ANDOM VARIATES

NG R
e CHAPTER EIGHT 447
v N(O, 1) random variates, and then o
ﬁ :W 8.9). Since for large k this may he n__mnﬁ::m__, X = 5.+ Y3+ + ¥2 (see Exam-
; m_n xi distribution is a gamma distribytion OW, we might want to exploit the fact that
1 arameter B = 2. Then X can be obtained g s_"_w shape parameter « = k/2 and scale
0.9 - mwmnﬂmmﬂ& n Sec. 8.3.4. irect! %mnaa Eﬂmﬂgnmﬂ-wﬂgnuﬂ— Eﬂﬁu&w
) o g.11. If ¥~ N(0
gXAMPLE 8.11. 0, 1), hze= 2)
o ¥ = ¥/ V/Z]kis s2id 0 have Studen's disriuton i . Pt o 1 50
F g X~1 we ’ =iy
i] Thus, Lo mnzn_.m_.n k> generate Y ~ N 0,1 SF
0.6,f m.xn_._:u_n 8.10), and return X = us\./\Mm . ()and Z Xi wﬂn—nﬂo-anﬂ_.—% of Y (see
v
= EXAMPLE 812 102, ~ x4, Z, ~)i and Z, and Z, are independent, then
it x = &k
Zofk,
03 L .
js;saidito WA ﬁw;:._g:az with (k,, k5) df, denoted X ~ 3..:. We thus generate
ey Z, ~ Xi, and Z; ~ Xi, independently, and retum X = (Z,/k))/(Zy/ k).
L e Ry For some continuous distributions, it is possible to transform the density func-
e ion so that it is easy to construct majorizing functions for use with the acceptance-
oleati® 1 o0 I SRS reiection method. In particular, Hormann (1995) suggested the transformed density
0 01 02 03 04 05 06 07 08 09 1 u LR:% method for generating randomiVariaies o IR I
FIGURE 8.13 with density f. The idea is to transform f by a strictly increasing function T so that
Accepted points for the ratio-of-uniforms method. T(f(x)) is concave, in which case weisay thar Fs\TieohEavel [AE SER e R
W to be concave if
g(x)) + gx,) 2 Aa_ + xmu
discrete distributions, while Wakefield et al. (1991) and Stefanescu and Vidyy, 2 2

e k for x, < x,.] Since T(f(x)) is a concave function, a majorizing function for T(f(x))

| can be constructed easily as the minimum of several tangents. Then T 'is used to

i i transform the majorizing function back to the original scale. This results in a ma-

= F e m jorizing function for the density f, and random variates can be generated ndE..ﬂ vw
the acceptance-rejection method. If T(x) = l_\/\m. then a large number of distri-
butions are 7-concave, including the beta, exponential, gamma, _om=ou.8w_. nor-
7 mal, and Weibull distributions. (For some distributions, there are restricions on
. the values of the parameters.) Since transformed density rejection is applicable to
a large class of distributions, it is sometimes called a universal method [see

Hormann et al. (2004)].

Although most methods for generating random variates can be classified into one of
the five approaches discussed so far in Sec. 8.2, some techniques simply rely on some
special property of the desired distribution function F or the random variable X
Frequently, the special property will take the form of representing X in terms of other
,ms.aon. variables that are more easily generated; in this sense the method of convo- |
lution is a “special” special property. The following four examples are based on .
:o:dw_-EnoQ random variables (see Secs. 8.3 and 8.4 for other examples that have
nothing to do with the normal distribution).

8.3 -
EXAMPLE 8.9. If ¥ ~ N(0, 1) (the standard normal distribution), then ¥* has achi- | GENERATING CONTINUOUS RANDOM VARIAT

square &.ma._._..::.o: with 1 df. (We write X ~ Xi to mean that X has a chi-square distri 7

Wn:hm_hwwu WWC Thus, to generate X ~ \1. generate Y ~ N(0, 1) (see Sec. 8.3.6), and Inithis section we (discuss _qunEE. &mo&::d ;
: from several commonly occurring continuous dis

SR O Z, are 1ID y| random variables, then X = similar treatment for discrete random variates. Z.&ﬂﬁma

Zi+ L4+ 2~ xi. Thus, to generate X ~ \«W first generate Y, “\.: L hs ferent algorithms for generating from a given distnbu

s for generating random variates
tributions; Sec. 8.4 contains a
h there may be several dif-
on, we explicitly present

Scanned with CamScanner

evy

LS

448 GENERATING RANDOM VARIATES

only one technique in each case p:a provide R?E_Mnnm ﬂ: other Rmo..::am thy
may be better in some sense, e.g., in terms of speed at the expense of :aaggh
setup cost and greater complexity. In deciding c.i__n: m_.mc_._nsa 10 presen, X
have tried to choose those that are simple to describe and implement, ang ﬁn.q i
sonably efficient as well. We also give only exact (up to machine accuracy) anw_”.
ods, as opposed to approximations. If speed is o_..:_nm:v\ Important, howeye, i.
urge the reader to pursue the various references given for :._o. desired &m.:g.:_a ¢
For definitions of density functions, mass functions, and distribution ?_._39_:_
see Secs. 6.2.2 and 6.2.3. 5,

8.3.1 Uniform

The distribution function of a U(a, b) random variable is easily inverted by solyj

n
u = F(x) for x to obtain, for0 = u = 1, 8

x=F'w=a+ (b— au
Thus, we can use the inverse-transform method to generate X:

1. Generate U ~ U(0, 1).
2. Retun X = a + (b — a)U.

If many X values are to be generated, the constant b — a should, of course, be com-
puted beforehand and stored for use in the algorithm.

8.3.2 Exponential

The exponential random variable with mean 8 > 0 was considered in Example 8.1,
where we derived the following inverse-transform algorithm:

1. Generate U ~ U(0, 1).
2, Retum X = —BIn U.

[Recall that the U'in step 2 would be | — U instead if we wanted a literal version of
= m?;S in order to make the correlation between the X’s and U’s positive]
This is certainly a simple technique and has all the advantages of the inverse-
qm.._m_qo_.,a method discussed in Sec. 8.2.1. It is also reasonably fast, with most of the
computing time's being taken up in evaluating the logarithm. In the experiments of
Ahrens and Dieter (1972), this method was the fastest of the four algorithms con-
sidered if programming in FORTRAN, with some 72 percent of the time taken Up
by the logarithm evaluation. If one is willing to program in a lower-level language:
:osx.u,aq. there are other methods that avoid the logarithm and are faster, although
considerably more complex and involving various amounts of preliminary Setup;
see von Neumann (1951), Marsaglia (1961), and MacLaren, Marsaglia, and Bray

(1964). We refer the interested reader to Ah i SR
re dD d to Fishim
(1978, pp. 402-410) for further discussion. PR

CHAPTER EIGHT 449
83.3 m-Erlang

AS discussed in Example 8.5, if X is an -
. =Y, +Yh+ - .4y 2

can write X | 2 m» Where the Y's are 1ID exponential random

cariables, each with mean B/m. .::.m led to the convolution ».woMoEE described in

gxample 8.5. Its efficiency can be improved, however, as follows. If we use the

inverse-transform method of Sec. 832 to generate the exponential ¥'s [¥, =

A\.m\i_v In U, where U;, U,, . . ., U, are IID U(0, 1) random variates], then

xuM_\mnM:msc__uul_: _,u_c_. o

i=1 i=1 m m

Erlang random variable with mean B. we

<o that we need to evaluate only one logarithm (rather than m logarithms). Then the
statement of the algorithm is as follows:

1. Generate U,, U,, ..., U, as IID U(0, 1).

m

2. Return X = m%:. [Tu).

i=1

(Again, one should compute 8/m beforehand and store it for repeated use.) This
algorithm is really a combination of the composition and inverse-transform
methods.

