R ———

_ Recommended sections for a first reading: 8.1 and 8.2 U

8.1
INTRODUCTION

A simulation that has any random aspects at all must involve sampling, or generat-
ing, Bna.o:_ variates from probability distributions. As in Chap. 7, we use the phrase
mgn_,»nm.m »._.anB variate™ to refer to the activity of obtaining an observation on
Mﬂmﬂu.””n__mﬁwﬂo: of) m._.wnmoB variable from the desired distribution. These distri-
e.g nxbOnM&M.__ fetiecasa :.a:: of fitting some appropriate distributional form,
Emm.nw%.on o %MHEBMH or m.o_mm.ozu to observed data, as discussed in Chap. 6. In
B iihe fhe valucs OM”M at a distribution has already been specified somehow (in-
erate random variates sm%ﬂwsm&@, and we address the issue of how we can gen-
example, the queuei : . &mﬁc.::os in order to run the simulation model. For
- € queueing-type models discussed in Sec. 1.4 and Chap. 2 required ger-

eration of interarri S
the inventory .”M:QMW_ ow:MmMaawwon times to drive the simulation through time, and
times when a demand occurred. needed randomly generated demand sizes at the

There are usually several alternatiye

1 variates from a given distribution, gorithms that can be used for gen

choosing which algorithm to use Ewwﬂwohm““»ﬂoa_ shouldie 8353& y
these different factors often conflict with simulation study. Hmpmea_w _
hich algorithm to use 1 each other, so the analyst’s judg-
ment of W g 18€ must involve a number of tradeoffs. All we can do
here is raise some o.m the pertinent questions. :

The first issue is exactness. We feel that, if possible, one should use an algo-
rithm that results in B:.ao.E variates with exactly the desired distribution, within the
c=m<oam2n external limitations of machine accuracy and exactness of the U(0, 1)
S:mo:_-scagn generator. Efficient and exact algorithms are now available for all
of the commonly used distributions, obviating the need to consider any older, ap-
proximate methods. [Many of these approximations, e.g., the well-known technique:
of obtaining a “normal” random variate as 6 less than the sum of 12 U(0, 1) random
variates, are based on the central limit theorem.] On the other hand, the practitioner
may argue that a specified distribution is really only an approximation to reality
anyway, SO that an approximate generation method should suffice; since this de-
pends on the situation and is often difficult to quantify, we still prefer to use an exact
method-

Given that we have a choice, then, of alternative exact algorithms, we would
clearly like to use one that is efficient, in terms of both storage space and execution
time. Some algorithms require storage of a large number of constants or of large ta-
bles, which could prove troublesome or at least inconvenient. As for execution time,
there are really two factors. Obviously, we hope that we can accomplish the gener-
ation of each random variate in a small amount of time; this is called the marginal

execution time. Second, some algorithms have to do some initial computing to spec-

ify constants or tables that depend on the particular distribution and parameters; the

time required to do this is called the setup time. In most simulations, we shall be

generating a large number of random variates froma given distribution, so that mar-

ginal execution time is likely to be more important than setup time. If the parame-

ters of a distribution change often or randomly during the course of the simulation,

however, setup time could become an important consideration. ’

~ Asomewhat subjective issue in choosing an algorithm is its overall complexity,

ncluding conceptual as well as implementational factors. O_.ﬁ must ask swoﬁ.nn the
Potential gain in efficiency that might be experienced by using a more moBE_own&
algorithm is worth the extra effort to understand and implement it. This issue mwﬂca
be considered relative to the purpose in implementing & Bo&oa for HwbaoB..ﬁﬂwnn
generation; a more efficient but more complex algorithm might be appropriate for

Use as permane ut not for a “one-time” simulation model.
i e hnical nature. Some algorithms rely

Finally, issues of a more te¢ thmeies
on a moEoM Mwommzﬂawh Mnm,w._w”ww from distributions other than U(O. 1), which is s ,W
desirable, other things being equal. Another technical issue 1S thata given M_H%ong -
May be efficient for some parameter values but costly for others. We Mm& Ewoa .
haye algorithms that are efficient for all parameter values A.moEon.Bn.m c: s ust-
"ess of the algorithm); see Devroye (1988). One last HmnvEnw_ momwﬁ wm HMM<£~ L o
Vant to use certain kinds of variance-reduction techniques Eaewwva ams e i
(less variable) estimates (see Chap- 11 and also Chaps. 10 and 12). T
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ommon random numbers and antithey;
. 0, 1) input random variateg

. of the basic UQ, 1 e s
_NM_ ﬁmv ander study, and this synchronization is moy
m meom of random-variate generation algorithms. In pap; "
sform approach can be very Al o mm.,n::m::m the
T onke reduction; Sec. 8.2.1 treats this poing More

C varj.
USeq in
= ommE

used variance-reduction techniques (¢

ates) require synchron
the simulation of the sy
accomplished for certain
lar, the general inverse-tran
desired synchronization and Vv
precisely.

There are a number of 83@8:032« references on random-variate generatioy

x : . Devroye (1986), Fishman (1996), Gentle 2003
MMH““M o_ww_m.m__uwﬂwhuwam% V_o_smo._ (1987). H:Qn are also m,o<2m_ 83@:@ Eom._
ages that provide good capabilities for generating &:aoa variates from a wide ya;.
ety of distributions, such as the IMSL routines [Visual Numerics, Inc. (2004)] 4, q
the C codes in secs. 7.2 and 7.3 of Press et al. (1992).

The remainder of this chapter is organized as E:oim. In mwo. m..w We survey the
most important general approaches for Baaoaéu.:mﬁ generation, including exam.
ples and general discussions of the relative Em:,.m of the <E._o=..f_ approaches. I
Secs. 8.3 and 8.4 we present algorithms for generating random variates from partic-
ular continuous and discrete distributions that have been found useful in simulation,
Finally, in Secs. 8.5 and 8.6 we discuss two more specialized topics: generating
correlated random variates and generating realizations of both stationary and non-
stationary arrival processes.

8.2
GENERAL APPROACHES TO GENERATING
RANDOM VARIATES

There are many techniques for generating random variates, and the particular
algorithm used must, of course, depend on the distribution from which we wish to
generate; however, nearly all these techniques can be classified according to their
theoretical basis. In this section we discuss these general approaches.

8.2.1 Inverse Transform

Suppose E.E we &ms to generate a random variate X that is continuous (see Sec. 4.)
and has aﬁﬁc::o.: function F that is continuous and strictly increasing whep
0 < F(x) < 1. [This Gwmam thatif x, < x,and 0 < F(x,) = F(x,) < 1, then in fact
M.Ma_v M F(x).] W& F~" denote the inverse of the function F. Then an algorithm 3_“
nerating a random variate X having distributi i i § (recd

that ~ is read “is distributed as”): . e
1. Generate U ~ U(0, 1).

