)

Additional common vector operations (e.g., dot and cross products) are sup-
ported by function calls, as well as various per-component operations on
vectors and matrices.

Logical Operations

GLSL'’s logical control structures are the popular if-then-else and switch
statements. As with the “C” language the else clause is optional, and
multiple statements require a block.

if (truth) {

// true clause
} else {

// false clause

}

Similar to the situation in C, switch statements are available (starting with
GLSL 1.30) in their familiar form:

switch(int_value) {
case n:
// statements
break;

case m:
// statements
break;

default:
// statements
break;

}

GLSL switch statements also support “fall-through” cases—a case statement
that does not end with a break statement. They do require a break for the
final case in the block (before the closing brace).

Chapter 15: The OpenGL Shading Language

Looping Constructs
GLSL supports the familiar “C” form of for, while, and do ... while loops.

The for loop permits the declaration of the loop iteration variable in the
initialization clause of the for loop. The scope of iteration variables declared
in this manner is only for the lifetime of the loop.

for (int i = 0; i < 10; ++1i) {
}

while (n < 10) {

}

do {

} while (n < 10);

Flow Control Statements

Additional control statements beyond conditionals and loops are available
in GLSL. Table 15-8 describes available flow-control statements.

Statement Description

break Terminates execution of the block of a loop, and
continues execution after the scope of that block.

continue Terminates the current iteration of the enclosing block
of a loop, resuming execution with the next iteration of
the loop.

return [result] Returns from the current subroutine, optionally

providing a value to be returned from the function
(assuming return value matches the return type of the
enclosing function).

discard Discards the current fragment and ceases shader
execution. Discard statements are only valid in fragment
shader programs.

Table 15-8 GLSL Flow-Control Statements

Uniform Blocks

705

706

The discard statement is available only in fragment programs. The
execution of the fragment shader may be terminated at the execution of the
discard statement, but this is implementation dependent.

Functions

Functions permit you to replace occurrences of common code with a
function call. This, of course, allows for smaller code, and less chances for
errors. GLSL defines a number of built-in functions, which are listed in
Appendix I, “Built-In OpenGL Shading Language Variables and Functions,
as well as support for user-defined functions. User-defined functions can be
defined in a single shader object, and reused in multiple shader programs.

IIZ

Declarations

Function declaration syntax is very similar to “C,” with the exception of the
access modifiers on variables:

returnType functionName ([accessModifier] typel variablel,
[accessModifier] type2 varaible2,

)

// function body
return returnvValue; // unless returnType is void

}

Function names can be any combination of letters, numbers, and the
underscore character, with the exception that it can neither begin with a
digit nor with g1_.

Return types can be any built-in GLSL type and user-defined structure;
arrays are not available as return values. If a function doesn’t return a value,
its return type is void.

Parameters to functions can be of any type, including arrays (which must
specify their size).

Functions must be either declared, or prototyped, before their use. Just as in
C++, the compiler must have seen the function’s definition before its use or an
error will be raised. If a function is used in a shader object other than the one
where it’s defined, a prototype must be declared. A prototype is merely the
function’s signature without its accompanying body. Here’s a simple example:

float HornerEvalPolynomial (float coeff[10], float x);

2 This appendix is available online at http: //www. opengl-redbook. com/appendices/.

Chapter 15: The OpenGL Shading Language

Parameters Access Modifiers

While functions in GLSL are able to modify and return values after their
execution, there’s no concept of a pointer or reference, as in “C” or C++.
Rather, parameters of functions have associated access modifiers indicating
if the value should be copied into, or out of, a function after execution.
Table 15-9 describes the available parameter access modifiers in GLSL.

Access Modifier Description

in value copied into a function (default if not specified)

const in read-only value copied into a function

out value copied out of a function (undefined upon
entrance into the function)

inout value copied into and out of a function

Table 15-9 GLSL Function Parameter Access Modifiers

The in keyword is optional. If a variable does not include an access
modifier, then an “in” modifier is implicitly added to the parameter’s
declaration. However, if the variable’s value needs to be copied out of a
function, it must either be tagged with an “out” (for write-only variables) or
an “inout” (for read-write variables). Writing to an variable not tagged with
one of these modifiers will generate a compile-time error.

Additionally, to verify at compile time that a function doesn’t modify an
input-only variable, adding a “const in” modifier will cause the compiler to
check that the variable is not written to in the function.

Using OpenGL State Values in GLSL Programs

Almost all values that you set in using the OpenGL API are accessible from
within vertex and fragment shader programs. A comprehensive list of GLSL
built-in variables is provided in Appendix I, “Built-In OpenGL Shading
Language Variables and Functions.”3

Accessing Texture Maps in Shaders

GLSL also supports accessing texture maps in both vertex and fragment
shaders. To access a texture map, GLSL makes an association between an

3 This appendix is available online at http: //www. opengl-redbook. com/appendices/.

Accessing Texture Maps in Shaders

707

708

active texture unit (see “Steps in Multitexturing” in Chapter 9) configured
in the OpenGL application, and a variable declared in a shader. Such
variables use one of the sampler data types shown in Table 15-10 to allow
the shader program access to the texture map’s data. The dimensions of the
associated texture map must match the type of the sampler.

Sampler Name

Description

sampler1D Accesses a 1D texture map
isampler1D

usamplelD

sampler2D Accesses a 2D texture map
isampler2D

usampler2D

sampler3D Accesses a 3D texture map
isampler3D

usampler3D

samplerCube Accesses a cube map (for reflection mapping)
isamplerCube

usamplerCube

sampler1DArray Accesses an array of 1D texture maps
isampler1DArray

usampler1DArray

sampler2DArray Accesses an array of 2D texture maps
isampler2DArray

usampler2DArray

sampler2DRect Accesses a 2D texture rectangle
isampler2DRect

usampler2DRect

sampler1DShadow Accesses a 1D shadow map
sampler2DShadow Accesses a 2D shadow map
samplerCubeShadow Accesses a cube map of shadowmaps
sampler1DArrayShadow Accesses an array of 1D shadow maps
sampler2DArrayShadow Accesses an array of 2D shadow maps
Table 15-10 Fragment Shader Texture Sampler Types

Chapter 15: The OpenGL Shading Language

Sampler Name Description

sampler2DRectShadow Accesses a 2D shadow texture rectangle
samplerBuffer Accesses a texture buffer
isamplerBuffer

usamplerBuffer

Table 15-10 (continued) Fragment Shader Texture Sampler Types

Samplers must be declared as uniform variables in the shader and must have
their value assigned from within the OpenGL application. Samplers may
also be used as parameters in functions, but must be used with samplers of
matching type.

Samplers must have a texture unit assigned to them before their use in a
shader, and can only be initialized by glUniform1i(), or glUniform1iv(), with
the index of the texture unit that the sampler should use (see Example 15-7).

Example 15-7 Associating Texture Units with Sampler Variables

GLint texSampler; /* sampler index for shader variable “tex” */

texSampler = glGetUniformLocation (program, “tex”);
glUniformli (texSampler, 2); /* Set “tex” to use GL_TEXTURE2 */

Accessing Textures in GLSL

Sampling a texture map from within a GLSL shader uses the sampler
variable that you've declared and associated with a texture unit. There
are a number of texture access routines (described in “Texture Lookup
Functions” in Appendix I, “Built-in OpenGL Shading Language Variables
and Functions,”?) for accessing all OpenGL supported texture map types.

In Example 15-8, we sample the two-dimensional texture map associated
with the sampler2D variable tex, and combine the results with the fragment’s
color, providing the same results as using GL_MODULATE mode for the
texture environment mode.

Example 15-8 Sampling a Texture Within a GLSL Shader

uniform sampler2D tex;

void main()

{
gl_FragColor = gl_Color * texture2D(tex, gl_TexCoord[0].st);

}

4 This appendix is available online at http: / /www. opengl-redbook.com/appendices/.

Accessing Texture Maps in Shaders

709

710

Even though the example seems simple, that’s truly all there is to do. However,
much more interesting applications are enabled when the values in a texture
map do not necessarily represent colors, but other data used for subsequent
computation after retrieving the results from the texture map. Specifically, one
application is using the values in one texture map as indices into another,
described in “Dependent Texture Reads” below. The same results can be
accomplished using the combiner texture environment (see “Texture
Combiner Functions” in Chapter 9), but are much simpler to do using shaders.

The results you compute after sampling a texture are controlled by the code
you write in your shader, but how the texture map is sampled is still con-
trolled by the state settings in your application. For example, you control
whether a texture map contains mipmaps, and how those mipmaps are
sampled, as well as the filters used for resolving the returned texel values
(basically, the parameters you set with glTexParameter*()). From inside
the shader, you can control the biasing of mipmap selection, and using
projective-texture techniques (see Appendix I, “Built-In OpenGL Shading
Language Variables and Functions,” for details and suitable functions).

Dependent Texture Reads

During the execution of a shader that employs texture mapping, you’'ll use
texture coordinates to specify locations in texture maps and retrieve the
resulting texel values. While texture coordinates are supplied for each active
texture unit, you can use any values you might like as texture coordinates
(assuming matching dimensionality) for use with a sampler, including
values you may have just sampled from another texture map. Passing the
results of one texture access as texture coordinates into another texture
access operation is generally termed a dependent texture read, indicating that
the results of the second operation are dependent on the first operation.

This is easy to implement in GLSL and is illustrated in Example 15-9.

Example 15-9 Dependent Texture Reads in GLSL

uniform samplerlD coords;
uniform sampler3D volume;

void main ()

{
vec3 texCoords = texturelD(coords, gl_TexCoord[0].s);
vecl3 volumeColor = textureld3D(volume, texCoords);

}

5 This appendix is available online at http: / /www . opengl-redbook. com/appendices/.

Chapter 15: The OpenGL Shading Language

Texture Buffers

Advanced

While GLSL makes arrays available, both as statically initialized values
inside shaders, and as collections of values presented as an array in a Advanced
uniform variable, you might occasionally need an array that exceeds the

size limits available in those two options. Previous to OpenGL Version 3.1,

you would have likely stored such a table of values in a texture map, and

then manipulate the texture coordinates to obtain access to the values you

wanted in the texture, usually in a less than straightforward manner. A

more intuitive and direct solution to that data storage problem is the texture

buffer. A texture buffer is a special type of buffer object, similar to a one-
dimensional texture, that you can index using an integer value (like a

normal array index) in your shader, but that offers the more expansive

resources of texture memory, thereby allowing larger data sets.