Since we must generate m random numbers and perform m multiplications, the
execution time of the algorithm 1s approximately proportional to m. Therefore, one
might look for an alternative method when m is large. Fortunately, the m-Erlang dis-
tribution is a special case of the gamma distribution (with shape parameter « equal
to the integer 1), so that we can use one of the methods for generating gamma ran-
dom variates here as well (see Sec. 8.3.4 for discussion of gamma generation). The
precise threshold for m beyond which one should switch to general gamma genera-
tion will depend on the method used for generating a gamma random variate as well
as on languages, compilers, and hardware; preliminary experimentation in one's
particular situation might prove worthwhile. [For the gamma generator n..m mno.. 834
in the case o > 1, timing experiments in Cheng (1977) indicate that using his gen-
eral gamma generator becomes faster than the above m-Erlang algorithm for
m = 10, approximately.] Another potential problem with using the ugﬁ algo-
rithm, especially for large m, is that [, U, might get close to zero, which could

lead to numerical difficulties when its logarithm is taken.

M.w.& QNEBN ,.7t_r‘

complicated to generate SEJ the .E.om
in this section, since the distribution
we could try to find an inverse. First
tain, for any 8> 0, a mM.E_ERP..E
t it is sufficient to restrict attention

General gamma random variates are more
types of random variates considered so far
function has no simple closed form for which
note that given X ~ gamma(a, 1), we can 0b
random variate X' by letting X' = X, so tha

——r e e

——

S

Scanned with CamScanner

R S,

450 GENERATING RANDOM VARIATES

1) distribution. Furthermor CHAPTER EIGHT 451
to generating from the gamma(a, 1) GISWIEELZ: Foo = OIS, Tecall gy, erate Y wit i

mm:mamﬁ. :m&miccnou is just the n%o:a:m.m_ wwgcwuwhwwﬂm”_m_d _En.m,: 1, so smﬁ:ﬁn ‘_._Emm_ou\mM:A bU,) w” .ﬂﬂﬁ:w.mmwm éw Mﬂﬁ generate U, ~ U(0, 1). If U, < 1/b,
need consider only 0 < a < landa > 1. 3¢ SEaan, algorithmg g, mnn N mmE_ — U,)/al, which will be greater I Otherwise, if U, > 1/b, set ¥ =
erating gamma random variates are for.the most _ua._n M __ I only ong o 9«:. ~Inl greater than 1. Noting that

ranges of @, we shall discuss them separately. .E,w 1kama _.m and Johnggy, :cx”n) (e oS o,

provide a comprehensive review of gamma variate generation methods that) HIQ\IV “ _H\?_ if 1 <y

available at that time.] Cre _ <y

We first consider the case 0 < a < 1. (Note thatif @ = 0.5, we haye

i final algorithm [b = .
: are we obtain the g (e 4 a)/e must be .
x> distribution and X can be easily generated using Example 8.9; the m_mhmw__g g AT computed beforehand]:
stated below is nevertheless valid for a = 0.5.) Atkinson and Pearce (1976) 5_““ . Qn_m_a”o m_nm_ 2 i o O AR TS step 3. Otherwise, pro-
“ three alterative algorithms mon_ this case, and we present one of them, dye ¢, Ahge cee y = P, and generate U, ~ U(0 i
m and Dieter (1974). [The algorithm of Forsythe :3.8 was usually the fastest iy h,m 2. Let 4 ~. _ 2 0, 1). If U, < e7" return X = Y. Otherwise,
comparisons in Atkinson and Pearce (1976), but it is consider S 7 FOIDECRLD Sl

ﬁ@—% more Oos_u_m.

cated.] This algorithm, denoted GS in Ahrens and Dieter (1974), is ap acceptance _

3. Let Y = —In [(b — P)/a] and generate U, ~ U
rejection technique, with majorizing function

A 0, 1. If =y oek
X = Y. Otherwise, go back to step 1. e

0 e _ We now consider .En case a > 1, where there are several good algorithms. In
of _ view of ::::_m experiments by Schmeiser and Lal (1980) and Cheng and Feast
x, 0= 1 (1979), we will present a Eo&m& acceptance-rejection method due to Cheng
t(x) ={ [(a) (1977), who calls this the GB algorithm. This algorithm has a “capped” execution
| P 4 : time; i.e., its execution time is bounded as & — o and in fact appears to become
.:l..b ifflf <ty | faster as a grows. (The modification of the general acceptance-rejection method
consists of adding a faster pretest for acceptance.) To obtain a majorizing function
| Thus, ¢ = [§* 1(x) dx = b/[al'(a)], where b = (e + a)/e > 1, which yields the i(x), firstletA = V2a = 1, u = a*,and ¢ = 4a% “/[AT(a)]. Then define #(x) =
._, density r(x) = #(x)/c as cr(x), where
i A A-1
0 ifx =0 =B x>0
m s] f rix) = { (u +x7%)
| if 0 <x< _
) ={ b if0 <x=1 | 0 otherwise
ae e 3
T ifl <x f The distribution function corresponding to the density r(x) is
| H»
Generating a random variate ¥ wj i : e
s dom vaniale ¥ with density r(x) can be done by the inverse- J ROy =N
| orm method; the distribution function corresponding to r is 0 otherwise
|
HQ | . o
|) = if0=x <1 which is easily inverted to obtain
,” | WA‘& = h ;v& Qv_ = T y u 1
k _ ks - il 5 [N\;:VN 1 forO<u<1

1 —u
__

m which can be inverted to obtain | To verify that #(x) indeed majorizes f(x), see Cheng (1977). Note that this is

an example of obtaining a majorizing function by first specifying a known distribu-

(bu)/= S tion [R(x) is actually the _om-_om.z.a:mmmﬁgcoz. function Amgomo%am%mw.wnumﬁu

L e shape parameter A, scale parameter p'’", and location parameter
R (u) = iy ing the density r(x) to majorize f(x). Thus, we use the inverse-transform method
—In ,ﬂll otherwise W 10 generate y with density r. After adding an advantageous pretest for acceptance

and streamlining for computational efficiency. Cheng (1977) recommends the

Scanned with CamScanner

e,

452 GENERATING RANDOM VARIATES

following algorithm (the prespecified constants are a = 1/ /\NIQJ, b
g=a+1/a,0 =45 andd=1+ In 6):

1. Generate U, and U, as IID u(o, 1). ;

2. LetV=aln[U/1—-U)Y=ae,Z=UiUpand W =p + gy _ v
3. f W+ d — 6Z = 0, return X = Y. Otherwise, proceed to step 4, i
4. If W = In Z, return X = Y. Otherwise, go back to step 1.