2. Rewm X = F (1),

Note that F~'(U) will alwa

: is
[0, 1]. Figure 8.1 illustrate Y8 be defined, since 0 < {7 < | and the range of F!

S the algorithm graphically, where the random Variabl®
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lic
&

FIGURE 8.1
§<2mm-:=:£.o:: method for continuous random variables.

corresponding to this distribution function can take on either positive or negative
values; the particular value of U determines which will be the case. In the figure, the
random number U, results in the positive random variate X 1» while the random num-
ber U, leads to the negative variate X,.

To show that the value X returned by the above algorithm, called the general
inverse-transform method, has the desired distribution F, we must show that for any
real number x, P(X = x) = F(x). Since F is invertible, we have

PIX=x)=PF'(U)=<x) =PU = Fx)) = Fx)

where the last equality follows since U ~ U(0, 1) and 0 = F(x) = 1. (See the dis-
cussion of the uniform distribution in Sec. 6.2.2.)

EXAMPLE 8.1. Let X have the exponential distribution with mean 8 (see Sec. 6.2.2).
The distribution function is

Ll=entEa Sifie=10
E:to oBQ‘imm

soto find F ', we set u = F(x) and solve for x to obtain

F'w=-Bln(-u

ariate, we first generate a U ~ U(0, 1) and then
Uinstead of | — U, since 1 — U and
ubtraction.] V= -V

Thus, to generate the desired random v
letX = —BIn U. [It is possible in this case to use
U have the same U(0, 1) distribution. This saves a3

1 — Uby U for the sake of a nﬁ..rmnw Ew:wa
| — U by U in situations like HEm results in
U's. rather than positive correlation. Also, it
generation algorithm it can

. H.: the above example, we replaced
84 in efficiency. However, replacing
"°gative correlation of the X’s with the )
SN0t true that wherever a “1 — U’ appears in a variate-
"% replaced by a “U,” as illustrated in Sec. 8.3.15.
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dity in the continuous case wag g

als0 a strong intuitive appeal. The awﬁme
ity

Hawmﬁ.f
§ W 3 ﬁ Q 50 % Pﬂm
ot to observe alot ot vana es, and where f(y i 8
M oolyafew Fig. 8.2b shows the density function aSM,.
eibull &.migmnw_ with shape parameter & = 1.5 and moaw_m parameter 8 = ¢ s OM
, _mam. 2.2 for definition of this distribution), and we would expect that many s

‘ and x = 5, but not many betwegy, _w

S varates would fall between, 58 X = Z &KL :
and Magmwnmnmﬁd 8.2a shows the corresponding distribution function, F(x). Since

S e < tributi ion [that 1s, f(x) = F'(
densit derivative of the distribution function [th ), we
ty is the derl s function” of F(x); that is, f(x) is the slope of F at x, dﬂ_

view f(x) as the s ;
P ~.mm.w\,.,...A nwo.ﬂ steeply for values of X where f(x) is large (e.g., for x between 2 ang 5)

and, conversely, F is relatively flat in regions where f(x) 1s small (e.g., for x betwee,
13 and 16). Now, the inverse-transform method says to take the random number
which should be evenly (uniformly) spread on the interval ,8. : on the vertical eam

of the plot for F(x), and “read across and down.” More U’s will ::. the steep part

of F(x) than the flat parts, thus concentrating the X's under those regions where F(y)

is steep—which are precisely those regions where \@ is high. The intervg)

[0.25, 0.30] on the vertical axis in Fig. 8.2a should contain about 5 percent of the

U’s, which lead to X's in the relatively narrow region [2.6, 3.0] on the x axis; thus,

about 5 percent of the X’s will be in this region. On the other hand, the interval

[0.93, 0.98] on the vertical axis, which is the same size as [0.25, 0.30] and thus con-

tains about 5 percent of the U’s as well, leads to X’s in the large interval [11.5, 14.9]

on the x axis; here we will also find about 5 percent of the X's, but spread out
sparsely over a much larger interval.

Figure 8.3 shows the algorithm in action, with 50 X’s being generated (using the
random-number generator from App. 7A with stream 1). The U’s are plotted on the
vertical axis of Fig. 8.3a, and the X’s corresponding to them are obtained by fol-
lowing the dashed lines across and down. Note that the U’s on the vertical axis are
fairly evenly spread, but the X’s on the horizontal axis are indeed more dense where
the density function f(x) is high, and become more spread out where f(x) is low.
Thus, the inverse-transform method essentially deforms the uniform distribution of
the Us to result in a distribution of the X’s in accordance with the desired density.

: ..;m inverse-transform method can also be used when X is discrete. Here the
distribution function is

h f(x) is hi

4]

F)=PX=x=> px)
where p(x,) is the probability mass function ¥l
: px) = P(X = x)

We assume that X can take on onl
irma algorithm s as follows:

nera Q U, 1).
the smallest positive integer / such that U < F (x,), and return X = 11

y the values x,, x,, ... where x; < X i

i

0 2630 5 0 115 14 X
(a)

f)

0.15

0.10

0.05

5 10 15 *

(b)

FIGURE 8.2

(a) Intervals for U and X, inverse ﬁswm.o
(b) density for Weibull(1.5, 6) dismiEEEe

rm for Weibull(1.5, 6) distribution;
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Fx)

fx)
0.15 -

0.10 -

0.05 f

(b)

FIGURE 8.3
(@) Sample of 50 U’s and X's

tion; (b) density for Weibull(] 5 g 5o ">

for Wei S
IS e S biaibull(1.5,.6) distribu

——— e
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X1 X2 X3 Xy x5 = x

FIGURE 8.4
Inverse-transform method for discrete random variables.

Figure 8.4 illustrates the method, where we generate X' = Xx, in this case. Although
this algorithm might not seem related to the inverse-transform method for continu-
ous random variates, the similarity between Figs. 8.1 and 8.4 is apparent.

To verify that the discrete inverse-transform method is valid, we need to show
that P(X = x) = p(x,) foralli. Fori = 1, we getX = x, if and only ifU=Fx) =
p(x)), since we have arranged the x;’s in increasing order. Since U ~ U(0, 1),
P(X = x,) = p(x,), as desired. For i = 2, the algorithm sets X = x, if and only if

= F(x,), since the i chosen by the algorithm is the smallest positive in-
vat U = F(x,). Further, since U ~ U(0, Dand0 = Flx,_,) < F(x) = 1,

P(X = x) = P[F(x,_,) < U = F(x)] = F(x) = F(x_)) = Px)
EXAMPLE 8.2. Recall the inventory example of Sec. 1.5, where Ea. %Bmua-m.ﬁ.n. _.Bﬂ-
dom variable X is discrete, taking on the values 1,2, 3,4 with respective probabilities ¢,
L1, L the distribution function F is given in Fig. 4.2. To generate an X, first generate
U~ U0, 1) and set X to either 1, 2, 3, or 4, depending on the subinterval in [0, 1] into
. | —q.afd <!l letX=2ift<U=3 let
ss_%cs_w.:mm,gs:axl._?Aci.g-._“ ,.