You create a texture buffer just as you would any other buffer object. First

you call glBindBuffer() with a target of GL_TEXTURE_BUFFER to create the
object, and then you call glBufferData() (for example) to initialize its data.
To bind that buffer to a texture buffer, you call glTexBuffer().

void glTexBuffer(GLenum target, GLenum internalFormat, GLuint buffer);

Associates the buffer object buffer with target, causing the format of the
data in buffer to be interpreted as having the format of internalFormat.
target must be GL_TEXTURE_BUFFER, and internalFormat may be any of
the sized texture formats: G, GL_RS8, GL_R16, GL_R16F GL_R32F, GL_RS],
GL_R16I, GL_R32I, GL_R8UI, GL_R16UI, GL_R32UI, GL_RGS, GL_RG156,
GL_RG16F, GL_RG32F, GL_RGS8I, GL_RG16I, GL_RG32I, GL_RG8UI,
GL_RG16UI, GL_RG32UI, GL_RGBAS8, GL_RGBA16, GL_RGBA16F,
GL_RGBA32F, GL_RGBAS8I, GL_RGBA16I, GL_RGBA32I, GL_RGBASUI,
GL_RGBA16UI, GL_RGBA32UI.

Similar to other texture maps, you specify which texture unit to associate
the texture buffer with by calling glActiveTexture().

Shader Preprocessor

The first step in compilation of a GLSL shader is parsing by the preprocessor.
Similar to the “C” preprocessor, there are a number of directives for creating
conditional compilation blocks and defining values. However, unlike the
“C” preprocessor, there is no file inclusion (#include).

Shader Preprocessor 711

712

Preprocessor Directives

Table 15-11 lists the preprocessor directives accepted by the GLSL
preprocessor and their functions.

Preprocessor Directive Description

#define Control the definition of constants and macros
#undef similar to the C preprocessor

#if Conditional code management similar to the
#ifdef C preprocessor, including the defined operator.
#ifndef Conditional expressions evaluate integer
#el‘?’e expressions and defined values (as specified by
#elif #define) only.

#endif

ferror text Cause the compiler to insert text (up to the first

newline character) into the shader information log
#pragma options Control compiler specific options

#extension options Specify compiler operation with respect to
specified GLSL extensions

#version number Mandate a specific version of GLSL version support

#line options Control diagnostic line numbering

Table 15-11 GLSL Preprocessor Directives

Macro Definition

The GLSL preprocessor allows macro definition in much the same manner
as the “C” preprocessor, with the exception of the string substitution and
concatenation facilities. Macros might define a single value, as in

#define NUM_ELEMENTS 10
or with parameters like
#define LPos(n) gl_LightSourcel (n)].position

Additionally, there are several predefined macros for aiding in diagnostic
messages (that you might issue with the #error directive, for example), as
shown in Table 15-12.

Chapter 15: The OpenGL Shading Language

Macro Definition

_LINE__ Line number defined by one more than the number of
newline characters processed and modified by the #1ine
directive

__FILE__ Source string number currently being processed

__VERSION__ Integer representation of the OpenGL Shading Language
version

Table 15-12 GLSL Preprocessor Predefined Macros

Likewise, macros (excluding those defined by GLSL) may be undefined by
using the #undef directive. For example

#undef LPos

Preprocessor Conditionals

Identical to the processing by the “C” preprocessor, the GLSL preprocessor
provides conditional code inclusion based on macro definition and integer
constant evaluation.

Macro definition may be determined in two ways: Either using the #ifdef
directive

#ifdef NUM_ELEMENTS
fendif
or using the defined operator with the #if or #elif directives
#if defined(NUM_ELEMENTS) && NUM_ELEMENTS > 3
felif NUM_ELEMENTS < 7
fendi
Compiler Control

The #pragma directive provides the compiler additional information
regarding how you would like your shaders compiled.

Shader Preprocessor

713

714

Optimization Compiler Option

The optimize option instructs the compiler to enable or disable
optimization of the shader from the point where the directive resides
forward in the shader source. You can enable or disable optimization by
issuing either

#pragma optimize (on)
and

#pragma optimize (off)
respectively. These options may only be issued outside of a function
definition. By default, optimization is enabled for all shaders.
Debug Compiler Option

The debug option enables or disables additional diagnostic output of the
shader. You can enable or disable debugging by issuing either

#pragma debug (on)
and
#pragma debug (off)

respectively. Similar to the optimize option, these options may only be
issued outside of a function definition, and by default, debugging is
disabled for all shaders.

Global Shader Compilation Option

One final #pragma directive is available, sTpcL. This option is currently used
to enable invariance in the output of varying values. See “invariant
Qualifier” on page 701 for details.

Extension Processing in Shaders

GLSL, like OpenGL itself, may be enhanced by extensions. As vendors may
include extensions specific to their OpenGL implementation, it’s useful to
have some control over shader compilation in light of possible extensions
that a shader may use.

The GLSL preprocessor uses the #extension directive to provide
instructions to the shader compiler regarding how extension availability

Chapter 15: The OpenGL Shading Language

should be handled during compilation. For any, or all, extensions, you can
specify how you would like the compiler to proceed with compilation.

#extension extension _name : <directive>

where extensions_name uses the same extension name returned by calling
glGetString(GL_EXTENSIONS) or

#extension all : <directive>
to affect the behavior of all extensions.

The options available are shown in Table 15-13.

Directive Description

require Flag an error if the extension is not supported, or if the all
extension specification is used.

enable Give a warning if the particular extensions specified are not
supported, or flag an error if the all extension specification is
used.

warn Give a warning if the particular extensions specified are not

supported, or give a warning if any extension use is detected
during compilation.

disable Disable support for the particular extensions listed (that is, have
the compiler act as if the extension is not supported even if it
is) or all extensions if all is present, issuing warnings and
errors as if the extension were not present.

Table 15-13 GLSL Extension Directive Modifiers

Vertex Shader Specifics

You can send data from your application into a vertex program using several
mechanisms:

e By using the standard OpenGL vertex data interface (those calls that
are legal between a glBegin() and a glEnd()), such as glVertex*(),
glNormal*(), and so on. These values can vary on a per-vertex basis
and are considered to be built-in attribute variables.

e By declaring uniform variables. These values remain constant across a
geometric primitive.

Vertex Shader Specifics

715

e By declaring attribute variables, which can be updated on a per-vertex
basis, in addition to the standard vertex state. (This is effectively the
only method for specifying vertex attributes in OpenGL Version 3.1,
unless the GL_ARB_compatibility extension is available to you.)

Likewise, a vertex program must output some data (and optionally update
other variables) for continued processing by the remaining vertex
processing by the OpenGL pipeline, and possibly an accompanying
fragment program.

The outputs that need to be written include:

® gl _position, which must be updated by the vertex program and
contain the homogeneous coordinate of the vertex after modelview
and projection transformation.

e Various other built-in variables that are declared varying for passing
data into the fragment pipeline. These include colors, texture
coordinates, and other per-fragment data. They are described in
“Varying Output Variables” on page 721.

e User-defined varying variables.

Figure 15-5 illustrates the inputs and outputs of a vertex program.

Us

Vary g,
vaYing in
teX arlabgﬁs ™
ver /
gl/Nor”:al co »
lo
ol-Gocon%%s 5itio”
g XcoOr |/PO i olo o
g|/T6 Coord gl Froncolor Ay |r
d o ~\‘ gl:gac:tsecond (yCol°
gl/;raock ecdo[:]
r
9 1eCO 000"
\LIJSer.def. gl/Fongize
ertey *fineq 9 poin'™ i
att”butes gI/GIip\/ert

Figure 15-5 GLSL Vertex Shader Input and Output Variables

716 Chapter 15: The OpenGL Shading Language

Built-In Attribute Input Variables

Table 15-14 shows variables representing those that are globally available in
a vertex shader. The variables reflect the current OpenGL state, as set by the
corresponding routine.

Variable Type Specifying function Description

gl_Vertex vec4 glVertex Vertex’s world-space
coordinate

gl_Color vec4 glColor Primary color value

gl_SecondaryColor vec4 glSecondaryColor Secondary color value

gl_Normal vecd glNormal Lighting normal

gl_MultiTexCoordn vec4 glMultiTexCoord(n, ...); Textureunitn’s texture
coordinates, withn=0
7.

gl_FogCoord float glFogCoord Fog coordinate

gl_VertexID int — Index of current vertex

since the start of the
last rendering call

gl_InstancelD int glDrawArraysInstanced The instance ID for the
glDrawElementsInstanced associated primitives

Table 15-14 Vertex Shader Attribute Global Variables

User-Defined Attribute Variables

User-defined attribute variables are global variables that associate values
passed from the OpenGL application to a vertex shader executing within
the OpenGL implementation.

Attribute variables can be defined as float, floating-point vectors (vec*), or
matrices (mat*).

Hint: In general, attribute variables are implemented as vec4’s internal to
OpenGL. If you have a number of single floating-point variables that
you wish to use as vertex attributes, consider combining those values
into one or more vec* structures. While declaring a single float is
supported, it uses an entire vec4 to represent the single value.

Vertex Shader Specifics

717

To use user-defined attribute variables, OpenGL needs to know how to
match the name of the variable you specified in your shader program with
values that you pass into a shader. Similar to how OpenGL handles uniform
variables, when a shader program is linked, the linker generates a table of
variable names for attribute variables. To determine the maximum number
of user-defined vertex attributes, call glGetIntegerv() with a parameter of
GL_MAX_VERTEX_ATTRIBS.

To determine which index you need to update for the respective variable in
the vertex program, you'll call glGetAttribLocation(), with the name of
your variable, and the index corresponding to that name will be returned.