Step 3 is the added pretest, which (if passed) avoids computing the logarithy, ;
the regular acceptance-rejection test in step 4. (If step 3 were remgyeg =_~=
algorithm would still be valid and would just be the literal mnnn?m:nn._.o._om~_ :
method.) 2

As mentioned above, there are several other good algorithms that could
when a > 1. Schmeiser and Lal (1980) present another acceptance-r
method with #(x) piecewise linear in the “body” of f(x) and exponential int
their algorithm was roughly twice as fast as the one we chose to present above, for
a ranging from 1.0001 through 1000. However, their algorithm is more noswznwa
mE._ requires additional time to set up the necessary constants for a given value of
,E:.m 1S QmmoE of the tradeoffs the analyst must consider in choosing among m_ﬁ..
native variate-generation algorithms.

Finally, we consider direct use of the inverse-transform method to generate
gamma random variates. Since neither the gamma distribution function nor its in-
verse has a simple closed form, we must resort to numerical methods. Best and
Wocw:m (1975) give a numerical procedure for invertin g the disiribution function of
a n.—:-mncﬁn random variable with degrees of freedom that need not be an integer,
so 1s applicable for gamma generation for any a > 0. [If ¥ ~ y where v > 0 need
not be an integer, then ¥ ~ gamma(r/2, 2). If we want X ~ .m&:EmE. 1), first
generate ¥ ~ x3_, and then return X = Y/2.] An IMSL routine [Visual Numerics,
Inc. (2004)] is available to invert the chi-square distribution function. Press et al.
(1992, sec. 6.2) give C codes to evaluate the chi-square distribution function (a
reparameterization of what’s known as the incomplete gamma function), which A

40:5 n..ﬁ: have to be numerically inverted by a root-finding algorithm, which they
discuss in their chap. 9.

be useq
ejection
he tajls: |

8.3.5 Weibull

The Weibull distribution function is easily inverted to obtain

|

F70) = Bl~In(1— u))"/e
which leads to the following inverse-transform algorithm:

1. Generate U ~ U(0, 1).
2. Return X = B(—In U)\/e,

Again we are exploiting the fact that Uand | —

0 . BG:B.Q?
so that in step 2, U should he replaced by 1 U have the same U(0, 1) dis

rm
— U if the literal inverse-trans

‘
.

CHAPTER EIGHT 453

method 15 desired. This algorithm can
an nxno_._o::m_ distribution with me

MOG. QAN.N.

also wn justified by noting that if ¥ has
an B% then ¥'/* ~ Weibull(a, B); see

8.3.6 Normal ot

First note that given 2 =IO YRS can obtain X" ~ N(y, 0?) by setting X’ =
u t+ X, s0 EE we can restrict attention to generating standard normal random
variates. mmmew:.nw is important, since the normal density has often been used to
provide majorizing ; ?an:o:m for acceptance-rejection generation of random
variates from other distributions, e.g., Ahrens and Dieter’s (1974) gamma and beta
generators. Normal random variates can also be transformed directly into random
variates from other distributions, e.g., the lognormal. Also, statisticians seeking to
estimate empirically, in a Monte Carlo study, the null distribution of a test statistic
for normality will need an efficient source of normal random variates. [See, for
example, Filliben (1975), Lilliefors (1967), or Shapiro and Wilk (1965).]

One of the early methods for generating N(0, 1) random variates, due to Box and
Muller (1958), is evidently still in use despite the availability of much faster
algorithms. It does have the advantage, however, of maintaining a one-to-one
correspondence between the random numbers used and the N(O, 1) random vari-
ates produced; it may thus prove useful for maintaining synchronization in the use of
common random numbers or antithetic variates as a variance-reduction technique
(see Secs. 11.2 and 11.3). The method simply says to generate U, and U, as IID
U(0, 1), then set X, = V=2 1n U, cos 2nU, and X, = V =2 In U, sin 27U, Then
X, and X, are 1TD N(0, 1) random variates. Since we obtain the desired random vari-
ates in pairs, we could, on odd-numbered calls to the subprogram, moEmcw compute
X, and X, as just described, but return only X;, saving X, for immediate return on the
next (even-numbered) call. Thus, we use fwo random numbers (o produce nwo
N(0, 1) random variates. While this method is valid in w:mn_v_m. ie., if U, and U,
are truly 11D U(0, 1) random variables, there is a serious difficulty if U, and U, are
actually adjacent random numbers produced by a linear nO:MEa:an wnsnnwmow HMMM@
Sec. 7.2), as they might be in practice. Due to the fact that U, iows hmn: i m
according to the recursion in Eq. (7.1) in Sec. 7.2, itcan be mroﬁz %uwb Mwm.n y
variates X, and X, must fall on a spiral in (X;, X5) _%m_nwm. mﬂ nmox b mm_:mmn
independently normally distributed; see, for example, Mmm ow\.cn :m@u S
(1987, pp. 223-224). Thus, the Box-Muller BWEQ.H_ should not)

. .1 venerator; it might be vomm&_n to use separate
g sueam. of . lipear oozm_dn::.m_ e d the combined multiple recursive gen-
streams or a composite generator insted ,a.%.. o below for normal variate gen-
erator in App. 7B, but one of the methods des

eratio bly be used instead. ; o ivone

A mprovement ot Bos and Malermehet wich SERCE0 L S0
Metric calculations and was described in Zﬁmﬂm_ _mana of the normal distribu-
known as the polar method. It azmm %_H: N Mﬂw«mvﬁa D aatween © and 31 percent
mo:msaimmmoc_acw\rza:mo:m:o

Scanned with CamScanner

454 GENERATING RANDOM VARIATES

faster in FORTRAN programming than the Box and Muller method, depeg;,
the machine used. [Ahrens and Dieter (1972) experienced a 27 percent req,
in time.] The polar method, which also generates N(O, 1) random varjaeg in

& on
Clion

Pairg,
is as follows:
1. Generate U, and U, as [ID U(0, 1); let V; = 2U, = 1 fori = 1, 2; anq 1o W<
Vit iVae ‘
2. IfW > 1, goback tostep 1. Otherwise, let Y = V(=2 1n W)/W, X, =< y, Y, and
X, = V,Y. Then X, and X, are IID N(0, 1) random variates.
Since a “rejection” of U, and U, can occur in step 2 (with probability | — /4, by
Prob. 8.12), the polar method will require a random number of U, 1) random
variates to generate each pair of N(0, 1) random variates. More recently, a very fag
algorithm for generating N(0, 1) random variates was developed by Kinderman apg

Ramage (1976), which is more complicated but required 30 percen
the polar method in their FORTRAN experiments.
For direct use of the inverse-transform method in normal

generation, one mus,
use a numerical method, since neither the normal distribution function nor its inverse

has a simple closed-form expression. Such a method is given by Moro (1995), Alsp,
the IMSL [Visual Numerics, Inc. (2004)] library has routines to invert the standard
normal distribution function.

t less time thyy

8.3.7 Lognormal

A special property of the lo

e gnormal distribution, namely, that if ¥ ~ N(p, o), then
e ~ LN(u, 0%, is used to

obtain the following algorithm:

L. Generate Y ~ N(u, ¢'2).
2. Return X = ¢Y

To accomplish ste
be used.