X = 3; finally, if § < U, letX = 4.

Although both Fig. 8.4 and Example 8.2 deal with discrete random variables
taking on only finitely many values, the discrete 5<mau.-a.§w.moé method can also
Wm used directly as stated to generate random variates with an infinite range, €.g.. the

oisson, geometric, or negative binomial. . . ;

The ﬁm:wﬁﬁw 5<2mm-m§mmonﬂ method, when written as in m.xm_de m.mm is MM...
ally quite intuitive. We split the unit interval into contiguous mcw_.zﬂmﬁ am 0 éﬁw
P(x)), p(x,), . . . and assign X according (o whichever of these subintervais contains

the gencrated U, For example, U will fall in the secOn¢ m__wsaﬂ»__wﬁ% ﬂmg_w%%
P(x,), in which case we let X = x,. The efficiency ..vm the w_w%—_.._ implest svn_.omo_u
how we look for the subinterval that contains & m_<a_..=Q.Q An mQ vwE iuwwu case
Would be to start at the left and move up: first check whethef & =721

Wereturn X = x,. If U > p(x)): check whether U = plx,) + plx;), inwhich case we

Teturn X = ., etc, The number of comparisons neadsdto detemimerd Sl uSEEEe
2 €10k
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430 GENERATING RANDOM VARIATES

thus dependent on U and the p(x)'s. If, for example, the first several p(x)’s gra

small, the probability is high that we will have to do a large number of n.osvw:. very
before the algorithm terminates. This suggests that we might be well adviseq 683
form this search in a more sophisticated manner, using appropriate sortin ot
searching techniques from the computer-science literature [see, for example m: and
(1998b)]. One simple improvement would be first to check whether [/ :2. i o
widest subinterval, since this would be the single most-likely case. If not, we % g
check the second widest subinterval, etc. This method would be vw:»namaz _._cc_a
when some p(x,) values are considerably greater than others and there are map wm.?_
see Prob. 8.2 for more on this idea. See also Chen and Asau (1974) and Emramw s
Moore (1984) for very efficient search methods using the idea of indexing. e

Generalization, Advantages, and Disadvantages
of the Inverse-Transform Method

_woz.. the continuous and discrete versions of the inverse-transform method ¢
be combined, at least formally, into the more general form 3

X = min{x: F(x) = U}
which has the added advantage of being valid for distributions that are mixed. i
:B.,.n both 2.5:.::0& and discrete components, as well as for continuous a;_%_
bution ?_._.n:o.um with flat spots. To check that the above is valid in the ao__,__zz,o ;
case, note in Fig. 8.1 that the set {x: F(x) = U, }is the interval [X , %), which has e
imum X,. In .E.n discrete case, we see in Fig. 8.4 that {x: \.._ﬁ x) u U} =[x :M_w
which has minimum x,. Figure 8.5 shows a mixed distribution with Ea. _ram

Xe x 0

FIGURE 8.5
Inverse-transform method for a mixed distribution.

Xy x5 i X
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&%o:::&:.mm m_alw m.m: Spot; in this case the associated random variable X should
satisfy P(X = w_v =y — Wy (jump atx), P(X = x;) = u} — u, (jump at x,), and

P(xo = X = x;) = 0 (flat spot between Xy and x;). For the continuous component,

X = min{x: F(x) = U} = min[X,, ®) = X,
as expected. For the jump discontinuity at x,, we get, foru, = U, = u|,
X = min{x: F(x) = U} = min[x,, ®) = x,

which will occur with probability u; = u,, as desired; the jump at x, is similar. For
the flat spot, we will generate a variate X in (x,, x;) only if we generate a random
qumber U that is equal to u,; as U represents a continuous random variable, this
oceurs with probability 0, although in practice the finite accuracy of the generated
random number U could result in U = u,. Thus, this more general statement of the
inverse-transform method handles any continuous, discrete, or mixed distribution.
How it is actually implemented, though, will of course depend heavily on the dis-
tribution desired.

Let us now consider some general advantages and disadvantages of the inverse-
transform method in both the continuous and discrete cases. One possible impedi-
ment to use of this method in the continuous case is the need to evaluate F~'(U).
Since we might not be able to-write a formula for F~' in closed form for the desired
distribution (e.g.. the normal and gamma distributions), simple use of the method,
as in Example 8.1, might not be possible. However, even if F~' does not have a sim-
ple closed-form expression, we might be able to use numerical methods, e.g., a
power-series expansion, to evaluate F'. (See, e.g., the discussion in Sec. 8.3 con-
cerning the generation of gamma, normal, and beta random variates.) These numer-
ical methods can yield arbitrary accuracy, so in particular can match the accuracy
inherent in machine roundoff error; in this sense, they are exact for all practical
purposes. However, Devroye (1986, pp. 31-35) points out that it may be difficult to
specify an acceptable stopping rule for some distributions, especially those whose
range is infinite. Kennedy and Gentle (1980, chap. 5) provide a comprehensive sur-
vey of numerical methods for computing distribution functions and their inverses:
see also Abramowitz and Stegun (1964, chap. 26) and Press et al. (1992, chap. 6).
The IMSL library [Visual Numerics, Inc. (2004)] includes routines to compute most
of the common distribution functions and their inverses, using carefully chosen
algorithms. As an alternative to approximating F~! numerically, Marsaglia (1984)
proposes that a function g be found that is “close” to m. 3 _.Ei is nwmw._o..m<£=wnn“
then X is generated as g(¥), where ¥ has a particular n_m.:wc-._o: that is “close” to
U(0, 1). Marsaglia called this method the exact-approximation method [see also

Fishman (1996, pp. 185-187)].
More recently, Hormann
method for constructing a hi ghly a
of continuous distributions. Based
moderate-sized tables for the interpol
dom variates using these tables is then
able in a public-domain library called

and' Leydold (2003) proposed a mnzmﬂ adaptive
ccurate Hermite interpolation for F " in the case
on a one-time Setup, their method v.:a:oom
ation points and coefficients. Generating ran-
very fast. The code for their method is avail-

UNURAN.
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432 GENERATING RANDOM VARIATES

A second potential disadvantage is that for a given distribution the
transform method may not be the fastest way to generate the corresponding
variate; in Secs. 8.3 and 8.4 we discuss the efficiency of alternative algory;
each distribution considered.