GLint glGetAttribLocation(GLuint program, const char *name);

Returns the index associated with name for the shader program. name must
be a null-terminated character string matching the declaration in program.
If name is not an active variable, or it’s the name of a built-in attribute
variable, or an error occurs, a value of —1 is returned.

For example, in a vertex shader, you might declare

varying vec3 displacement;

Assuming that the shader compiled and linked appropriately, you would
determine the index of “displacement” by calling:

int index = glGetAttribLocation (program, “displacement”);

You can also explicitly set the binding of an attribute variable to an index
using the glBindAttribLocation() call; however, this must be done before
the shader program is linked.

void glBindAttribLocation(GLint program, GLuint index,
const char *name);

Explicitly specifies which index location name should be assigned the next
time program is linked. index must be an integer between zero and GL_
MAX_VERTEX_ATTRIBS - 1, and name must be a null-terminated string.
Built-in attribute variables (those beginning with g1_) will generate a
GL_INVALID_OPERATION error.

718 Chapter 15: The OpenGL Shading Language

To set the value associated with the returned index, you’ll use a version of
the glVertexAttrib*() function.

void glVertexAttrib{1234}{std}(GLuint index, TYPE values);

void glVertexAttrib{123}{sfd}v(GLuint index, const TYPE *values);

void glVertexAttrib4{bsifd ub us ui}v(GLuint index, TYPE values);

void glVertexAttrib4Nub(GLuint index, TYPE values);

void glVertexAttrib4N{bsi ub us ui}v(GLuint index, const TYPE *values);
void glVertexAttribl{1234}{i ui}(GLuint index, TYPE values);

void glVertexAttribl4{bsi ub us ui}v(GLint index, const TYPE *values);

Specifies the values for vertex attribute variables associated with index to
values. For calls that do not explicitly set all four values, default values
of 0.0 (0 for signed- and unsigned-integer values) will be set for the y- and
z-coordinates, and 1.0 (1 for signed- and unsigned-integer values) for the
w-coordinate.

Specifying values for index zero is identical to calling glVertex*(), with the
same values.

The normalized version will convert integer input values into the range
zero to one, using the mappings specified in Table 4-1 on page 198.

Matrices are updated by specifying consecutive values for index. values
specified will be used to update the respective columns of the matrix.

While attribute variables are floating point, there’s no restriction on the
type of input data used to initialize their values. Specifically, integer-type
input values can be normalized into the range of zero to one, using
glVertexAttrib4N*(), before being assigned into the attribute variable.

Scalar (single-value), vector, and matrix attribute values can be set using
glVertexAttrib*(). For the matrix case, multiple calls are required. In
particular, for a matrix of dimension n, you would call glVertexAttrib*(),
with indices: index, index+1, ..., index+n—1.

Vertex shaders also augment the vertex array facility (see “Vertex Arrays”
on page 70). As with other types of vertex data, values for vertex attribute
variables can be stored in vertex arrays and updated by calling
glDrawArrays(), glArrayElement(), and so on. To specify the array to

be used to update a variable’s value, call glVertexAttribPointer().

Vertex Shader Specifics

719

720

void glVertexAttribPointer(GLuint index, GLint size, GLenum type,
GLboolean normalized, GLsizei stride,
const GLvoid* pointer);

Specifies where the data values for index can be accessed. pointer is the
memory address of the first set of values in the array. size represents the
number of components to be updated per vertex. type specifies the data
type (GL_SHORT, GL_INT, GL_FLOAT, or GL_DOUBLE) of each element in
the array. normalized indicates that the vertex data should be normalized
before being stored (in the same manner as glVertexAttrib4N*()). stride is
the byte offset between consecutive elements in the array. If stride is O, the
data is assumed to be tightly packed.

As with other types of vertex arrays, specifying the array is only one part of
the process. Each client-side vertex array needs to be enabled. Compared to
using glEnableClientState(), arrays of vertex attributes are enabled by
calling glEnableVertexAttribArray().

void glEnableVertexAttribArray(GLuint index);
void glDisableVertexAttribArray(GLuint index);

Specifies that the vertex array associated with variable index be enabled
or disabled. index must be a value between 0 and GL_MAX_VERTEX _
ATTRIBS - 1.

Special Output Variables

The values shown in Table 15-15 are available for writing (and reading after
being written) in a vertex shader. g1_prosition specifies the vertex’s final
position upon exit of the vertex shader and is required to be written in the
shader.

Variable Name Type Description

gl_Position vecd Transformed vertex position (in eye coordinates).
gl_PointSize float Point size of vertex.

gl_ClipVertex vec4d Vertex position to be used with user-defined clipping

planes. This value must be in the same coordinate
system as the clipping planes: eye-coordinates or
object-coordinates.

Table 15-15 Vertex Shader Special Global Variables

Chapter 15: The OpenGL Shading Language

While you're able to set the output vertex position to any homogenous
coordinate you might like, the final value of g1_position is usually
computed within a vertex program as:

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

Or, if you're employing a multipass algorithm (one rendering multiple
images from the same geometry) that needs to have the results of the vertex
shader and fixed function pipeline be consistent, set g1_pPosition using the
following code:

gl_Position = ftransform();

gl_PointSize controls the output size of a point, similar to glPointSize(),
but on a per-vertex basis. To control the size of points from within vertex
programs, call glEnable() with a value of GL_VERTEX_PROGRAM_POINT_
SIZE, which overrides any current point size that may have been specified.

User-defined clipping planes, as specified by glClipPlane(), can be used by
writing a homogeneous coordinate into the g1_clipvertex variable. For
clipping to proceed correctly, the clipping plane specified and the coordinate
written into g1_clipvertex must be in the same coordinate space. The
common space for clipping is eye-coordinates. You can transform the
current vertex into eye-coordinates for clipping by executing:

gl_ClipVertex = gl_ModelViewMatrix * gl_Vertex;

Varying Output Variables

Table 15-16 represents those variables that can be written to in a vertex
shader and have their values readable in a fragment shader. The values
in the fragment shader are iterated across the fragments (or samples, if
multisampling) of the primitives.

Variable Name Type Description

gl_FrontColor vec4 Primary color to be used for front-facing
primitives

gl_BackColor vec4 Primary color to be used for back-facing
primitives

gl_FrontSecondaryColor = vec4 Secondary color to be used for front-facing
primitives

Table 15-16 Vertex Shader Varying Global Variables

Vertex Shader Specifics

721

Advanced

722

Variable Name Type Description

gl_BackSecondaryColor vec4 Secondary color to be used for back-facing

primitives
gl_TexCoord[n] vecd n'h Texture coordinate values
gl_FogFragCoord vec4 Fragment fog coordinate value

Table 15-16 (continued) Vertex Shader Varying Global Variables

A vertex shader has the capability of setting both the front- and back-face
color values for a vertex. Be default, regardless of the values set from within
a vertex shader, the front-facing color will be chosen. This behavior can be
modified by calling glEnable(), with a value of GL_VERTEX_PROGRAM_
TWO_SIDE, which causes OpenGL to select colors based on the orientation
of the underlying primitive.

Texture Mapping in Vertex Shaders

Texture mapping is available in vertex shaders. Using textures in vertex
shaders is identical to the process described in “Accessing Textures in GLSL”
on page 709, with one minor exception. Automatic mipmap selection is not
done in vertex shaders. However, you can manually select which mipmap
level using the texture*Lod routines in GLSL.

To determine if your implementation is capable of using textures in vertex
shaders, query GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS using
glintegerv(). If a nonzero value is returned, texturing is supported.

Transform Feedback

Advanced

Transform feedback allows an application to record the transformed
primitives generated by rendering (and before clipping) using a vertex
shader, into a buffer object, somewhat similar to the situation described
in “Feedback” in Chapter 13, but with more flexible control of the data
recorded.

Chapter 15: The OpenGL Shading Language

Using transform feedback is a two-step process:

1. Specifying the mapping of outputs of a vertex shader into one or more
buffer objects.

2. Rendering while in transform feedback mode.

To accomplish step 1, we'll call glTransformFeedbackVaryings() before
linking our vertex shader. This function will set the output ordering of the
varyings that we want to capture and specify how the data will be written out.

void glTransformFeedbackVaryings(GLuint program, GLsizei count,
const char **varyings, GLenum bufferMode);

Assigns the ordering for count varying variables specified by (null-
terminated) names in the array varyings for program. bufferMode must be
either GL_SEPARATE_ATTRIBS, which specifies that the varyings should
be written to count separate buffer objects, or GL_INTERLEAVED_ATTRIBS,
which writes the count varying values contiguously into a single buffer
object.

A program may fail to link if count exceeds the number of available
varyings for output. A GL_INVALID_VALUE error will be generated if
program is not a valid program object, or if bufferMode is set to GL_
SEPARATE_ATTRIBS and count is greater than the value returned for a
query of GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS.

Once the program has been successfully linked, and the ordering of
varyings set, we can attach buffer objects to receive the transformed
outputs. To bind a buffer, we use glBindBufferRange() (or
glBindBufferBase()), associating the appropriate number of buffers if the
bufferMode was set to GL_SEPARATE_ATTRIBS, or a single buffer if the
bufferMode was set to GL_INTERLEAVED_ATTRIBS. The size of the buffer (as
specified either by glBindBufferRange() or when the buffer was sized by
calling glBufferData(), for example) dictates the number of attribute values
recorded for the specified primitives. When the available buffer space is
exhausted, no more primitives will be recorded.

To capture the transformed output, you enter transform feedback mode by
calling glBeginTransformFeedback(), and specifying the type of primitives
you would like recorded, as described in Table 15-17. The complete set of
specified varyings is written for each vertex (up to space limitations in the
buffer).