. Note that p and o” are 70t the mean and variance of the LN(u, o) distribu-
e o 2 X ENG, %) and we let 1" = E(X) and 0" = Var(X), thn i

tumns out that p’ = g#*e*/2 yrg o2 _ SR e TS P gener-
ate a lognormal random variate ,

P 1, any method discussed in Sec. 8.3.6 for normal generation can

: X with given mean ' = jven variance
o'? = Var(X), we should solve o %) d ghieg
generating the interm
obtained as

: for p and o in terms of u' and o' first, before
ediate norma| random variate ¥. The formulas are easily

2

.Fﬂm.:\v”—: (e

—t

t‘w T Q-m

q
Il

Var(¥) = 1n(1 4+ 2=

r2

=

CHAPTER EIGHT 455
838 Beta

ma_:oaeﬁinng ocssk,e Xsﬁs_.nuvoasaiaza ?.e:o;Aw E
cetting X' =a + & — @)X, where X ~ beta(a,, @,) on the interval [0, 1], so that it
is sufficient to .nosmann only the latter case, which we henceforth call the
peta(a,, @,) distribution. .

Some properties of the beta(a,, a,) distribution for certain (a,, a,) combi-
pations facilitate generating beta random variates. First, if X ~ beta(a,, a;), then
| — X ~ beta(a,, a;), so that we can readily generate a beta(a,, a;) nmsaoa
variate if we can obtain a beta(a|, @,) random variate easily. One such situation oc-
curs when either & or «, is equal to 1. If &, = 1, for example, thenfor0 = x = 1
we have f(x) = a.x™~", so the distribution function is F(x) = x*, and we can
casily generate X ~ beta(a,, 1) by the inverse-transform Ena_on'. Le., c.w Te-
turning X = U'*, for U ~ U(0, 1). Finally, the beta(1, 1) distribution is simply
(o, 1).) ’

A general method for generating a beta(a, a,) random variate for any a, > 0
and @, > 0 is a result of the fact that if ¥, ~ gamma(a,, 1), ¥, ~ gammal(a,, 1),
and 5, and Y, are independent, then Y, /(Y, + ¥,) ~ beta(et,, ;). This leads to the
following algorithm:

1. Generate ¥, ~ gamma(a,, 1) and ¥, ~ gamma(a,, 1) independent of Y.
2. Return X = Y,/(¥, + Y,).

Generating the two gamma random variates Y, and Y, can be done by any appropri-
ate algorithm for gamma generation (see Sec. 8.3.4), so that we must take care to
check whether &, and a, are less than or greater than I .

This method is quite convenient, in that it is n%n:ﬁ»:x done provided that we
have gammal(e, 1) generators for all & > 0; its efficiency will, of course, depend on
the speed of the chosen gamma generators. There are, :o.imﬁn noEamBEM mm.m.n_.
(and more complicated, as usual) algorithms for generating from the beta distribu-
tion directly. For a, > landa, > 1, wnw:_nwm.mn .E.E Babu Comcv present m:ﬂmq
fast acceptance-rejection method, where the majorizing function is piecewise linear
over the center of f(x) and exponential over the tails; a fast acceptance n._.wa_mﬂ _mv
specified by a piecewise-linear function b(x) that minorizes (i.e., is always be %%
). If a; < 1 or a, < 1 (or both), algorithms .*9. generating _umsﬁpn_u .rQ 2) ..w__w ...mq%
variates directly are given by Atkinson and Whittaker (1976, 1979), Mmm Mm 2k
and Johnk (1964). Cheng’s (1978) method BA is quite simple and is v gt
forany a, > 0, a, > 0 combination; the same is true for the algorithms o
(19794 Shnk j)

j.—w w”wo”ww% mm, %MMW_ method for generating beta random <E.._Eww must Hﬁ_uw on
Numerical methods, as was the case for the gamma .Ea normal distri —“Mosw. M.nr:nm
Martin, and Thomas (1977) give such a method with a m.Omw_H ggmm oﬂmh._ﬁm.mw@w
IMSL [Visual Numerics, Inc. (2004)] routines are also w<8_m M.Emo et
Sec. 6.4) give C codes to evaluate the beta a_mﬁ_u:co:co::n Ml S
ncomplete beta function), which Eo.:E 9..5 have nm wﬁ:

T00t-finding algorithm, which they discuss in their chap. .

Scanned with CamSéanner

456 GENERATING RANDOM VARIATES

8.3.9 Pearson TypeV

As noted in Sec. 6.2.2, X ~ PT5(a, B)if m:a,o:G if 1/X ~ gamma(a, 1/B), whi
leads to the following special-property algorithm:

1. Generate Y ~ gamma(a, 1/B).

2. Return X = 1/Y.

Any method from Sec. 8.3.4 for gamma ma:n_,m:,o:. could be used, taking care o
note whether @ < 1, @ = 1, or @ > 1. To use the inverse-transform methog, e
note from Sec. 6.2.2 that the PTS(a,) distribution function is F(x) = 1 — Fy(l/x)
for x > 0, where F is the gamma(a, 1 /B) distribution function. Setting F(X) = U
thus leads to X = 1/F;'(1 — U) as the literal inverse-transform method, or to x <
1/F5' (U) if we want to exploit the fact that 1 — U and U have the same Uy, |
distribution. In any case, we would generally have to use a numerical method (
evaluate F', as discussed in Sec. 8.3.4.

8.3.10 Pearson Type VI

From Sec. 6.2.2, we note that if ¥, ~ gamma(e,, B) and ¥, ~ gamma(a,, 1), and
Y, and Y, are independent, then Y, /Y, ~ PT6(a,, a,, B); this leads directly to:

1. Generate ¥, ~ gamma(a,, B) and Y, ~ gamma(a,, 1) independent of ¥,.
2. Retum X = Y,/Y,.

Any method from Sec. 8.3.4 for gamma generation could be used, checking
whether @ < 1, @ = 1, or @ > 1. To use the inverse-transform method, note from
Sec. 6.2.2 that the PT6(a,, a,, B) distribution function is F(x) = Fj(x/(x + B)) for
x > 0, where Fy is the beta(a,, a,) distribution function. Setting F(X) = U thus
leads to X = BF ;' (U)/[1 — F,'(U)], where F,"(U) would generally have to be
evaluated by a numerical method, as discussed in Sec. 8.3.8.