Despite these possible drawbacks, there are some important advap
using the inverse-transform method. The first is to facilitate <E.E=om.qna=2.
techniques (see Chap. 11) that rely on inducing correlation between random v, _o_=
ates; examples of such techniques are common random numbers and s..::uww ;
variates. If F, and F, are two distribution functions, then X, = F"'(/ ) anq x ¢

5 '(U,) will be random variates with respective distribution functions f m_.awqf
where U, and U, are random numbers. If U, and U, are .:anuo:anzr_ then Hm
course X, and X, will be independent as well. However, if we let 1/, = U 59
the correlation between X, and X, is made as positive as possible, m:&.EE:m_ .c n:__
1 3 U, (which, recall, is also distributed uniformly over [0, 1]) makes the neu._.r
lation between X, and X, as negative as possible. Thus, the inverse-transfo 4
method induces the strongest correlation (of either sign) between the mn:..w_.m.M__
E:aoa variates, which we hope will propagate through the simulation model t
induce the strongest possible correlation in the output, thereby contributing to EM
,ﬁ_ﬁu,."mm.c_ﬂ the variance-reduction technique. [It is nomm&_a.._:.:‘o,dﬁ to induce
correlation in random variates generated by methods other than the inverse-
Rmum».cﬂ.: method; see Schmeiser and Kachitvichyanukul (1990)]. On a Bﬂ,ﬁ
pragmatic level, inverse transform eases application of variance-reduction tech-
niques since we always need exactly one random number to produce one value of
the desired X. (Other methods to be discussed later may require several random
numbers to obtain a single value of X, or the number of random numbers might it-
.mn: be S:.n_oE. as in the acceptance-rejection method.) This observation is
lmportant since proper implementation for many variance-reduction techniques
requires some sort of synchronization of the input random numbers between dif-
aw_.a:._ stmulation runs. If the inverse-transform technique is used, synchroniza-
tion 1s easier to achieve. -

The second advantage concerns ease of generating from truncated distributions
(see wwn. a.@u? Em continuous case, suppose that we have a density f with corre-
sponding distribution function F. For a < b (with the possibility that @ = —% or
b = +), we define the truncared density B

fx)
) = { F) - Fla)
0 otherwise

mﬁf.n_.mo.
_.m:n_O:..
hms fo;

ages

fas=x=bp

Wwhich has corresponding rruncated distribution function

0 ifx<g
F(x) — F(a) .
33!33 fa=sx<p
1

Mﬂ*m&v =

ifb<yx
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(The discrete 952 is analogous.) Then an algorithm for generating an X having dis-

gribution function F* is as follows:

{. Generate U ~ U, 1).
9, LetV = Fla) + [F(b) — F(a))U.
3, Return X = F~'(V).

We leave 1t as an exercise A.?ov. 8.3) to show that the X defined by this algorithm in-
deed has distribution function F*. Note that the inverse-transform idea is really used
twice: first in step 2 to distnibute V uniformly between F(a) and F(b) and then in step 3
to obtain X. (See Prob. 8.3 for another way to generate X and Prob. 8.4 for a different
truncation, which results in a distribution function that is not the same as F*.)

of
oﬁmm_:u:% the inverse-transform method can be quite useful for generating order
statistics. Suppose that ¥, Y,, .. .. Y, are [ID with common distribution function F
and that fori = 1,2, ..., n, Y, denotes the ith smallest of the ¥,'s. Recall from

Chap. 6 that Y, is called the ith order statistic from a sample o.m size n. ﬂ.Oz._ﬁ sta-
istics have been useful in simulation when one -m. no_._noB.oa with En. ﬂn:m_u_.:qx. or
lifetime, of some system having components subject to ?:E.m. _.m Y, is the lifetime
of the jth component, then Y, is the lifetime of a system consisting of n such com-
ccted in series and Y, is the lifetime of the system if the components
in parallel.] One direct way of generating X' = Y, is first to generate
., Y, with distribution function F, then sort them into 1n-
y set X to the ith value of the ¥'s after sorting. A.E.m method.
ating n separate variates with distribution function F and
an be slow if n is large. As an alternative, we can use the

ponents conn
are connected
n IID variates Y|, Y5, .

creasing order, and finall
however, requires gener
then sorting them, which ¢
following algorithm to generate X = ¥

1. Generate V — beta(i,n — i + 1).
2. Return X = F (V). .
The validity of this algorithm is established in vqo.c. 8.5. Note F_mn step quunmﬁmm
generating from a beta distribution, which Ew_ discuss g_cs.\ in Mnn.. _ ._. s%
sorting is required, and we need to evaluate F " only once; this 1s wmn._n_: MM% 5
vantageous if n is large or evaluating F'is slow. Two __.mﬁonu_.: mvnn_m_ M ﬁ.::nm
generating either the minimum or maximum of the n Y's, where m,nm ; Mn mes
particularly simple. For the minimum, i = 1 and <_= step 1 can be de @nn @._:._

1 — U where U ~ U(0, 1). For the maximum, i = n and we can set ) n
step 1. (See Prob. 8.5 for verification in these two special cases.) _unn aow Muwowmw
erating order statistics, see Ramberg and Tadikamalla (1978), Schmeiser :

1978b), and Schucany (1972).

8.2.2 Composition

nction F from which we
on of other distribution
from the F's more eas-

s when the distribution m:.
as a convex combinati
pe to be able to sample

The composition technique applie
wish to generate can be expressed
functions 7|, F,, . ... We would ho
ily than from the original F.
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Specifically, we assume that for all x, F(x) can be written as
Fx) = > p,F,(x)
j=1

E:aqah..Wo.Mwlm..n_.mzn_ mmn:ﬂ;n&mi_uczo:?:n:o:. g:zocm_._sm
have written this combination as an infinite sum, there may be a k such that P >0
but p;= 0 for j > k, in which case the sum is actually finite.) mn:_ﬁ:n::% if X hag
density f that can be written as
fx) = M.F.h?g
j=1

where the fs are other densities, the method of composition still applies; the djs.
crete case is analogous. The general composition algorithm, then, is as follows:

1. Generate a positive random integer J such that
RS =p] forj=1,2,.
2, Return X with distribution function ¥,

Step 1 can be thought of as choosing the distribution function 7, with probability p
and could be accomplished, for example, by the discrete inverse-transform method.
Given that J = j, generating X in step 2 should be done, of course, independently of
J. By conditioning on the value of J generated in step 1, we can easily see that the

X returned by the algorithm will have distribution function F [see, for example,
Ross (2003, chap. 3)]:

PX<x) = M PX=x|J=jPU=j)=> Fxp = Fx
= =1
moEnnEnm We can give a geometric interpretation to the composition method.
For a continuous random variable X with density f, for example, we might be able
to n::aw .Sn area under f into regions of areas Py Pas - . ., corresponding to the de-
composition of f into its convex-combination qn?nwm:_m:o:. Then we can think of
step 1 as choosing a region and step 2 as generating from the distribution corre-

mvn.:.&:m to the chosen region. The following two examples allow this kind of geo-
metric interpretation.