Transform Feedback

723

Transform Feedback Primitive Type Permitted OpenGL Primitive Type

GL_POINTS GL_POINTS

GL_LINES GL_LINES
GL_LINE_LOOP
GL_LINE_STRIP

GL_TRIANGLES GL_TRIANGLES
GL_TRIANGLE_FAN
GL_TRAINGLE_STRIP
GL_QUADS
GL_QUAD_STRIP
GL_POLYGONS

Table 15-17 Transform Feedback Primitives and Their Permitted OpenGL
Rendering Types

You then issue rendering commands. Vertices are transformed by your
shader, and the varying variables you specified in step 1 are recorded.

void glBeginTransformFeedback(GLenum primitiveMode);
void glEndTransformFeedback(void);

Enters and exits transform feedback mode. primitiveMode must be one of
GL_POINTS, GL_LINES, or GL_TRIANGLES, which represents the type of
output written to the associated buffer objects.

A GL_INVALID_OPERATION error is generated if a command renders an
OpenGL primitive type that is incompatible with the current transform
feedback mode.

Example 15-10 illustrates the process of capturing vertex values, surface
normals, and texture coordinates using transform feedback. Note that the
input consists of only the vertex positions; all of the other values are
generated by the vertex shader.

Example 15-10 Using Transform Feedback to Capture Geometric Primitives: xfb.c

GLuint

LoadTransformFeedbackShader (const char* vShader, GLsizei count,
const GLchar** varyings)

{
GLuint shader, program;
GLint completed;

724 Chapter 15: The OpenGL Shading Language

program = glCreateProgram() ;

/*

** --- Load and compile the vertex shader ---
*/

if (vShader !'= NULL) {

shader = glCreateShader (GL_VERTEX_SHADER) ;
glShaderSource (shader, 1, &vShader, NULL) ;
glCompileShader (shader) ;

glGetShaderiv (shader, GL_COMPILE_STATUS, &completed);

if (!completed) {
GLint len;
char* msg;

glGetShaderiv (shader, GL_INFO_LOG_LENGTH, &len);
msg = (char*) malloc(len);

glGetShaderInfolog (shader, len, &len, msg);
fprintf (stderr, "Vertex shader compilation ”
“failure:\n%s\n", msg);

free(msg) ;

glDeleteProgram (program) ;

exit (EXIT_FAILURE) ;

glAttachShader (program, shader) ;

glTransformFeedbackVaryings (program, count, varyings,
GL_INTERLEAVED_ATTRIBS) ;

/*

** —-- Link program ---

*/

glLinkProgram (program) ;

glGetProgramiv (program, GL_LINK_STATUS, &completed);

if (!completed) {
GLint len;
char* msg;

glGetProgramiv (program, GL_INFO_LOG_LENGTH, &len);

msg = (char*) malloc(len);
glGetProgramInfolog (program, len, &len, msg) ;

Transform Feedback

725

fprintf (stderr, "Program link failure:\n%s\n", msg);
free (msqg) ;

glDeleteProgram (program) ;

exit (EXIT_FAILURE) ;

return program;

void
init ()
{
/* Vertex shader generating our output values */
const char vShader[] = {
"#version 140\n" "in vec2 coords;"
"out vec2 texCoords;"
"out vec3 normal;"

"void main() {"

" float angle = radians(coords[0]);"

" normal = vec3(cos(angle), sin(angle), 0.0);"

" texCoords = normal.xy;"

" gl_Position = vecd (normal.xy, coords[1l], 1.0);"
ll}!l

T

/* List (and ordering) of varying values written to the
** transform buffer */
const char *varyings[] = {
"texCoords",
"normal",
"gl_Position"
Y

GLuint program;

GLuint query;

GLint count;

/* Load shader program and set up varyings */

program = LoadTransformFeedbackShader (vShader, 3,
varyings) ;

glUseProgram (program) ;

glGenQueries (1, &query);

/* Bind to transform-feedback buffer */

726 Chapter 15: The OpenGL Shading Language

glBindBufferBase (GL_TRANSFORM_FEEDBACK_BUFFER, 0, xfb);
glBeginQuery (GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN,

query) ;
glBeginTransformFeedback (GL_POINTS) ;
glDrawArrays (GL_POINTS, 0, 2* (NumSlices+1));
glEndTransformFeedback () ;
glEndQuery (GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN) ;

glGetQueryObjectiv (query, GL_QUERY_RESULT, &count);

fprintf (stderr, "%d primitives written\n", count) ;

Fragment Shader Specifics

Like vertex programs, your OpenGL application can send data directly to a
fragment program, as well as having OpenGL provide values for use in your
program. All of that data, along with the inputs into a fragment shader,
result in the final color and depth value of a fragment. After execution of a
fragment shader, the computed values continue through the OpenGL
fragment pipeline to the fragment test and blending stages.

Figure 15-6 describes the inputs and outputs of a fragment programs.

gefin®
use
unifol o
d \/ariable
co -
| Frad \-
- r or
9'/COICC:JndaryCOI
g,/SeXC ordIn] y
I in |o
gl contFac | \ I,;ragp
’ g| Frag ata[n]

,ﬂ””. dﬁca

g™

/

Figure 15-6 Fragment Shader Built-In Variables

Fragment Shader Specifics

727

728

Input Values

Fragment shaders receive the iterated values of the final vertex pipeline
outputs. These include the fragment’s position, resolved primary and
secondary colors, a set of texture coordinates, and a fog coordinate distance
for the fragment. All of these values are described in Table 15-18.

Variable Type Description

gl_FragCoord vec4 (Read only) Position of the fragment, including
the z-component, which represents the fixed-
function computed depth value

gl_FrontFacing bool (Read only) Specifies if the fragment belongs to
a front-facing primitive

gl_Color vec4 Primary color of the fragment

gl_SecondayColor vec4d Secondary color of the fragment

gl_TexCoord[n] vec4 n'" texture coordinates for the fragment

gl_FogFragCoord float Fragment’s fog coordinate, either specified as

the z-coordinate of the primitive in eye space or
the interpolated fog coordinate

gl_PointCoord vec2 Fragment'’s location for a point sprite in the
range [0.0, 1.0]. The value is undefined if the
current primitive is not a point sprite or if point
sprites are disabled

Table 15-18 Fragment Shader Varying Global Variables

Special Output Values

Input values are combined in a fragment program to produce the final
values for fragment, as shown in Table 15-19.

Variable Type Description

gl_FragColor vecd Final color of the fragment
gl_FragDepth float Final depth of the fragment
gl_FragDatal[n] vecd Data value written to the n"" data buffer

Table 15-19 Fragment Shader Output Global Variables

Chapter 15: The OpenGL Shading Language

gl_FragColor is the final color of the fragment. While writing to
gl_FragColor isn’t required output from a fragment program, the results of
the final fragment color for writing into the color buffer are undefined.

gl_FragDepth is the final depth of the fragment and is utilized in the depth
test. While you cannot modify the (x, y) coordinate of a fragment, the depth
value can be modified.

Finally, additional data may be written from a fragment program.
The g1_Fragbata array allows for the writing of various data into extra
buffers, as described below.

Rendering to Multiple Output Buffers

A fragment shader may output values to multiple buffers simultaneously
using the gl_FragbData array. Writing a value into array element
gl_FragData[n] will cause the color to be written into the appropriate
fragment in the buffer in element # of the array passed to glDrawBuffers().

A fragment shader may write to either g1_FragColor Or gl_FragData in a
shader, but not both.

User-Defined Fragment Shader Outputs

You might find that using relatively nondescript names such as
gl_FragColor is not suitable for specifying the output of your shader.
While GLSL doesn’t care, the next programmer to look at your code
(which you probably forgot to comment) might not immediately
understand that your shader does not output a color, but rather the
results of evaluating a Bessel function of the second kind (or some other
mathematical archana).

With GLSL version 1.30, you can give more suitable names to the outputs
from your fragment shaders, and you can control the mapping of those
outputs to the various bound drawing buffers. You can either specify the
mapping of fragment output name to a buffer before linking or query the
program after linking to determine the layout of variables.

To use the first approach, call glBindFragDataLocation() before calling
glLinkProgram().

Fragment Shader Specifics

729

730

void glBindFragDataLocation(GLuint program, GLuint colorNumber,
const char *name);

Specifies the output of fragment variable name should be written to color
buffer colorNumber for GLSL program. This affects only programs that have
not yet been linked.

A GL_INVALID_VALUE error is generated if colorNumber is less than zero
or greater than the value returned when querying GL_ MAX_DRAW _
BUFFERS. A GL_INVALID_OPERATION error is generated if name begins
with g1_.

After linking, you can retrieve the mapping by calling
glGetFragDataLocation():

GLint glGetFragDataLocation(GLuint program, const char *name);

Returns the color buffer index associated with the output of name from
GLSL program.

A GL_INVALID_OPERATION error is generated if program did not
successfully link, and glGetFragDataLocation() is called. A value of -1 is
returned if name is not a fragment program output associated with
program or if another error occurred.

Chapter 15: The OpenGL Shading Language

Appendix A

Basics of GLUT: The OpenGL Utility Toolkit

This appendix describes a subset of the OpenGL Utility Toolkit (GLUT)
originally developed by Mark Kilgard. We use an open-source version of
GLUT named freeglut (http://freeglut.sourceforge.net/) developed by
Pawel W. Olszta, with contributions from Andreas Umbach and Steve Baker.
GLUT has become a popular library for OpenGL programmers because it
standardizes and simplifies window and event management. GLUT has
been ported atop a variety of OpenGL implementations, including both the
X Window System and Microsoft Windows.

This appendix has the following major sections:

e “Initializing and Creating a Window”

e “Handling Window and Input Events”

¢ ‘“Loading the Color Map”

e “Initializing and Drawing Three-Dimensional Objects”
e “Managing a Background Process”

e “Running the Program”

(See “How to Obtain the Sample Code” on page xli for information about
how to obtain the source code for GLUT.)

731

With GLUT, your application structures its event handling to use callback
functions. (This method is similar to using the Xt Toolkit, also known as the
X Intrinsics, with a widget set.) For example, first you open a window and
register callback routines for specific events. Then you create a main loop
without an exit. In that loop, if an event occurs, its registered callback func-
tions are executed. On completion of the callback functions, flow of control
is returned to the main loop.