8.3.11 Log-Logistic

The log-logistic distribution function can be inverted to obtain

u 1/e

Flu) =B
1 —u

which leads to the inverse-transform algorithm:

1. Generate U ~ U(0, 1).
2. Return X = B[U/(1 — U)]Ve,

8.3.12 Johnson Bounded

X ~JSB(a,, a,, a, b) if and only if Z = ¢ 4 ~NQ. 1
S ; i a,In[(X — a)/(b — X)] s
and we can solve this equation for x_m: ﬁu.,am of Z M, get the following

CHAPTER EIGHT 457
g un&w_-v_.oun& algorithm:
1. Generate Z ~ N(0, 1).
7 Let ¥ = €XPp (Z — a))/a,].
u. ﬁoﬂz_ﬂx = Am_ + &«\u\:\ + :

Any method from Sec. 8.3.6 for standard normal generation can be used to generate
Zin step 1-
§.3.13 Johnson Unbounded

x ~ ISU(a,, a3, 7, B) if and only if

| Iu
xft
B B

and we can solve this equation for X in terms of Z to get the following special-
property algorithm:

Z=a ta)ln + 1 [~ N(O, 1)

1. Generate Z ~ N(O, 1).

2. LetY = exp [(Z — a))/a,].

3, Return X = vy + (B/2)(Y — 1/Y).

Any method from Sec. 8.3.6 for standard normal generation can be _,bmoa to generate Z
in step 1. An alternative statement of the algorithmis X = y + 8 sinh[(Z — a;)/a;]
where Zis as in step 1.

8.3.14 Bézier

Random variates from fitted Bézier distributions, as &mn:mmnn in Sec. 6.9, can be
generated by a numerical inverse-transform method given .3 ﬁmmu.na and Wilson
(1996b), which requires a root-finding algorithm as part of its operation.

8.3.15 Triangular

[0, 1, (m — a)/(b — a)], then X' = a +
tion to triang(0, 1, m) random
= Qorm = 1, giving rise to
function is easily inverted to

First notice that if we have X ~ triang[0, |
(b — a) X ~ triang(a, b, m), so we can restrict atten
variables, where 0 < m < 1. (For the ::E.Em cases m
aleft or right triangle, see Prob. 8.7.) The distribution
obtain, for 0 = u < 1,

o if0=u=m
Flw) = T ifm<u<l
1 =V -m—u :

. i for generatin,
Therefore, we can state the following inverse-transform algorithm for g g
X ~ triang(0, 1, m):

L. Generate U ~ U(0, 1). -1 -V - m1 - V.
; : x=1 (1 —m(l =0
/\MN\\. Otherwise, returm

2. If U < m, return X =

-

Scanned with CamScanner

TES
458 GENERATING RANDOM VARIA

the | — U in H—gﬂ “_".O

’ ; . we cannot replace | ! rm
(Note that _Mu mow w.“_ ﬁmﬂmmﬁ method of generating a triangular rap g
by U. Why?

(by composition), see Prob. 8.13.

ulg m.oﬂ X
- Sima

8.3.16 Empirical Distributions

In this section we give algorithms for generating Esn._ons <mmmwﬁm from the ¢
ous empirical distribution ?:Qﬁa :ma G defined in Sec. 6.2.4. In both ¢,
i e used.

5<nMﬂ.wM__“mWMM m__%nﬂmnnwwﬂ_ the original individual observations, which
to define Ew empirical distribution function ib mm.ﬁ: in Jman. 6.2.4 (s
Fig. 6.24). Although an inverse-transform m_mo::&._ might at first appear to
some kind of a search, the fact that the “corners™ of F occur precisely g
0,1/(n—1),2/(n—1),...,(n —2)/(n — 1), and 1 m:osw.:w to avoid
plicit search. We leave it to the reader to verify that the following algorith
inverse-transform method:

1. Generate U ~ U(0, 1), let P = (n — 1)U, and let I = | P| + 1.
2. Retum X = X, + (P — [+ 1)(X,,,, — X,,,).

Ontipy,
S€S, the

we Use
ee alg
Invoye
Ulevels
an ex-
m 1§ the

Note that the X ,'s must be stored and that storing a separate array containing the
values of Xy — X ;, would eliminate a subtraction in step 2. Also, the values of X
generated will always be between X, and X, ; this limitation is a possible disad-
vantage of specifying an empirical distribution in this way. The lack of a search
makes the marginal execution time of this algorithm essentially independent of n,
although large n entails more storage and setup time for sorting the X's.

Now suppose that our data are grouped; that is, we have adjacent intervals
lay, @), [a}, ay), . . ., la,_,, 4], and the jth interval contains 7, observations, with
my +n, + - + n = p.Inthis case, we defined an empirical distribution function
G(x) in Sec. 6.2.4 (see also Fig. 6.25), and the following inverse-transform algo-
rithm generates a random variate with this distribution:
1. Generate U ~ U(0), 1).

2. Find the nonnegative integer J (0 < J <

—1) such that G(a)) = U < Glay,),
and return X = a, + [U - QAP:?T_

= 3(—@3% 1) — Gla))l.

P 2 satisfies G(a)) < G(a,.), so that no X can be
hich n, = 0. (Also, it is clear that a, = X = ;)
¢ done by a straightforward left-to-right search orby

Note that the J found in ste;

storage), we could initially d
m;’s to 0, the next n,m’s to |
115 0, 00 m s are set toj — 1
0, the first n, m;'s are set to ()
in step 2 can be determi
not this is worthwhjle

efine a vector (m,m,, m,) by setting the first7

» 8lC., with the Jast n,m’s being set to k — 1. (If some
. For example, if k > 3 apd n, > 0,n, = 0,andn; >
nedb Mna.n:a MEXI N3 m’s are set to 2.) Then the value of /
d gL ?Q._ * landletting J = m,. Whether f

epends on the Particular characteristics of the data and of

CHAPTER EIGHT 459

ol mportance of any computational speed that mj
"ra storage and programming effort. Finally,

ex thod for determining Jin step 2, based on prel

me e search for a given U: it requires onl

EH%B.UE is for a discrete empirical distribu

e he present case.) AN

The empirical/exponential distribution mentioned briefly in Sec. 6.2.4 can also

pe inverted sO that the inverse-transform method can be used; an explicit algorithm
is given in Bratley, Fox, and Schrage (1987, p. 151).

ght be gained relative to the
Chen and Asau (1974) give another
liminary calculations that reduce the
¥ 10 extra memory locations. (Their
tion function but can also be applied
tot

MM—ZMFPH_ZD DISCRETE RANDOM VARIATES

This section discusses particular algorithms for generating random <B..:=nm from
various discrete distributions that might be useful in a m:,:n_m:.o: m:._&. >.m in Sec. m.m.
we usually present for each distribution one algorithm that is mmiw.m_nﬁn 6 im-
plement and reasonably efficient. References will be made to m.:o:_m:sw algorithms
that might be faster, usually at the expense of greater complexity.