mx>.=_n._1rm 8.3. The &azzm.m.«vo:mnzn__ (or Laplace) distribution has density f(¥) =
0.5¢ ! for m:,qma x; this density is plotted in Fig. 8.6. From the plot we see that excep!
for the normalizing factor 0.5, f(x) is two exponential densities placed back to back; this
suggests the use of composition. Indeed, we can express the density as

flx) = o.mm.ﬁuﬂs (x) + 0.5¢ .:;:C:
where 7, denotes the indicator function of the set A, defined by

I,(x) = *_ ifx € A
0 otherwise

Hﬂ“ﬁrﬁ.ﬁ“ mmi_ox gambatonon (o= €l wg)(x) and f(x) = e 15 (X both of
S1es, andp, = p, = 0.5. Therefore, we can generate an X with density/®

CHAPTER EIGHT 435

fk
0.5

Area = 0.5 | Area= 0.5

FIGURE 8.6
Double-exponential density.

composition. First generate U, and U, as IID U(0, 1). If U, < 0.5, return X = In U, On
the other hand, if U, > 0.5, return X = —In U,,. Note that we are essentially generating an
exponential random variate with mean 1 and then changing its sign with probability 0.5.
Alternatively, we are generating from the left half of the density in Fig. 8.6 with probabil-
ity equal to the corresponding area (0.5) and from the right half with probability 0.5.

Note that in Example 8.3, step 2 of the general composition algorithm was ac-
complished by means of the inverse-transform method for oxvoznz.:p_ random vari-
ates: this illustrates how different general approaches for generating _.anm_ vari-
ates might be combined. Also, we see that rwo random numbers are required to
generate a single X in this example; in general, we shall need ar Nn.n,q." two S.E_o_.:
numbers to use the composition method. (The reader may find it interesting to
compare Example 8.3 with the inverse-transform method for generating a double-
exponential random variate; see Prab. 8.6.) 2

In Example 8.3 we obtained the representation for ._,. by dividing E.n area below
the density with a vertical line, namely, the ordinate axis. In the following example,

we make a horizontal division instead.
EXAMPLE 8.4. For0 < a < 1, the right-trapezoidal distribution has density

.u+M:|QV». fo=x=1
biu *o o_zn?\an

f dividing the area under

; i think o
(see Fig. 8.7). As suggested by the dashed Lines, We €887 0 R PP B ) can be

£ into a rectangle having area a and a right triangle with area
decomposed as
) = aljg () + (1 = @26 (X)

50 that f,(x) = Io,,(x), which is simply the U(0, 1) n_mzmwm.\_. M.wan%%:ﬂ.w.“%&w%hh
right-triangular density. Clearly, p; = @ and P2 = 1-—a 5 nA - w, so, generate an in-
calls for mm:ﬁ.wz:m U, ~ U@, 1) and checking whether U, = ¢ :

] te
depend ~ U(0, 1), and retum X = U,. If U, > a, however, we must genera
:.%_: EME_.._MWTSEWEM distribution. This can be mn.noam__%mn_ m”nhh.wwcmh“m“ﬂwbm
e oG 1 and st R /\@u 2 mn:n..u::mm. Mnnﬂ:n nwﬁ to take a square
U(0, 1) and returning X = max{Uy, Us} (see Frob: m.i_m:_h_x:s U(0, 1) random variate
g OB e By mnao_,u_“wu pear to be a faster way of gen-
and to perform a comparison, the latter method would ap

erating an X with density f5-
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f(x)4
Pl

FIGURE 8.7
Right-trapezoidal density.

Again, the reader is encouraged to develop the inverse-transform method for
generating a random variate from the right-trapezoidal distribution in Example §.4.
Note that especially if a is large, the composition method will be faster than the
inverse transform, since the latter always requires that a square root be taken, while
it is quite likely (with probability a) that the former will simply return X =
U, ~ U(0, 1). This increase in speed must be played off by the analyst against the
possible disadvantage of having to generate two or three random numbers to obtain
one value of X. Trapezoidal distributions like that in Example 8.4 play an important
role in the efficient methods developed by Schmeiser and Lal (1980) for generating
gamma random variates and for beta generation in Schmeiser and Babu (1980).

Composition methods (also called “mixture” methods) are further analyzed
by Peterson and Kronmal (1982), who show as well that many specific variate-
generation methods can actually be expressed as a composition of some sort. An
interesting technique that is related closely to composition, the acceptance-
complement method, was proposed by Kronmal and Peterson (1981 1 982); Devroye
(1986, pp. 75-81) further discusses this and associated methods.

8.2.3 Convolution

For several important distributions, the desired random variable X can be expressed
as a sum of other random variables that are ITD and can be generated more readily
than direct generation of X. We assume that there are 11D random variables Y,
Y,, ..., Y, (for fixed m) such that ¥, + ¥, + .-+ ¥ has the same distribution as

X; hence we write 2
Xﬂv\_+~\u+...+ﬁs

The name of this method, convolurion, comes from terminology in Eonsmmc..a
processes, where the distribution of X is called the m-fold convolution of the distn-
bution of a ¥,. The reader should take care not to confuse this situation with the
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method of composition. Here we assume that he random variable X can be repre-
sented as a sum of other random variables, whereas the assumption behind the
method of composition is that the distribution function of X is a (weighted) sum of
other distribution functions; the two situations are fundamentally different.

The algorithm for generating the desired random variate X is quite intuitive
(let F be the distribution function of X and G be the distribution function of a Y):

1. Generate Y, Y ..., Y, 1ID each with distribution function G.
2: Reum X =Y, + L+ .-+ ¥

To demonstrate the validity of this algorithm, recall that we assumed that X and
y,+ Y+ + Y, have the same distribution function, namely, F. Thus,

PX=x)=PY,+Y,+ -+ Y =2x) = F(x)

EXAMPLE 8.5. The m-Erlang random variable X with mean 8 can be defined as the
sum of m I1D exponential random variables with common mean 3/m. Thus, to gener-
ate X, we can first generate ¥,, Y, . .. | ¥, as [ID exponential with mean B/m (see Ex-
ample 8.1), thenreturn X =¥, + ¥, +--- + ¥ __ (See Sec. 8.3.3 for an improvement
in efficiency of this algorithm.)

The convolution method, when it can be used, is very simple, ?.n.zann_ that we
can generate the required ﬁ.m easily. However, %R:a_zm. on the particular parame-
ters of the distribution of X, it may not be the most efficient way. ﬁuo_, example, to
generate an m-Erlang random variate by the convolution method (as in Example 8.5)
when m is large could be very slow. In this case it Eo:E. co. cn...nq to recall that the
m-Erlang distribution is a special case of the gamma g_mz.__o:,co: (see Sec. 6.2.2)
and to use a general method for generating gamma random variates (see Sec. 8.3.4).
See also Devroye (1988). .

nc=<:_:_‘:v: is really an example of a more general idea, that of g@nﬂ_:m
some intermediate random variates into a final variate that has Em aam__da.a_mﬁg-
tion; the transformation with convolution is just adding, and En _:ﬂn_.._dmn__mﬂn vari-
ates are 1TD. There are many other ways to transform intermediate variates, some of
which are discussed in Sec. 8.2.6, as well as in Secs. 8.3 and 8.4.