Initializing and Creating a Window

Before you can open a window, you must specify its characteristics. Should
it be single-buffered or double-buffered? Should it store colors as RGBA val-
ues or as color indices? Where should it appear on your display? To specify
the answers to these questions, call glutInit(), glutInitDisplayMode(),
glutInitWindowSize(), and glutInitWindowPosition() before you call
glutCreateWindow() to open the window.

void glutlnit(int argc, char **argv);

glutInit() should be called before any other GLUT routine, because it
initializes the GLUT library. glutInit() will also process command line
options, but the specific options are window system dependent. For the
X Window System, -iconic, -geometry, and -display are examples of com-
mand line options, processed by glutInit(). (The parameters to glutInit()
should be the same as those to main().)

void glutInitDisplayMode(unsigned int mode);

Specifies a display mode (such as RGBA or color-index, or single- or
double-buffered) for windows created when glutCreateWindow() is
called. You can also specify that the window have an associated depth,
stencil, and/or accumulation buffer. The mask argument is a bitwise ORed
combination of GLUT_RGBA or GLUT_INDEX, GLUT_SINGLE or GLUT _
DOUBLE, and any of the buffer-enabling flags: GLUT_DEPTH, GLUT_
STENCIL, or GLUT_ACCUM. For example, for a double-buffered, RGBA-
mode window with a depth and stencil buffer, use GLUT_DOUBLE |
GLUT_RGBA | GLUT_DEPTH | GLUT_STENCIL. The default value is
GLUT_RGBA | GLUT_SINGLE (an RGBA, single-buffered window).

732 Appendix A: Basics of GLUT: The OpenGL Utility Toolkit

void glutlnitContextVersion(int majorVersion, int minorVersion);

Specifies the major and minor versions of the OpenGL implementation
that you want a context created for. To use OpenGL Version 3.0 or greater,
you need to call this routine before calling glutCreateWindow(), due to the
different context creation semantics introduced by OpenGL Version 3.0.

void glutlnitWindowsSize(int width, int height);
void glutlnitWindowPosition(int x, int y);

Requests windows created by glutCreateWindow() to have an initial size
and position. The arguments (x, y) indicate the location of a corner of the
window, relative to the entire display. width and height indicate the win-
dow’s size (in pixels). The initial window size and position are hints and
may be overridden by other requests.

int glutCreateWindow(char *name);

Opens a window with previously set characteristics (display mode, width,
height, and so on). The string name may appear in the title bar if your
window system does that sort of thing. The window is not initially dis-
played until glutMainLoop() is entered, so do not render into the win-
dow until then.

The value returned is a unique integer identifier for the window. This
identifier can be used for controlling and rendering to multiple windows
(each with an OpenGL rendering context) from the same application.

Handling Window and Input Events

After the window is created, but before you enter the main loop, you should
register callback functions using the following routines.

void glutDisplayFunc(void (*func)(void));

Specifies the function that’s called whenever the contents of the window need
to be redrawn. The contents of the window may need to be redrawn when the
window is initially opened, when the window is popped and window damage
is exposed, and when glutPostRedisplay() is explicitly called.

Handling Window and Input Events 733

void glutReshapeFunc(void (*func)(int width, int height));

Specifies the function that’s called whenever the window is resized or
moved. The argument func is a pointer to a function that expects two
arguments, the new width and height of the window. Typically, furnc calls
glViewport(), so that the display is clipped to the new size, and it rede-
fines the projection matrix so that the aspect ratio of the projected image
matches the viewport, avoiding aspect ratio distortion. If glutReshape-
Func() isn't called or is deregistered by passing NULL, a default reshape
function is called, which calls glViewport(0, 0, width, height).

void glutKeyboardFunc(void (*func)(unsigned char key, int x, int y));

Specifies the function, func, that’s called when a key that generates an
ASCII character is pressed. The key callback parameter is the generated
ASCII value. The x and y callback parameters indicate the location of the
mouse (in window-relative coordinates) when the key was pressed.

void glutMouseFunc(void (*func)(int button, int state, int x, int y));

Specifies the function, func, that’s called when a mouse button is pressed
or released. The button callback parameter is GLUT_LEFT_BUTTON,
GLUT_MIDDLE_BUTTON, or GLUT_RIGHT_BUTTON. The state callback
parameter is either GLUT_UP or GLUT_DOWN, depending on whether
the mouse has been released or pressed. The x and y callback parameters
indicate the location (in window-relative coordinates) of the mouse when
the event occurred.

void glutMotionFunc(void (*func)(int x, int y));

Specifies the function, func, that’s called when the mouse pointer moves

within the window while one or more mouse buttons are pressed. The x

and y callback parameters indicate the location (in window-relative coor-
dinates) of the mouse when the event occurred.

void glutPostRedisplay(void);

Marks the current window as needing to be redrawn. At the next
opportunity, the callback function registered by glutDisplayFunc() will
be called.

734 Appendix A: Basics of GLUT: The OpenGL Utility Toolkit

Loading the Color Map

If you're using color-index mode, you might be surprised to discover there’s
no OpenGL routine to load a color into a color-lookup table. This is because
the process of loading a color map depends entirely on the window system.
GLUT provides a generalized routine to load a single color index with an
RGB value, glutSetColor().

void glutSetColor(GLint index, GLfloat red, GLfloat green, GLfloat blue);

Loads the index in the color map, index, with the given red, green, and blue
values. These values are normalized to lie in the range [0.0, 1.0].

Initializing and Drawing Three-Dimensional Objects

Many sample programs in this guide use three-dimensional models to
illustrate various rendering properties. The following drawing routines are
included in GLUT to avoid having to reproduce the code to draw these
models in each program. The routines render all their graphics in immedi-
ate mode. Each three-dimensional model comes in two flavors: wireframe
without surface normals, and solid with shading and surface normals. Use
the solid version when you're applying lighting. Only the teapot generates
texture coordinates.

void glutWireSphere(GLdouble radius, GLint slices, GLint stacks);
void glutSolidSphere(GLdouble radius, GLint slices, GLint stacks);

void glutWireCube(GLdouble size);
void glutSolidCube(GLdouble size);

void glutWireTorus(GLdouble innerRadius, GLdouble outerRadius,
GLint nsides, GLint rings);

void glutSolidTorus(GLdouble innerRadius, GLdouble outerRadius,
GLint nsides, GLint rings);

Initializing and Drawing Three-Dimensional Objects

735

void glutWirelcosahedron(void);
void glutSolidIcosahedron(void);

void glutWireOctahedron(void);
void glutSolidOctahedron(void);

void glutWireTetrahedron(void);
void glutSolidTetrahedron(void);

void glutWireDodecahedron(GLdouble radius);
void glutSolidDodecahedron(GLdouble radius);

void glutWireCone(GLdouble radius, GLdouble height, GLint slices,
GLint stacks);

void glutSolidCone(GLdouble radius, GLdouble height, GLint slices,
GLint stacks);

void glutWireTeapot(GLdouble size);
void glutSolidTeapot(GLdouble size);

Managing a Background Process

You can specify a function that’s to be executed if no other events are
pending—for example, when the event loop would otherwise be idle—with
glutldleFunc(). This is particularly useful for continuous animation or
other background processing.

void glutldleFunc(void (*func)(void));

Specifies the function, func, to be executed if no other events are pending.
If NULL (zero) is passed in, execution of func is disabled.

736 Appendix A: Basics of GLUT: The OpenGL Utility Toolkit

Running the Program

After all the setup is completed, GLUT programs enter an event processing
loop, glutMainLoop().

void glutMainLoop(void);

Enters the GLUT processing loop, never to return. Registered callback
functions will be called when the corresponding events instigate them.

Running the Program 737

This page intentionally left blank

Appendix B

State Variables

This appendix lists the queryable OpenGL state variables, their default
values, and the commands for obtaining the values of these variables, and
contains the following major sections:

e “The Query Commands”

e “OpenGL State Variables”

739

740

The Query Commands

In addition to the basic commands to obtain the values of simple state vari-
ables (commands such as glGetIntegerv() and glIsEnabled(), which are
described in “Basic State Management” in Chapter 2), there are other spe-
cialized commands to return more complex state variables. The prototypes
for these specialized commands are listed here. Some of these routines, such
as glGetError() and glGetString(), have been discussed in more detail else-
where in the book.

To find out when you need to use these commands and their corresponding
symbolic constants, use the tables in the next section, “OpenGL State
Variables.”

void glGetActiveAttrib(GLuint program, GLuint index, GLsizei bufSize,
GLsizei *length, GLint *size, GLenum *type,
char *name);

void glGetActiveUniformBlockiv(GLuint program,
GLuint uniformBlockindex, GLenum pname,
GLint *params);

GLint glGetActiveUniformName(GLuint program,
GLuint uniformIndex, GLsizei bufSize,
GLsizei *length, char *uniformName)

void glGetActiveUniformsiv(GLuint program, GLsizei uniformCount,
const GLuint *uniformlIndices, GLenum pname,
GLint *params)

void glGetAttachedShaders(GLuint program, GLsizei maxCount,
GLsizei *count, GLuint *shaders);

void glGetBufferSubData(GLenum target, GLintptr offset,
GLsizeiptr size, GLvoid* data);

void glGetBufferParameteriv(GLenum targef, GLenum pname,
GLint *params);

void glGetBufferPointerv(GLenum target, GLenum pnarme,
GLvoid **pointer);

void glGetClipPlane(GLenum plane, GLdouble *equation);

void glGetColorTable(GLenum target, GLenum pname, GLenum type,
GLvoid *table);

Appendix B: State Variables

void glGetColorTableParameter{if}v(GLenum target, GLenum pname,
TYPE *params);

void glGetCompressedTexImage(GLenum target, GLint lod,
GLvoid *pixels);

void glGetConvolutionFilter(GLenum target, GLenum format,
GLenum type, GLvoid *image);

void glGetConvolutionParameter{if}v(GLenum farget, GLenum pname,
TYPE *params);