The discrete inverse-transform method, as described in Sec. m.w._.. can be used
for any discrete distribution, whether the range of mx.ume_.a <m_E_wm is finite or AmoE:-
ably) infinite. Many of the algorithms presented in .:._nm mn.n:o= are the ,a_mn,_.m_n
inverse-transform method, although in some cases this fact is very well disguised
due to the particular way the required search is performed, which often takes ad-
vantage of the special form of the probability mass function. As was the case for
continuous random variates, however, the inverse-transform Engoa may not be the
most efficient way to generate a random variate from a given &.mSccco:,

One other general approach should be mentioned here, which can be _.umn.a for
generating any discrete random variate having a finite range of values. This is the
alias method, developed by Walker (1977) and Bmzn,n_ by Wao.E.d.m_ and vﬂnnmo_.h
(1979); it is very general and efficient, but it does require some initial setup as épﬂ_
as extra storage. We discuss the alias method in greater a.mﬁm__ in w,nn..m.b..w‘ v:.m e
reader should keep in mind that it is applicable to any discrete distribution with a
finite range (such as the binomial). For an infinite range. E.o. alias Boz_ﬂa can
be used indirectly in conjunction with Enw general composition approach (see
Sec. 8.2.2); this is also discussed in Sec. 8.4.3. :)

In mmﬁw:ﬁ._o_m to the alias method, there are some other general discrete-variate
generation ideas; see, for example, Shanthikumar (1985) and Peterson and Kronmal
A_Omw

%mzm_ comment concerns the %nm_.nspmomw ow mn:aqmer o_w wowm_ﬁnwo.:_:mwca_o%
only distributions that have range S, ={0,1.2,....n §=10.12,...}
i:wn: may appear to be more RMEOEM EEN our onm_am_quwww%oh MM _w M_mnnnwn

: 5 = {0 e » Xy

Mmmwdmw m__d._omv_o rm/“:m.mnswww____.mﬂwm. % we _.Q_EJ.\ want a random variate X with

oLBerRra A T), we can first generate a random

Mass function p(x,) and general range T Ao_.l) e i
Variate / with range §,_, (or §) such that P(Z =i = P i

Scanned with CamScanner

J
&
<

J
o
o

460 GENERATING RANDOM VARIATES

(ori = 1,2,...). Then the random variate k = X, 1s returned and hag
distribution. (Given I, x,,, could be determined from a stored table ¢
from a formula that computes x, as a function of i.)

En n_ammaoﬁ_
f the x('s or

8.4.1 Bernoulli
The following algorithm is quite intuitive and is equivalent to the inverse-tray
method (if the roles of U and 1 — U are reversed):

1. Generate U ~ U(0, 1).
2. If U < p, return X = 1. Otherwise, return X = 0.

wmo_..:._

8.4.2 Discrete Uniform

Again, the straightforward intuitive algorithm given below is (exactly) the inverse.
transform method:

1. Generate U ~ U(0, 1).
2. ReumnX =i+ (- i+ 1)Ul

Note that no search is required. The constant J — i+ 1should,

. of course, be com-
puted ahead of time and stored.

8.4.3 Arbitrary Discrete Distribution

Consider the very general situation in which we have any probability mass function
P(0), p(1), p(2), . . . on the nonnegative integers S, and we want to generate a dis-

crete random variate X with the corresponding distribution. The p(i)’s could have
caoa.wvoo_mna theoretically by some distributional form or e
set directly. The case of finite ran
t=n + 1. (Note that this formu
form.)

The direct inverse-transform method. for ej i infini
. , for eith - z g
1s as follows (define the empty sum to be 0): & L

1. Generate U ~ u(o, 1).
2. Return the nonnegative integer X

L mpirically from a data
ge §, 1s included here by setting p(i) = 0 for all
lation includes every special discrete distribution

= I satisfying

CHAPTER EIGHT 46l

Due to the generality of the present situation, we present three other methods
that are useful when the desired random variable has finite range S,. The first of
these methods assumes that each p(j) is exactly equal to a g-place anm:upr for ex-
position we take the case g = 2, 5o that p(i) is of the form 0.01, for some integer
[A=R(URIRREE 100} (i =0.1,2,....n),and 37_ k, = 100. We initialize a vector
(1, M - - » Mino) Y setting the first k, m/'s 10 0, the next k, ms to 1, etc., and the

’ — L 3 i J 4
last k, m;’s to . (If k; = O for some i, no m; s are set 1o i.) Then an algorithm for gen-

erating the desired random variate X is as follows:

1. Generate J ~ DU(I, 100).
2, Return X = m;.

(See Sec. 8.4.2 to accomplish step 1.) Note that this method requires 107 extra stor-
age locations and an array reference in step 2; it is, however, the inverse-transform
method provided that J is generated by the algorithm in Sec. 8.4.2. If three or four
decimal places are needed to specify the p(i)’s exactly, the value of 100 in step 1
would be replaced by 1000 or 10,000, respectively, and the storage requirements
would also grow by one or two orders of magnitude. Even if the p(i)’s are not
exactly g-place decimals for some small value of g, the analyst might be able to
obtain sufficient accuracy by rounding the p(i)’s to the nearest hundredth or thou-
sandth; this is an attractive alternative especially when the p(i)’s are proportions
obtained directly from data, and may not be accurate beyond two or three decimal
places anyway. When rounding the p(i)’s, however, it is important to remember that
they must sum exactly to 1.

The ahcve idea is certainly fast, but it could require large tables if we need high
precision in the probabilities. Marsaglia (1963) proposed another kind of table-
based algorithm requiring less storage and only slightly more time. For example,
consider the distribution

p(0) = 0.15, p(l) = 020, p(2) = 0.37, p(3) = 0.28

Then the idea of the preceding paragraph would require a vector of length 100 to
store 15 0s, 20 1s, 37 2s, and 28 3s. Instead, define two vectors—one for the
“tenths” place and the other for the “hundredths” place. Ho fill up the Ssim vector,
look only at the tenths place in the probabilities, and put in that many copies of the
associated i (fori = 0, 1,2, 3), so we would take one 0, two 1, three 25, and two 3s
(o get

01122233

Similarly, the hundredths vector is

ooooomwumuumuuwuuuwu
corresponding to the hundredths place in the wﬂ.&%zwmom“ p_.._.._uw 9.._“.5 are MWHMM.MW"
locations in all (as opposed to 100 for the earlier table method). M %M_Mw st Em
Pick the tenths vector with probability equal to one-tenth the sum © gi
Probabilities’ tenths places, i.€., with probability

23 it

10

Scanned with CamScanner

462 GENERATING RANDOM VARIATES

ight members of the tenths vector at randoy,
B__ Eo:m.vo.ﬂ%:h”no%&%h __Wn other hand, we choose the hundredthg
“Mﬂwnm..qnﬂcp_ o5 of the sum of the digits in the hundredths place
I g
nal probabilities, i.e., with probability

540+7+8
100

(equiprgy
Vector With

in the Origi.