8.2.4 Acceptance-Rejection

The three approaches for generating random variates &mncm._mo”__ﬂ S0 mp_m MMMMHM WMMM_
form, composition, and convolution) might be calleddiregfintness tance-rejection
directly with the distribution or random variable desired. ;M_anwﬁnn methods fail
Method is less direct in its approach and can ‘un.cwn?“ when % WADOIZen
or are inefficient. Our discussion is for the non::..hocw.npﬂwn.aﬂn”wn s numnmzv.
erate X having distribution function F and density /> .M _%Rm back to at least
analogous and is treated in Prob. 8.9. The underlying idea
von Neumann (1951).

The acceptance-rejection metho:
the majorizing function, such that /(x

ify 2 i alled
ires that we specify a mE..n.co_.._ T
M_ Mn w_m_“ for all x. Now ¢ will not, in general, be
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a density since )
o i&.wh f) dx = 1

but the function r(x) = t(x)/c clearly is a density. _?\n assume that 1 is gych i
¢ < ®.) We must be able to generate ﬁ».m:u\ and quickly, we hope) a randop, o
ate Y having density r. The general algorithm follows:

1. Generate Y having density r.
2. Generate U ~ U(0, 1), independent of _\
3. If U = f(Y)/1(Y), return X = Y. Otherwise, g0 back to step 1 and try agaip,

The algorithm continues looping back to step I until finally we generate a (y, U)
pair in steps 1 and 2 for which U = f(¥)/1(Y), when we “accept” the value Y for y
Since demonstrating the validity of this algorithm is more complicated than for the
three previous methods, we refer the reader to App. 8A for a proof.

EXAMPLE 8.6. The beta(4, 3) distribution (on the unit interval) has density
60X (1 —x)? if0=x=1
0 otherwise

Jfx) = *

[Since the distribution function F(x) is a sixth-degree polynomial, the inverse-transform
approach would not be simple, involving numerical methods to find polynomial roots,)
By standard differential calculus, i.e., setting df/dx = 0, we see that the maximum
value of f(x) occurs at x = 0.6, where f(0.6) = 2.0736 (exactly). Thus, if we define

*N_odo ifo=x=1
tx) =
0 otherwise

then 1 majorizes f. Next, ¢ = [} 2.0736 dx = 2.0736, so that r(x) is just the U(0, |)
density. The functions f, ¢, and r are shown in Fig. 8.8. The algorithm first generates ¥
and U as IID U(0, 1) random variates in steps 1 and 2; then in step 3 we check whether

o0y — vy
T 20736

If so, we return X = ¥; otherwise, we reject ¥ and go back to step 1

Note that in the preceding example, X is bounded on an interval (the unit inter-
val in this case), and so we were able to choose 7 to be constant over this interval,
which in turn led to r's being a uniform density. The acceptance-rejection method is
often stated only for such bounded random variables X and only for this uniform
choice of r; our treatment is more general, F

The acceptance-rejection algorithm above seems curious to say the least, and
the proof of its validity in App. 8A adds little insight. There is, however, a natural
intuition to the method. Figure 8.9 presents again the f(x) and r(x) curves from
Example 8.6, and in addition shows the algorithm in action. We generated 50 X
from the beta(4, 3) distribution by acceptance-rejection (using stream 2 of e
random-number generator in App. 7A), which are marked by crosses on the x aXis
On the #(x) curve at the top of the graph we also mark the location of all the 1S
generated in step 1 of the algorithm, regardless of whether they ended up being
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1(x)

f(x)

r(x)

0 05 10 *

FIGURE 8.8 2 b
f(x), t(x), and r(x) for the acceplance-rejection method, beta(4, 3)
distribution.

accepted as X’s; 50 of these ¥’s were accepted and made m.ﬂ down to the x ,mEm.M%n
uniformity of the ¥’s on the t(x) curve is evident, and the higher nc:nm.:ﬁm.go: of the
X’s on the x axis where f(x) is high is also clear. For those ¥’s mm_.__:.m in Rmz_wsm
where f(x) is low (e.g., x near 0 or 1)} f(¥)/1(¥) is small, and as this is anﬂﬂ. H
bility of accepting ¥ as an X, most of such Y's will be rejected. \;:.w 25&% T
Fig. 8.9 for small (near 0) and large (near 1) values of Y i:na.%cc is m__w_h c B
other hand, ¥ values where f(x) is high (e.g., nearx = o.@ will proba w‘nﬁ_nnm u_w.m
since f(¥)/1(Y) is nearly 1; thus, most of the ¥'s around x = 0.6 are mmn_wv daglis
and make it down to the x axis. In this way, the algorithm thins w_.:_., Eom_\_mmiro_.m
the r(x) density where t(x) is much larger than .xo,a. but retains mos nwzo: Yeaur
1(x) is only a little higher than f(x). The result is that the concen

; ; : i ity f(x).
R sl ol anm:na%-mﬂw _M.whn&‘ and looking at the above

The principle of acceptance-rejection is ! oxe
algorithm in mw: ghtly different way clarifies how it can be num_ﬂ_wnm, HSo m“.wﬂ .w:
of random points in higher-dimensional spaces; this _mm _-.i_.om & o ot
Monte Carlo estimation of multiple integrals (see €€ 5524
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1(x)

f)

1 P NS
0 0.5 1.0 x
FIGURE 8.9

mmE_u_n of 50 X’s (on horizontal axis) and the required ¥’s [on the r(x)
line], acceptance-rejection method for beta(4, 3) distribution.

oo:.&no: in step 3 of the algorithm can obviously be restated as Ut(Y) = f(¥)
which means geometrically that ¥ will be accepted as an X if the point (¥, UnY))
mm:.m under the curve for the density f. Figure 8.10 shows this for the same ¥ values
as in m.m” mb..i& the dots being the points (Y, U#(Y)) and the 50 accepted values
of X again being B.m_.roa by crosses on the x axis. By accepting the ¥ values for
those (¥, UK(Y)) points falling under the f(x) curve, it is intuitive that the accepted

X’s will be more dense on the x axis whe, is hi Mmeelitdi likely that
the uniformly distributed dots will be i

ample the rectangular nature of the r
points (¥, Ut(Y)) clear, the same i
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htd 1)

c, 0.5 1.0 &

FIGURE 8.10 ] )
Sample of 50 X's (on horizontal axis) and the required (¥, Ur(Y)) pairs,

acceptance-rejection method for beta(4, 3) distribution.