GLenum glGetError(void);

void glGetHistogram(GLenum farget, GLboolean reset, GLenum format,
GLenum type, GLvoid *values);

void glGetHistogramParameter{if}v(GLenum farget, GLenum pname,
TYPE *params);

void glGetLight{if}v(GLenum light, GLenum pname, TYPE *params);
void glGetMap{ifd}v(GLenum target, GLenum query, TYPE *v);
void glGetMaterial{if}v(GLenum face, GLenum pname, TYPE *params);

void glGetMinmax(GLenum target, GLboolean reset, GLenum format,
GLenum type, GLvoid *values);

void glGetMinmaxParameter{if}v (GLenum farget, GLenum pname,
TYPE *params);

void glGetPixelMap({f ui us}v(GLenum map, TYPE *values);
void glGetPolygonStipple(GLubyte *mask);

void glGetProgramInfoLog(GLuint program, GLsizei bufSize,
GLsizei *length, GLchar *infoLog);

void glGetProgramiv(GLuint program, GLenum pname, GLint *params);
void glGetQueryiv(GLenum target, GLenum pname, GLint *params);
void glGetQueryObjectiv(GLuint id, GLenum pname, GLint *params);
void glGetQueryObjectuiv(GLuint id, GLenum pname, GLuint *params);

void glGetSeparableFilter(GLenum target, GLenum format,
GLenum type, GLvoid *row, GLvoid *column,
GLvoid *span);

The Query Commands

741

742

void glGetShaderInfoLog(GLuint shader, GLsizei bufSize, GLsizei *length,
GLchar *infoLog);

void glGetShaderiv(GLuint shader, GLenum pname, GLint *params);

void glGetShaderSource(GLuint shader, GLsizei bufSize, GLsizei *length,
GLchar *source);

const GLubyte * glGetString(GLenum name);

const GLubyte * glGetStringi(GLenum name, GLuint index);

void glGetTexEnv{if}v(GLenum target, GLenum pname, TYPE *params);
void glGetTexGen{ifd}v(GLenum coord, GLenum pname, TYPE *params);

void glGetTexImage(GLenum target, GLint level, GLenum format,
GLenum type, GLvoid *pixels);

void glGetTexLevelParameter{if}v(GLenum target, GLint level,
GLenum pname, TYPE *params);

void glGetTexParameter{if}v(GLenum farget, GLenum pname,
TYPE *params);

void glGetUniform{if}v(GLuint program, GLint location, TYPE *params);

void glGetVertexAttrib{ifd}v(GLuint index, GLenum pname,
TYPE *params);

void glGetVertexAttribPointerv(GLuint index, GLenum pnarme,
GLvoid **pointer);

GLboolean glIsBuffer(GLuint buffer);
GLboolean glIsList(GLuint /ist);
GLboolean gllIsProgram(GLuint program);
GLboolean glIsQuery(GLuint id);
GLboolean gllIsShader(GLuint shader);
GLboolean glIsTexture(GLuint texObject);

void gluGetNurbsProperty(GLUnurbsObj *nobj, GLenum property,
GLfloat *value);

const GLubyte * gluGetString(GLenum name);

void gluGetTessProperty(GLUtesselator *tess, GLenum which,
GLdouble *data);

Appendix B: State Variables

OpenGL State Variables

The following pages contain tables that list the names of queryable state
variables. For each variable, the tables list a description of it, its attribute
group, its initial or minimum value, and the suggested glGet*() command
to use for obtaining it. State variables that can be obtained using
glGetBooleanv(), glGetIntegerv(), glGetFloatv(), or glGetDoublev() are
listed with just one of these commands—the one that’s most appropriate
given the type of data to be returned. (Some vertex-array variables can be
queried only with glGetPointerv().) These state variables can’t be obtained
using gllsEnabled(). However, state variables for which glisEnabled() is
listed as the query command can also be obtained using glGetBooleanvy(),
glGetIntegerv(), glGetFloatv(), and glGetDoublev(). State variables for
which any other command is listed as the query command can be obtained
only by using that command.

Note: When querying texture state, such as GL_TEXTURE_MATRIX, in
an implementation where the GL_ARB_multitexture extension is
defined, the values returned reference the currently active texture
unit only. See “Multitexturing” on page 467 for details.

If one or more attribute groups are listed, the state variable belongs to the
listed group or groups. If no attribute group is listed, the variable doesn’t
belong to any group. glPushAttrib(), glPushClientAttrib(), glPopAttrib(),
and glPopClientAttrib() may be used to save and restore all state values
that belong to an attribute group (see “Attribute Groups” in Chapter 2 for
more information).

All queryable state variables have initial values; however, those that are
implementation-dependent may not have an initial value listed. If no
initial value is listed, you need to consult the section where that variable is
discussed.

More detail on all of the query functions and values is available online at
http://www.opengl.org/sdk/docs/man.

OpenGL State Variables

743

BIR(] PIIRIDOSSY PUE SAN[BA JUSIIND) I0] SI[qRLILA dIe)S

-9 9|qeL

(areor 39013 uonisod 1s)3ser YOTOD

‘0arRSaUIRO3 (1°0°0°0) IUIIND UMM PIIRIDOSSE I0[0D AIePUOIIS TAIVANOODAS JLLSVY INTIIND 1D
()ajeor3o0[3 uonisod

‘0ar8aupend (1777 Iuammd I93SeI YIIM PIIRIDOSSE I0[0D) YOTOD ALSVY INTIIND 1D
(areor 39018 0 Juamnd 90UR)SIP 19)SkI JUIIIND AONVISIA YALSVY INZIIND 1D
Oareor39DIs (T 0°0‘0) yudmMd uonisod 121561 JuUa L) NOILLISOd J4ISVY INTIIND 1O
(ajeor390[3

‘()a1981U190[3 0 juammd 9)BUIPIO0D 03 JUSLIND @I00D DOA INIIIND 1D
(areor 39018 (I1‘0‘0) IudLIND [eULIOU JUSLIND TYINION LNATIND 1D
Oajeo39018 (1 ‘0‘0‘0) yuLLIND $9]RUIPIOOD 3INJX3] JUSLIND) SAYIO0D TINLXAL INTIIND 1O
()ajeor300[3

‘()a1a8a1un1an[3 I judumd X9pul I0[0J JURLIND XAANIT INTIIND 1D
()ajeor300[3

‘Oae893upenId (1°0°0°0) UMD I0[0d ATEpPUOIIS JUSIIND AOTOD AIVANODIS INTIND 1D
(areor390[3

‘0ard33upenld (171 ‘1) yudmmd I0[0J JURIIND YOTOD INTIIND 1D

dnoun

puBWWOD 19D dN|eA [eliu] SINQLAY uonduosaqg a|qeliep el

eleq poleIdossy pue sanjep juaiing

Appendix B: State Variables

744

eje(] PIILIDOSSY PUB SAN[BA JUIIND) I0J SA[ARIIRA 9)LIS (penunuod) |-g sjqeL

(auesfooglan[d gAYL IO IULLIMD Sepy a8py OV 4504 19

(auesoogien(s HNYL IO IUSLIMD 319 pirea uonsod wisey dI'TVA NOILLISOd ¥dLSVY INAJIND 1O
uonisod 19)seI yum

(0a3eo[439018 (1 °0°‘0‘0) Iu21IND P1BIOSSE $91UIPIO0d 3IMIXdL, SAYOO0D TANLXAL YALSVY INAIIND 1O
()A3eOT139D[3 uonisod 193ser

‘()a19891un1908 I Juammd UM PIIBIDOSSE XapUT 10]0D) XAANI YALSVY INZYIND 1D

dnoun
PUBWIWOD 19D aNjeA [elu] ANGUAY uonduasaq ajqeliep ajels

745

OpenGL State Variables

SA[QRIIRA 9310)S 199[qO ARIIY X9}I9A ¢-g a|qeL

(0A1891unIen8 IVOTI 19 ARIIE-X9}I9A SI}RUIPIOOD XA Jo odA], AdAL AVIIY XALIIATTO
()A12891u39n3 7 AeIire-xouoa X9}2A 19d $93eUIPIOOD) AZIS AVINY XALIIA 1O
gurpuiq
()Aa12891u3903 0 AeIIe-xoyoA 102[qo Aeire X9119A ONIANIT AVIIY X1LIIA 1D
Oparqeuds(i8 ASTVd 1D Aeire-xolroa d[qeud AeIre X2)1I9A AVIIY XALIIA 1D
dnoip
puBWWO) 19D aNjeA [eniu aInquuy uonduasaq a|qelieA alels
ajels 103lqo Aeday xapap
SO[QRIIBA 9)L1S BIR(] ARIIY X9}IA Z-g9 9|qel
anjea
(AarR8auRn(3 0 - XopUul 11e3sal oAU XAANI LIVLSTY dALLINId 1D
Oparqeuysyis ASTVI 1D - o[qeus }1ejsal AW JAVISTI dAILINI 1D
(ar3aupeD[3 0 Aeire-xa3124 SUIPUI] I3gNg JUILIND ONIANIE YALING AVIEY 1D
AelIe 9)UIPIO0D-2INIX3)
(a1a8upen(8 OTINLXAL 1D Ke1re-xa319A I0J JTUN 3INJIXI) ATV TINLXAL JALLDOV INAITO 1D
puewwo) 199 anjep [emu] dnoun aINquUIY uonduasaq ajqeliep aeis

(a1e1S 103lqO Aediy Xa118A\ Ul papn|dou] J0N) a1elS ejeq Aeduy xaliapn

Appendix B: State Variables

746

Sa[qRLIRA 910)S 193[qO ARITY X9lI9A (penunuod) ¢-g ajqeL

(ps1qeudsis ASTVI 1D ARLIE-X91PA J[qRUS ARIIR 10[00 YIOY AVIIV 4OTOD 1D
Ae1re 93eUIPIOOD

(A13UI0439D13 TINN Aeire-xa31aa 303 3y} 03 I93UT0g YLINIOd AVIIY Q400D D04 1D
S9jeurpIood

(A13393up3e0]8 0 Aeire-xa11aa 80§ usamIaq IpIlS AANLS AVIIY @00 D04 1O
syuauodwod