=02

and then choose one of the 20 entries in the ::s&wa:;@on.ﬁoﬂ at random
as the value of X. It is easy to see that this method is valid; for example,

PX =2)

to Tetu

P(X = 2| choose tenths vector) P(choose tenths vector)

+ P(X = 2| choose hundredths vector) P(choose hundredhg vector)
H0.8) + (0.2)

0.37

as required. The storage advantage of Marsaglia’s
the number of decimal places in the probabilities i
there were three-place decimals, so the direct table method of the preceding para-
graph would require 1000 storage locations; the three vectors (tenths, hundredths,
and thousandths) in this example required only 91 locations.

The third attractive technique to use when X has range S, is the alias method
mentioned earlier. The method requires that we initially calculate two arrays of
length n + 1 each, from the given p(i)’s. The first array contains what are called the
cutoff values F, € [0, 1] fori = 0,1, . . . » 1, and the second array gives the aliases
Les, fori=0,1,..., 1 wo algorithms for computing valid cutoff values and
&m.mmom from the p(i)’s are given in App. 8B. (The cutoff values and aliases are not

tables becomes more marked g
ncreases; in his original example

ever.) Then the alias method is as follows:

L. Generate / ~ DU(0, n) and U/ ~ U(0, 1) independent of /.
2. IfU=F,retum X = J. Otherwise, return X = i

Thus, step 2 involves a kind of “rejection,”

ay (o cut 1 %
- Pk s&mnrx ut the storage in half (see Prob. 8.18). In any
method if n could be very large,

EXAMPLE §.13, Col

nsider ;
mass function p(0) = [\ random variable

= ith probability
0.1, p(1) = 0.4, p2) = on S, = {0, 1, 2, 3} with pr

02, and p(3) = 0.3. Applying the firs

CHAPTER EIGHT 463

algorithm in App. 8B leads to the following setup:

i 0 1 2 3
p(i) 0.1 04 02 03
F 04 0.0 038 0.0
L, 1 1 3 3

For instance, if step 1 of the algorithm produces / = 2, the probability is F, = 0.8 that
we would keep X =11 =2, and with probability 1 — F, =02 we would return
X = L, = 3 instead. Thus, since 2 is not the alias of anything else (i.e., none of the other
L s is equal to 2), the algorithm returns X = 2 if and onlyif/ = 2instep l and U = 0.8
:.“ step 2, so that

PX=2)=P(=2and U < 0.8)
=PI =2)P(U=0.8)
=025x%08
=02

ichi i ity in the above follows since U/ and
which is equal to p(2), as desired. (The second equality in 1 2t
[are generated independently.) On the other hand, the &mE.EE_ can return X 3 3 ~_=2<o
different (and mutually exclusive) ways: if [= 3, then since F,=0 we will al ,anlm
return X = L, = 3; and if / = 2 we will return X = L, = 3 with probability | — F, =
0.2. Thus,
PX=3)=Pl=3)+Pl=2andU > F,)
=025 + (025 X 0.2)
=03

which is p(3). The reader is encouraged to verify w_:: En Emoﬂ@:: _mmnﬂ—uMnan.:MoaMm. m.o-m
and 1 as well. Figure 8.14 illustrates the method m._,m:osw_n. m_.mﬂ._ﬁ - g o
whose (total) height is 1/(n + 1) = 0.25, and thus is the E.oga:__w ﬂﬂmm e
generated in step 1. The shaded areas in the bars represent the _.u_.M_ R M W»_ e
moved by the method, and the number in each mrnn_.ma areais &m v .MM “ echaebans
turned as X. Thus, if step 1 generates [= 0, there is a E,ocmw.__ém_ nanMo.En,wﬂcE.
this 7 will be changed into its alias, L, = 1, for the returned X.c&nm.“&»n ek
s osormipnon
1~ F, = 0.2 of the 0.25-high bar (resu i N
0.05) above 2 represents the chance that a generated I = 2 S:m.cﬂnwrwumcﬂ..ﬂ NMB :
L, = 3. Note that the entire bars above 1 and 3 are shaded. msnh ot really get maved:
however, the indicated values are their own w—_munm. mn”». they do n et
Figure 8.14b shows the probability mass Spcion o*.u_ : Rp:a it is seen to equal the
areas (probabilities) are moved to their destination values,
desired probabilities p(i). ; S D
Although the alias method is limited to discrete Bummﬂ “_.a_..n..w””o e
range, it can be used indirectly for discrete .m__mﬁccnos g i B S
as the geometric, negative binomial, or Poisson, by co

: tive integer, we can
composition method. For example, if X' can Lt et -

|;-) 1 t —,. so that the
eXamine the p(i)'s to find an n such that ¢ = Zhuopli)is closeito

Scanned with CamScanner

464 GENERATING RANDOM VARIATES

—_
—
a

(a)

04

0.3

0 | 3 - FIGURE 8.14
®) Setup for the alias method in
Example 8.13.

probability is high that X S, Since for any i we can write

Sl A
PO =gl P10 + 1 -) 21y,
. — Q n
we obtain the following general algorithm:
1. Generate U/ ~ ,
2. Use the Mmmm Bmﬁmwh wohwomw M £0 to step 2. Otherwise, go to step 3.
e on §, with probability mass function p(i)/4 for

3. Use any other method to return X op

function p(i)/(1 — q) for ; {n + 1,n +2,.. .} with probability mass

Hu+_'=+w..f.

In step 3, we could ;
chosen to make ¢ nno“%%u_a JVETSe-transform method, for example. Since # WS
» We would expect to avoid step 3 most of the time-

CHAPTER EIGHT 465

Finally, we note that all the table-based methods discussed above, as well as the
alias method, require some effort in an initial setup stage. Thus, they moc_n be unat-
gractive if the _:ocmc_:a‘. mass function changes frequently c<.2 time as the simu-
Jation proceeds. An n._nmn_n.:_ method for general discrete-variate generation in this
case was developed by Rajasekaran and Ross (1993),

o W

§.4.4 Binomial o

To generate a bin(z, p) random variate, recall from Sec. 6.2.3 that the sum of ¢ IID
Bernoulli(p) random variables has the bin(t, p) distribution. This relation leads to
the following convolution algorithm:

1. Generate Y|, Y,, ..., Y, as IID Bernoulli(p) random variates.
2. Retum X = Y, + B+ Y.

Since the execution time of this algorithm is proportional to #, we might want to look
for an alternative if 7 is large. One possibility would be the direct inverse-transform
method with an efficient search. Another alternative is the alias method (see
Sec., 8.4.3), since the range of X is finite. Finally, algorithms specific to the binomial
distribution that are efficient for large t are discussed by Ahrens and Dieter (1974)
and Kachitvichyanukul and Schmeiser (1988).