ertainly satisfies this wish.) Second, we
3 can be made small, since we have to
A we show that on any given iteration
tance in step 3 is 1/c; we therefore
we want to find a 7 that fits closely
tuitively, a  that is only a little
o that the ¥ values generated

(The uniform ¢ chosen in Example 8.6 ¢
hope that the probability of rejection in step
start all over if this rejection occurs. In App- 8
through the algorithm, the probability of accep
would like to choose f so that ¢ is small. Thus.
mwoé f, bringing c closer to 1, its lower c_oEap. HW :
above f leads to a density r that will be close to J, :
from a\m: step 1 are .,._.oBM_ distribution that is almost no:.nnw_ and .va .M” MMM“.M MM..
€ept most of them. (From this standpoint, then, We Se¢ that M Mﬂrois gt
in Example 8.6 might not be so wise after all, since it does BOLIE T T R 0

very snugly. Since ¢ = 2.0736, the probability of acceptance 1 ol e
lower than we might like.) These tWo e o mmzo”_ma._mw of tis 34\ no means
Small value of ¢, may well conflict with each other, so the choi

S m.—-ﬂ Qﬂm@ U e re 1 Q —.-EQEW
! Vi i mﬂﬂ.ﬂn: —.-m—M Uﬂﬂa Eaﬂﬂ at 1de )
! es care. OQ_.-m_n—ﬂ—.D — ; — ; =

mooao:c,mm .<n=&m5_u=:o=“ .. .
(1972, 1 owohmw >ﬂaw mm_ﬂ Am 1 %GS. Atkinson and Whittaker (1976), Schmeiser (1980a,
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1980b), Schmeiser and Babu (1980), Schmeiser and Lal (1980), mo.:samﬂ o
Shalaby (1980), and Tadikamalla (1978). One uc.?__m: method of finding a Suitabje
t is first to specify r(x) to be some common density, €.g., a normal or double expo-
nential, then find the smallest ¢ such that 1(x) = cr(x) = f(x) for all x.

EXAMPLE 8.7. Consider once again the beta(4, 3) distribution from Example 8.6, bu
now with a more elaborate majorizing function in an attempt to raise the probability of
acceptance without unduly burdening the generation of vs,ﬁ.:.os r(x); we do this along
the lines of Schmeiser and Shalaby (1980). For this density, there are two inflectign
points [i.e., values of x above which f(x) switches from convex Lo concave, or vice versa),
which can be found by solving f"(x) = 0 for those values of x between 0 and 1; the gp.
lutions are x = 0.36 and x = 0.84 (to two decimals). Checking the signs of f"(x) on the
three regions of [0, 1] created by these two inflection points, we find that f(x) is convey
on [0, 0.36], concave on [0.36, 0.84], and again convex on [0.84, 1]. By the definition of
convexity, a line from the point (0,0) to the point (0.36, f(0.36)) will lie above
f(x); similarly, the line connecting (0.84, f(0.84)) with the point (1, 0) will be above
f(x). Over the concave region, we simply place a horizontal line at height 2.0736, the
maximum of f{x). This leads to the piecewise-linear majorizing function #(x) shown in
Fig. 8.11; adding up the areas of the two tnangles and the rectangle, we getc = 1.28,s0

A
t(x)
o _
fx)
L
0
0.5 1.0 X

FIGURE 8.11 !
f(x) and piecewise-linear maiari: ‘

method for beta(4, 3) &ma_“ﬂ“wﬂ”_.:m function r(x), acceptance-rejection
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r(x)

/

/ |

0 05

FIGURE 8.12 3y : H
r(x) corresponding to the piecewise-linear majorizing function 7(x) in Fig. 8.11.

that the probability of acceptance on a given pass z.z,.o:m_._ the m_.mc:::u._m 0.78, .cMSm
considerably better than the 0.48 acceptance probability when using En. simple uniform
majorizing function in Example 8.6. However, it now becomes more &Bnmm“._s wﬁn_:am
ate values from the density r(x), which is plotted in Fig. 8512, /TnSiLS A Y

in specifying a majorizing function. As suggested in Fig. .m._m. SOeNEE ?MH““.A Mwu”..—”
be done using composition, dividing the area under r(x) info ﬁam Mmﬁ.w.m we would
sponding to a density from which mnanEE._: is easy; see Pro MDA a»_.u.wmo:: =
really be combining three different generation techniques here: inverse et
the component densities of r(x)], composition (for r(x)], Ei P m_nn..wmu v_ bili

(for f(x)]. In comparison with Example 8.6, whether the higher wnnM_.. EMMM“_M mwﬁo_w

Justifies the increased work to generate Em._:: clear, and Bm.w, n_omwn ons e _mzmcmmn.

such as the particular parameters, code efficiency. as well as the programmt )

Compiler, and hardware.

There have been many variations of and Bo&mﬁ:o__a ﬂ the mMMMMM Mome_M”MMn
Iejection method, mostly to Lmprove speed. For exampre, e luding those with
,:oo@ give a version for generating from &mn.a.ﬂ 5 &mné.:co:m %”MQ% mn:nnmn:m T
finite tails), which uses a continuous Majonzing ?:ncom mb.anno? :

Separate random number to decide bhétween acceptance and rej
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8.2.5 Ratio of Uniforms

Let f(x) be the density function corresponding to a continuous random variable y
from which we would like to generate random variates. The ratio-of-un qoza.
method, which is due to Kinderman and Monahan (1977), is based on a curigyg el
tionship among the random variables U, V, and V/U. Let p be a positive rea] Numbe;

If (U, V) is uniformly distributed over the set
S=luv):0=u= _[pf W

then V/U has density function f, which we will now show. The joint density functiop
of U and Vis given by

1
Sfuvlu,v) = M for(u,v) € S

where s is the area of the set §. Let Y = U/ and Z = V/U. The Jacobian, J. of this
transformation is given by the following determinant:

du du

J= Jmﬂ M..,..r = “. 0 =y
W—l. m—, Z )
dy dz

Therefore, the joint distribution of ¥ and Z s [see,e.g., DeGroot (1975, pp. 133-136)]
.\-..Nﬁ.{. mv = _.\_b\._&ﬂ:, f& = X
5

so that the density function of Z is

Vrf(z) Vorf(z)
HNANV Ah _\\NNA.{. 2) nwv\ = g‘ == Q_.J. = I.M \An'

0 s P&

for0=y="Vpfiz) and0 <z <

wnﬂ—ﬂﬂ.\. Ahu mH—Q ,.\.AA.V must UO—T :.—ﬂﬂ rale to 1 W S =p N m:a —.__m= k‘

To : :
A Wm:a_wmqw_r v) uniformly in S, we may choose a majorizing region T that
» BENCrate  point (w, v) uniformly in 7, and accept this point if