(0A3a3upenls IVOTI 1D Aeire-xajiaa 9JeUIpI00d 505 JO 2dAT, AdAL AVIIY QY000 DOd 19
d[qeud

Opa1qeuqsiis ASTVI 1D AeRIIe-Xa119A Ael1re 91eUIPIO0D 304 AVIIV Q400D D01 19
Aeire

(ArUIO 419018 TINN Aeire-xa}iaa [RUWLIOU 3} 0} I2}UT0] YAINIOd AVIdY TYIWION 19

()Aa1R891uens 0 AeIIe-X9}IA S[EULIOU U99M1d(] PG AATLLS AVIAY TVINION 1D
S9jeurpIood

(0A3aupenls IVOTI 1D Aeire-xajiaa [ewiou jo adA4J, AdAL AVIIV TVIAON 19

Oparqeugsis ASTVI 1D Aeire-xayoa d[qeud Aeire [eULION AVIIV TVINMON 1D

(a1UIO 39013 TINN AelIe-x9319a ARIIE X91I9A 39U} 0} I9IUIOJ YAINIOd AVHIV XALIIA 1D

()A1891un19n3 0 Aelre-xs1IoA SIOI}IAA UM APIIIS AAMILS AVIIY XALYIA 1O

dnoun

PUBLIWOD 19D anjeA [eniu| aInquiy uonduasaq a|qenen ajels

747

OpenGL State Variables

Sa[qelIeA 93e)S 103[qO AvITY XOMIA

(panupuod) ¢-g alqeL

()aragayupian|d LVOTI 1D Aeire-xa31aa $SIDIPUT 10[0D JO 2dA[, AdAL AVIIY XAANI 1D

Oparqeuqs(is dSTVA 1D ABLIE-X2}9A d[qeUD ABIIR XopUI-I0[0) AVIIY XAANI 1D

Aeire 10100 AALINIOd

(Ar3UIOg19D[3 TINN Aelre-xo32a AIepuodss ayj 03 123ulod TAVHIV YOTOD AIYANODEIS 19

SIO[0D HANLS

()a19893up3on)8 0 Aelie-x9}19A AIBPUOIRS UIIMIDQ dPIIIS TAVIIV IOTOD AYVANODIS 1O
syuauodwod

(0ARSNUMPDIS IVOTL 1D Aelre-xa)pa 10[0d A1epuodds jo odAL AdAL AVIMY YOTOD AYVANOIIS 1D
X3319A 19d syusuodwod

()a1a891upan(3 ¢ Aelre-xa3a 10102 A1BpUODDS AZIS AVIIV 40100 AIVANOIIS 1D
d[qeud

(parqeudsyid ASTVI 1D Aelie-xa39a Ke1re 1005 A1epuodadg AVIIY 40100 AAVANOODES 1D

(Ar3UI0g312D[3 TINN Aeile-xa32A Aelie I0[00 a3 03 Id3UIO] YIINIOd AVIdY Y0100 19

()A12891ur39013 0 AeIIe-xa}IA SIO[0D UJIMIQ SPHIS AATILS AVEIV 40TO0D 1D

(A8 IVOTI 19 Aerre-xoywa syuauodurod 10700 Jo adAT, AdAL AVIEV 4OTOD 19
X9)19A

()A12891u39013 AeIIe-XoloA 12d syusuodwod 10100 AZIS”AVIEY 4OTOD 19

dnoun
puewwo 18H anjeA |eniuj Siquuy uonduosaq S|qeleA ajels

Appendix B: State Variables

748

Sa[qelIeA 91e1S 109[qO AvITy X9l

(penunuod) g-g ajqel

(AIQIIVX21IA39D[3
(AIQIIVX21IA19D[3
OAIqUIIVXIA D[S

(AIqUIYX2}I9AD3

()A13UIOJ39D3

()A19391u39n3

()Aa19391u39n8

()A19391up39n3

(parqeudsyid
(ar3urog3190[3

()A1891un19n3

IVOTd 19
0

14

ASTVL 1D

TINN

IVOTL 19

ASTVL 1D
TINN

ARITR-X31I9A
ARITR-X1I9A
AeIIe-X91I9A

AeITe-X9)IaoA

AeIre-Xa9)IaA

AeIre-Xa9)Ia9A

AeIre-Xo9)Ia9A

AeIre-xa1IaA

AeIIe-X91I9A

AeI1re-xa1roA

AeITe-X91I9A

3dA3 Aerre que X9319A
ApIIS AeIIR qLI}IE XOI9A
9718 Aelle qII}}e X9MIA
J[qreuD ArIIe qLI}IE XO1I9A

AelIe 3]eUIpIood
-9IN)X9} A} 0} IIUIO]

$9}RUIPIOOD
2IN3X9} UM 2PIIS

$91eUIPIOOD
91n3x9} Jo adA],

JUd WD
19d $93RUIPIOOD 2INIXI],

d[qeua
AeIIR 91RUIPIOOI-2INIXI],

AelIe Xapur a3} 03 I91UIO]

sadIpUl
I010D U2IMI3q 3P}

AdAL AVIIY RLLY XALIIA 1D
AANLS AVIIV 9IILLY XAIIdA 19
AZIS AVIdY dINLLY XALI4IA 19
AITIVNT AVIIY 9IALLY XALIdA 1D

YAINIOd AVIIY QY000 TNLXAL 1D

AANLS AVIIY QI00D dINLXAL 1D

AdAL AVIIY QY4000 TINIXAL 1D

AZIS AVIIV QI00D dINLXAL 1D

AVIIY QI00D TINLXAL 1D
YAINIOd AVIY XAANI 1D

AANLS AVIIV XAANI 19

puewwo) 19H

anjeA eniuj

dnoun
ainquny

uonduoasag

a|qenen ajels

749

OpenGL State Variables

Sa[qelIeA 93e)S 103[qO AvITY XOMIA (panunuod) g-g ajqel

(argaunpan[d 0 Aewre-xaypA durpuiq 12jynq Leire xapuj ONIANII ILLING AVIIY XAANIT 1D
(a1891up190]3 0 Aewre-xoyaa Juipuiq 1anqg Aerre 10[0D ONIANIL YLLINT AVIIY IOTOD 1D
Surpuiq
()ar8a3upens 0 Aeire-xo}aa 1yNg Aeire [euoN ONIANIE YIIING AVIIV TYINION 1D
()a1R891unen]8 0 Aeure-xopea 3urpulq Iogyng Aelie Xa3dA ONIANIE YLLING AVIEY XALIIA 1O
(a1891un190]3 0 Aeire-xoyoa Surpuiq 1agyng juann) ONIANIT JILINT AVIIV 1O
Ae1re
(aruI0 3903 TINN Aeire-xoyea Se3-93pa Y3 0} I93UI0] YAINIOd AVINY OVIL 4501 19
()A19391un39n3 0 Aeire-xaypA s3e[J 98pa UIMI] IPLIS AANLS AVIIY OV 459 19
Oparqeugsyis 4SIVI 1D Aeire-Xayea a[qeus Aexire Jefy 38py AVIIY OV 4504 1O
()23u10g
qUIIVXIHIARDIS TINN Aeire-xoypA mjutod Aerre qupe xo3aA YHINIOd AVYYY dIYLLY XALIIA 1O
sanjea
13891Ul paIdAUOIUN
0AIQUIYXAMIAIOIS ISTVI 1D Aelie-xajioa sey Aeire quije Xo3oA YHOLLNI AVIYY GRLLY XALIIA 1O
pazijeuriou dIZTTVINION
0AIQUIYXAMIAIROIS dSTVI 1D Aelie-xa}ioa Ae1re quIIe X911\ TAVIIY LLY XALIIA IO
dnoun
puewwWo) 199 anjeA (e amnquny uonduosag a|qelieA a1elS

Appendix B: State Variables

750

Sa[qeLIRA 9)0)S 103[qO ARITY X9MIdA (panunuod) g-g ajqel

gurpuiq
()A12893u390]8 0 Aeire-xolaa 139[qo Aelre X119 JUSLIND ONIANIE AVIIY XALITA O
Surpuiq RpNq ONIANIG
(AIQUIIIVX1I9A19D[S 0 Aelre-xo1mwA Ae1re aInqrrye Xa}oA AIANT AVILY AIALLY XALIdA 1D
gurpuiq
()a13891u390713 0 Aere-xayoa 1yNq Aelre Juaw_[g ONIANIE YHIINT AVIIY INAWNATT 1D
Surpuiq RpNq ONIANIG
(a3a3upen8 0 Aeire-xa119a Ke1re 21eUIpI00d-30] AN AVIIY 00D DO 19
Surpuiq ynq ONIANIT ga44nd
(ARSaURPO3 0 Aeire-xa3eA Ae1re 10[00 A1epU0ddg TAVINY 4OTOO AYVANODES 1D
Suipuiq ONIANIG
(A189unPO3 0 Aeire-xapeA 1yyNq Aeire e[y a8py MIAING AVIEY OV 495dd 1D
Surpuiq 1L_yNq ONIANIG
()A19891u190[8 0 Aeie-xayea Aenre 9jeUIPIOOd-dINIXAL, YALING AVIAY AQIOOD TINLXAL 1O
dnoun
puewwo) H anjeA [emu| aInqupy uonduosaq s|qeleA ajels