84.5 Geometric "7

The following algorithm is equivalent to the inverse-transform method if we replace
Uby 1 — U in step 2 (see Prob. 8.14):

1. Generate U ~ U(0, 1).
2. Return X = LIn U/In (1 — p)l

The constant In (1 — p) should, of course, be computed beforehand. If p is near 0,
In(1 — p) will also be near zero, so that double-precision arithmetic should be
considered to avoid excessive roundoff error in the division in step 2. For p near L
In (1 — p) will be a large negative number, which also could cause numerical diffi-
culties; fortunately, for large p it is more efficient to use an altogether different
algorithm based on the relationship between geometric and Bernoulli random vari-
ables described in Sec. 6.2.3 (see Prob. 8.14).

/S;ai

8.4.6 Negative Binomial (ual

The relation between the negbin(s, p) and geom(p) distributions in Sec. 6.2.3 leads

to the following convolution algorithm:

L. Generate v,, 7,, . . ., Y,as IID geom(p) random yacb=s,

N.ngku%_+w~+.i+ﬁ, . .
This is simple, but its execution time is E”ono&osw_ to .M_u”oa ﬁ_.w.w muu ﬁn“mﬂ.ﬁ”
EmEHmemS%&HEEé method discussed in Fishman :

Scanned with CamScanner

466 GENERATING RANDOM VARIATES

use of a special relationship between the :omm:.<..,,. binomial, gamma, ap d Poisg
distributions; its efficiency depends on the m_u_:Q to ma:.ma_n rapidly froth 5:
gamma and Poisson distributions. Other alternatives are discussed in Aprep ,

NS dang
Dieter (1974).

8.4.7 Poisson

Our algorithm for generating Poisson(A) random variates is based essentially op the
relationship between the Poisson(A) and expo(1/A) distributions stated ip
Sec. 6.2.3. The algorithm is as follows:

1. Leta=¢* b= 1,andi = 0.

2. Generate U,,, ~ U(0, 1) and replace b by bU, . If b < a, return X = ;. Other.
wise, go to step 3.

3. Replace i by i + 1 and go back to step 2.
The algorithm is justified by noting that X = i if and only if

]

ig-

i+1
p=1<S Y
i j=1

where ﬁ, = Alp\\s In Qg ~ expo(1/A) and the Y's are independent. That is,
X = max{i: >

2=y Y, =1}, so that X ~ Poisson(A) by the first comment in the
description of the Poisson distribution in Table 6.4.

Unfortunately, this algorithm becomes slow as A increases, since a large A
means that @ = ¢ is smaller, requiring more executions of step 2 to bring the cu-
mulative product of the U, ;s down under a. [In fact, since X is 1 less than the num-
ber of U, ,'s required, the expected number of executions of step 2 is E(X) + 1 =
AR B S0 that execution time grows with A in an essentially linear fashion.] One
alternative would be to use the alias method in concert with the composition ap-
_uﬂmn: (since the range of X is infinite), as described in Sec. 8.4.3. Another possi-
bility would be the inverse-transform method with an efficient search. Atkinson
(1979b, G.BS. examined several such search procedures and reported that an in-
dexed search similar to the method of Chen and Asau (1974), discussed earlier in

Sec. 8.3.16, performed well. (This search procedure, called PQM by Atkinson,
requires a small amount of setup and extra storage but is still quite simple to imple-
ment.) Other fast methods of generating Poisson variates are given by Devroyé
(1981) and by Schmeiser and Kachitvichyanuku] (1981) :

8.5

GENERATING RANDOM VE RRE
CTORS, CO RANDOM
VARIATES, AND STOCHAST]C Eﬂonmmmmmrﬁmc

-

CHAPTER EIGHT 467

[n some simulation models, however, we m

ay want to generate a random
= T - s .

yector X = (X, Xo, ... X,)" from a specified joint (or muitivariate) distribution,
where the individual components of the vector might not be independent. (A" de-

potes the transpose of a vector or matrix A.) Even if we cannot specify the exact,
full joint distribution of X;, kq -+« X;, we might want to generate them so that
the individual X/'s _:Ea specified univariate distributions (called the marginal dis-
iributions of the X,'s) and so that the correlations, p;» between X, and X, are spec-
ified by the modeler. In Sec. 6.10 we discussed the need for modeling these sit-
uations, and in this section we give examples of methods for generating such
correlated random variates and processes in some specific cases. There are several
other problems related to generating correlated random variates that we do not dis-
cuss explicitly, e.g., generating from a multivariate exponential distribution: we
refer the reader to Johnson (1987), Johnson, Wang, and Ramberg (1984), Fishman
(1973a, 1978), Mitchell and Paulson (1979), Marshall and Olkin (1967), and
Devroye (1997).

8.5.1 Using Conditional Distributions

Suppose that we have a fully specified joint distribution function
Fy xo . x;(s X oo x,) from which we would like to generate a random vector
X = (X, X,...., X, Also assume that for i = 2, 3,...,d we can obtain the
conditional distribution of X, given thatX; = x forj = 1.2, ..., i = 1; denote the
conditional distribution function by Fix;|x;, X, ..., X_,). [See any probability
text, such as Mood, Graybill, and Boes (1974, chap. IV) or Ross (2003, chap. wv. for
a discussion of conditional distributions.] In addition, let Fy, (x;) be the marginal
distribution function of X; fori = 1,2, .. ., d. Then a general m_moaﬁu_ for gener-
ating a random vector X with joint distribution function Fy . = x 1535 follows:

1. Generate X, with distribution function Fy .
2. Generate X, with distribution function F5(: | X))
3. Generate X, with distribution function Fy(- |X,, X5).

d. Generate X, with distribution ?nnmo: Fy(| X X s X
¢+ 1. Reurn X = (X, X,, . - - - X) -

Note that in steps 2 through d the ooz&mosm__ distributions used MHM h_wﬂmn:”cwnﬁw Ew

Previously generated X,'s; for example, if X 18 the <om_.=.n m’ﬁ..ﬂnwwn . ?wo - omvEm

the conditional distribution function used in step 2 18 &wﬁo H.“&_ &mﬂr Ereasksiti

Validity of this algorithm relies on the definition of con

left to the read . I ;
e mnmmn Mamm this approach may be, its practical utility is probably quite

IR R e e
limited. Not only is specification of the entire hoﬁwﬁwﬂwmﬁncm”“:h&ﬂ nn
also derivation of all the required marginal and conditio!

Scanned with CamScanner