2 v
u = —

2

Otherwise, we generate a new

easy .m” mw:oﬁﬁ a point uniformly in the region 7.
_the boundary of the accepta, i 5
e o e m.ﬂ__cmnn fegion § is defined parametrically by the fol

POINtin T'and try again, etc. Hopefully, it should be

If f(x) and x? )= VG and g = 2V pf(2) (8.
f(x) are bounded, thep 4 &00d choice of T'is the rectan gle

Hu:chnoM:MRm:aFMtr\,c.*
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where

=
Il

wmv u(z) = mcu/\a
:M.qmz\u\d
v = sup v(z) = sup 2Vpf(2)
(The supremum (sup) of the set (0,1) is 1, but the maximum doesn’t exist. The def-

inition of the infimum (inf) is analogous.] With this choice of the majorizing region
T, a formal statement of the ratio-of-uniforms method is as follows:

Il

Ve

I

inf v(z)

I

1. Generate U ~ U(0, ') and V ~ U (v., v") independently.
2. Set Z=V/U.
3. If U? = pf (Z), then return Z. Otherwise, go back to step 1.

If t is the area of the region T, then the probability of accepting a particular Z is
s p/2
t wv —w)

and the mean number of passes through steps 1 through 3 until a Z is accepted is the
inverse of the above ratio.

EXAMPLE 8.8. Suppose that f(x) = 3x* for 0 = x = 1 [a beta(3, 1) distribution (see
Sec. 6.2.2)] and p = 1/3. Then

=1}

S/= _:_.snom:mm.om

I

We generated 2000 points (, v) uniformly in the square 7 (with area ¢ = 1), and 330
of these points satisfied the stopping rule stated in the definition of S. Note that
330/2000 = 0.165, which is approximately equal to s/t = +/1 = 0.167. A plot of
these 330 accepted points is given in Fig. 8.13. Note that the acceptance region §

is bounded above and below by the curves v = u and v = u’, respectively (see

Prob. 8.20).

The rectangle T had a probability of acceptance of 1/6 in Example 8.8. We
could choose a majorizing region T that is closer in shape to the acceptance region
§ 50 that the ratio s/t is brought closer to 1 (see Prob. 8.21). However, this gain in
efficiency has to be traded off with the potentially greater difficulty of generating a
Point uniformly in a more complicated majorizing region. Cheng and Feast (1979)
EIVe a fast algorithm for generating from a gamma distribution, where 7'is a paral-
lelogram Leydold (2000) develops fast ratio-of-uniforms algorithms that use
Polygonal majorizing regions and are applicable to a large class o.m &.wﬁcsmo:m.

Stadlober (1990) shows that the ratio-of-uniforms Bnﬂ__ﬁ is, in fact, an
mannEmsom-H&mnnou method. He also extends the ratio-of-uniforms method to

Scanned with CamScanner



446 GENERATING RANDOM VARIATES
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FIGURE 8.13
Accepted points for the ratio-of-uniforms method.

IS L

discrete distributions, while Wakefield e
: : t al. (1991 : 5
s e e o ( ) and Stefanescu and Viduva

8.2.6 Special Properties

ﬁet}g%‘;g:p';zigggﬁs for dgeﬂeratfng random variates can be classified into one of
o, o U u:‘]se. sofar n Sec_. 8.2, some techniques simply rely on some
el specme esired QIsmbutlon function F or the random variable X.
random variables that al:::)perty will take the form of representing X in terms of other
lution is a “special” spec:;l]ore easily generated; in this sense the method of convo-
normal-theory random vmab]};rso?cny. The following four examples are based o
nothing to do with the normal dis;?;u?jic:i 8.3 and 8.4 for other examples that have

EXAMPLE 8.9. If Y ~

square distribution with lb(‘j(fo'(\;& (lhe, standard znolmal distribution), then ¥ has a chi-
bution with k df.) Thus, to ge‘ncr; WIite X ~ y? 10 mean that X has a chi-square disti-
return X = Y2, eX ~ X1, generate Y ~ N(O0, 1) (see Sec. 8.3.6), and

EXAMPLE 8.10. If 7 Z
Z,+Zz+---+z._‘i 2 - -y 4 are JID XZ random Bl then ) G
%~ Xi- Thus, to generate x ~ X:f, first gene::ga}P, e;; e pYges
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1D N(O. 1) random variates, and then retu =y? et s 2

le 8.9). Since for large k this may be qui X Nitab i Sigstaliglece Faam
PICAS: ) 208 R gkt ¥ be quite slow, we might want to exploit the fact that
the y; distribution is a gamma distribution with shape parameter a = k/2 and scale

parameter 3 = 2. Then X can be obtained directly from the gamma-generation methods
discussed in Sec. 8.3.4.

EXAMPLE 8.11. If ¥ ~N(0,1), Z~ y}, and ¥ and Z are independ
Sl y , pendent, then
X = Y/NVZ/kis said to have Student’s t distribution with k df, which we denote X ~ [

Thus, to generate X ~ 1, we generate ¥ ~ N(0, 1) and Z ~ x> independently of ¥ (see
Example 8.10), and return X = Y/VZ/k . e oS i

EXAMPLE 8.12. IfZ, ~ x} . Z, ~ v} and Z, and Z, are independent, then

- Ll
Z/k,

is said to have an F distribution with (k;, k,) df, denoted X ~ F, , . We thus generate
Z,~ x;,and Z, ~ )(f} independently, and return X = (Z,/k,)/(Z,/k,).

For some continuous distributions, it is possible to transform the density func-
tion so that it is easy to construct majorizing functions for use with the acceptance-
rejection method. In particular, Hérmann (1995) suggested the transformed density
rejection method for generating random variates from a continuous distribution
with density f. The idea is to transform f by a strictly increasing function 7 so that
T(f(x)) is concave, in which case we say that fis T-concave. [A function g is said
to be concave if

g(x,) + g(x,) xtx
0
for x, < x,.] Since T(f(x)) is a concave function, a majorizing function for T(f(x))
can be constructed easily as the minimum of several tangents. Then 7~ ' is used to
transform the majorizing function back to the original scale. This results in a ma-
jorizing function for the density £, and random variates can be generated from f by
the acceptance-rejection method. If 7(x) = —1/\/x, then a large number of distri-
butions are T-concave, including the beta, exponential, gamma, lognormal, nor-
mal, and Weibull distributions. (For some distributions, there are restrictions on
the values of the parameters.) Since transformed density rejection is applicable to
a large class of distributions, it is sometimes called a universal method [see
Hormann et al. (2004)].

8.3
GENERATING CONTINUOUS RANDOM VARIATES

In this secti - euss particular algorithms for generating random variates
st il atinuous distributions; Sec. 8.4 contains a

from sever ing co
al commonly occurrng . i
similar treatment for discrete random variates- Although there may be several dif:
n distribution, we explicitly present

ferent algorithms for generating from a g1V
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