751

OpenGL State Variables

SIQeITEA 91835 193[qO I9HINg Xa1IA v-g alqeL

()ALRIWeRIRJIPNGID]S

()ALRIWeIRJIIPNGIDD]S
(aRjUIOJIdHNGID]S

()AnRIWeIRJIINGID[S

()ALRIWeIRJIPNGID]S
()ALRIWeRIRJIDPNGIO]S
()ArRloWeIRJIINGIO3

()ArRloWweIR JIDINGID]3

0
TINN
ASTVL 1D

0

ALTAM avad 19
MVId DILVIS 1D
0

a8uer
1RyNnqg paddew jo 371§

aduer
Ryng paddew jo 31e)g

1jurod 1Ryng padde
Seqj dewr 13Ing

s3eyy
$S9J0® I9JJNQ PIPUAIXY

Se[J ssa0oe Iopng
uryed adesn apng

9ZIs viep I2png

HIONAT dVIN dd41nd 19

JASLIO dVIN YELLING 1D
YALNIOd dYIN ¥TIANGd 1D
AdddVIN ddLIngd 19

SOVTI SSIDOV ¥dLing 19
SSADOV YIIINT 1D
4OvVsSN ydLIng 19

AZIS YALING 1D

puewwo) 199

anjeA |enlu]

dnoun
gy

uonduoasaqg

a|qelieA ajels

Appendix B: State Variables

752

SI[QRIIEA 918} UOTIRULIOJSURI],

S-9 9lqeL

()a19893upenl3 I — urod Yoels Xmew 10[00 HIJAA MOVIS XILLVIN 4OTOD 1D

()A1e0r 139013 1 11odmata 1ej pue 1eau d3uel yada(g AONVY HLdAd 1D

()A12891u3903 — 110dMITA JURIXD puUe UISIIO 310dMIIA LIOIMAIATO
sadLIjRW

(areor130913 Anuap] — 2Injx9) pasodsuen Jo yoeis XTILVIN 2INLXAL d4SOdSNVIL 1D

(Are0[19D[3 Amuap] — YOr}S XIRUW 3INIX3], XTIV TINLXAL 1D
saomeur uondafoid

(areor130913 Anuap] - pasodsuen; jo YoelS XTILVIN NOILOA[Odd ISOISNVIL 1O

(areor139913 Anusp] — Yorls XIew uondafoig XLV NOLLOA(0dd 1D
SIOLIRU MITA[IPOUL

(areor130913 Amuap] - pasodsuen; o Yoels XTIV MAIATIAOW ISOdSNVIL 1D

(areor30013 Amuapy - joels X1Ijell MIIAJapPOJN XTILVIN MATATIAONW 19
sadLIj W

(Are0[19013 Anuap] — 10[0d pasodsueiy Jo Yorig XTLLVIN 4OTOO dSOdSNVIL 19

(areo[139918 Amuapy - Joels XInewr I010D XMLV 4OTOD 1D

dnoun
puewwo) 18H anjeA jeniu] ainquy uonduosaqg d|qelieA aiels

uoljewiojsue.lj

753

OpenGL State Variables

sa[gerie) 9} UONRWIOJSURI], (panunuod) g-g ajqel

d1qeu pa[qeus (1918313 pue ('E UOISIdA UT IANVId dI'TD

Ops1gqeuqsiid ASTVA 1D /wiojsuer; suerd urddrp 1esn yy 19 Sunerdsy) IHONVISIA dITD 1O

SJUSIDIJR0D (1918313 pUE ('E UOISIDA UT IANVId dI'TD

(suergdiD19n8 (0'0‘0‘0) woysuen suerd-gurddrp 1950 15 Suwerdar) IDNVISIA dI'TO 1O
drqeud Jjo/uo

Ops1qeudsiid ASTVA 1D /wiIojsuen) SurTedSaI [PWLIOU JUSLINY) TYIWION ATVISTI 19D
dIqeud JJo/uo uonezijeuwiou

Ops1qeuqsiid ASTVA 1D /wiIojsuen) [eWIOU JUSLIND AZITVINAON 1D

(0A3a1upenIs MAIATIAOW 1D WIojsuer} dpouwl XLIjew JUdIIND AAOW XTIIVIN 1D

()A19391UT19D[3 1 — 13urod Yorls XU 9INJX3], HLJAIA MOVLS TINLXAL 1D
1oyurod

()a19831u19D713 1 — YOr)S XIIJew Uondd(o1ig HLJAd MOVIS NOLLOA[O¥d 1D
1oyurod

()a19831u19D73 1 — 3OS XIBW MIIA[SPOIN HLJAA MOVIS MAIATIAOW 1O

dnoun
puewwo) 199 anjeA [ellu] anquny uonduassqg 9|qelieA ajels

Appendix B: State Variables

754

s9[qetie) 3els SurIo[o) 9-g 9|qeL

dIqeud
(OARSaURPDIE AINO AIAXIA 1D /I91Ng-10[0d Surdwe 10102 peay YOTOD AVAL dNVID 1D
d[qeud YOT10D
0ARRZURPDIS XNINO IXIL 1D /Bpng-10[0d 10[0d Jurduwrep juswider] ~ININOVIL JAVIO 19
d[qeud YOT10D
()a19893upI9D[3 ANAL 1O /Sunysi 10705 Surdured xa3I9A TXALYIA JAVIO 1D
()A19823un9n8 HIOOWS 1D Sunysy Sunyas ()]9pONEPeYS[3 TIAOW 4AVHS 1D
(ps1qeugsis ASTVI 1O 9lqeus/30§ PS[QeUs SI Wns 10[0D JI SNi], NS AOTOD 1D

H1d4d uonemd[ed 305

(ARSaURPDIE TINANOVIL 1D 803 10¥ $31RUIPIOOD JO ADINOS D4S WI00D HOL 1D
(Opa1qeugsiis ASTVI 1D dlqeus/30y palqeus 305 31 ani], D04 1D
()a19393u3eD]8 dX3 1D 303 spowr 304 AAOW D04 1D
(Areo[139D18 01 303 pua 30y Ieaury aNd D04 19
0A¥eO[139D]3 00 3oy jre1s S0J Ieaur] IAVIS D04 1D
(AreO[139D18 01 803 Aysuap 3oy [enusuodxy ALISNAA 041D
(areor 30018 0 gog xaput 304 XAANI D04 1D
(areor30018 0‘0'0°0) 303 10102 309 YOT0D HOI 1O

dnoun
puewwo) j8H anjep |eniu| aInquuy uonduaseq s|qeliep aels

Buuojo)

755

OpenGL State Variables

sd[qerreA dye)s SuNySIy ,-g ?|qeL

()aues[oog1a9[3 ASTVI 1D Sunysy [BI0] ST IOMIIA JAMAIA TVOOT TAAOW IHOIT 1O
Oareo[39018 (0'T “C°0 “C°0 ‘C°0) Sunysiy 100D 9UADS JUAIqUIY INAIGAY THAOW LHOIT 1O
(AJTeLIRIRNI9D[S 00 Sunysi [eusjew jo jusuodxa remdads SSANINIHS 19
OajrerdIeAROIE (0T ‘00 ‘00 ‘0°0) Sunysy I0[0D TRIIDIRUL JAISSTUIY NOISSIAA 19
OajrenIeN3e0I8 (0T ‘00 ‘0°0 ‘0'0) Sunysiy I10[09 TerRYeW 1R[NddS AVINOIAIS 1O
OaJrenaIe9OI8 (0'T ‘8°0 ‘8°0 ‘8°0) SunysI I0[0D [erId)ew ISNJJI ASNIIIa 1D
Oagrer1eNI9D18 (0T ‘20 ‘20 ‘T70) Sunysi 1070 TeLId}eW JUSIqUIY INAIIAV 1O
MOVE ANV Sunpen
()a19331unan]s TINOW 1D Sunysn 10102 Aq Pa123JJe (5)3d'] AOVA TVIIALVIN 4O 10D 19D
ASNAIIA ANV I0[0d JULIND
(a19891u3en(3 TINAIGAY 1D Sunys Suppen sonuadoid [euLleN YAIAAVIVA TVIIALYIN 4OTOD 19
Oparqeuds]is ASTVA 1D Sunysdi ps[qeus st undeI} I0[0J JI ani], TVIIAIVIN JOT0D 1D
d[qeus/
(Oparqeugsis ASTVI 1D Sunysip pa[qeus st 3uny3iy J1 anuy, ONILHOIT 1D
dnoun
puewwo) 199 an|eA [elHu] dNqUIY uonduaseq a|qeuen ajels

"SON[RA [eRIUI 10] €-C pUR [-S SI[QRL, OS] 99S

Bunybiy

Appendix B: State Variables

756

sa[qetreA 21els Sunysry (panunuod) ;-9 a|qel

(AJTeIIRIBNISOIS I‘T‘0 Sunysy X9pUI-I0[0D 10§ _u:w@: ww w_w SAXAANI YOTOD 1D
dIqeus/
Oparqeugsyis ASTVI 1D Sunysy parqeus 7 3ysSif J1 anif, ILHOIT 19
0ARUSITIeDI3 0°08T 3unys 114811 Jo a18ue 1ySimods ZI0LND™LOdS 1D
0anysSrpen(s 00 Sunysi 13y3y jo yuduodxa Jysmods INANOIXT LOdS 19
0ApySIpen[3 (0'1- ‘00 ‘0°0) Sunysy 13y31] Jo uonda1Ip Iy3ipods NOLLOTIIA LOdS 19
0apysrpeols 00 Sunydi I10)dej UOHENUD}E dHRIPEND NOILYNNALLY DILVYAYNO 19
0anySrpen(s 00 3unysi 10308} UOHENU}IE 1B3UT] NOLLVANALLY 4VANIT 1D
0anysSrpen(s 0T Sunysy 10)0ej UOTIENUS}IE JURISUOD) NOILVANALLY INVISNOD 19
0Apydrpenid (00 ‘0T ‘00 ‘0°0) Sunysdi 13431] JO UONISOJ NOILISOd 19
0anysSrpen(s — Sunysy 1 3Y831[Jo Aysudyut 1e[ndads AVINDAIS 1D
0ApySIPen[3 — Sunysiy 134811 Jo Aysuajur asnyiq ASNAAIA 1D
0ApysSrpenid (0°T ‘0°0 ‘00 '0°0) Sunysi 1 3y31] Jo AJIsuaiul JUSIqUIY INAIFAY 1D
AOTOO TOYLNOD
()Aa181upPn3 TIIONIS 1D Sunysy [013U0D 10[0D) TMOTOD THAOW LHOIT 1D
(aues[oogidnl3 ASTVA 1D Sunysy Sunysi papis-om as) AAIS OML TIAOW LHOIT 1D
dnoun
puewwo) 189 anjep |eniu] ANqUNY uonduasaq s|qeuen ajeis

757

OpenGL State Variables

