


§ Mengubah fungsi dari sistem fisis (domain waktu) ke fungsi variabel kompleks (domain s) 

§ Menyederhanakan persamaan matematis yang mengandung operasi turunan/differensial atau
integral menjadi persamaan yang berisi perkalian atau pembagian biasa

§ Dapat mengubah fungsi umum (fungsi sinusoida, sinusoida teredam, fungsi eksponensial) 
menjadi fungsi-fungsi aljabar variabel kompleks

§ Persamaan diferensial yang berada dalam kawasan waktu (t), ditransformasikan ke kawasan
frekuensi (s) dengan transformasi Laplace. 

§ Untuk mempermudah proses transformasi dapat digunakan tabel transformasi laplace. 

§ Persamaan yang diperoleh dalam kawasan s tersebut adalah persamaan aljabar dari variabel s 
yang merupakan operator Laplace. 

§ Penyelesaian yang diperoleh kemudian ditransformasi-balikkan ke dalam kawasan waktu. 

§ Hasil transformasi balik ini menghasilkan penyelesaian persamaan dalam kawasan waktu. 



1. Hukum Kirchhoff 1 ; Arus total yang masuk melalui suatu titik percabangan dalam
suatu rangkaian listrik sama dengan arus total yang keluar dari percabangan
tersebut

2. Hukum Kirchhoff 2 ; Total tegangan ( beda potensial ) pada suatu rangakaian tertutup
adalah nol

3. Hukum Newton 1; Jika resultan gaya yang bekerja pada benda yang sama dengan
nol, maka benda yang mula-mula diam akan tetap diam. Benda yang mula-mula
bergerak lurus beraturan akan tetap lurus beraturan dengan kecepatan tetap

4. Hukum Newton 2; Percepatan (perubahan dari kecepatan) dari suatu benda akan
sebanding dengan resultan gaya (jumlah gaya) yang bekerja pada benda tersebut
dan berbanding terbalik dengan massa benda

5. Hukum Newton 3; Setiap aksi akan menimbulkan reaksi, jika suatu benda
memberikan gaya pada benda yang lain maka benda yang terkena gaya akan
memberikan gaya yang besarnya sama dengan gaya yang diterima dari benda
pertama, tetapi arahnya berlawanan
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Model Matematis untuk Rangkaian Elektrik(1)

Dalam bentuk Laplace : (anggap kondisi mula = 0)

Fungsi alih :
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Transformasi Laplace :

Fungsi Alih :
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Equations (3–24) and (3–25) give a mathematical model of the circuit.
A transfer-function model of the circuit can also be obtained as follows: Taking the

Laplace transforms of Equations (3–24) and (3–25), assuming zero initial conditions,
we obtain

If ei is assumed to be the input and eo the output, then the transfer function of this system
is found to be

(3–26)

A state-space model of the system shown in Figure 3–7 may be obtained as follows: First,
note that the differential equation for the system can be obtained from Equation (3–26) as

Then by defining state variables by

and the input and output variables by

we obtain

and

These two equations give a mathematical model of the system in state space.

Transfer Functions of Cascaded Elements. Many feedback systems have com-
ponents that load each other. Consider the system shown in Figure 3–8. Assume that ei

is the input and eo is the output. The capacitances C1 and C2 are not charged initially.
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Electrical system.
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It will be shown that the second stage of the circuit (R2C2 portion) produces a loading
effect on the first stage (R1C1 portion). The equations for this system are

(3–27)

and

(3–28)

(3–29)

Taking the Laplace transforms of Equations (3–27) through (3–29), respectively, using
zero initial conditions, we obtain

(3–30)

(3–31)

(3–32)

Eliminating I1(s) from Equations (3–30) and (3–31) and writing Ei(s) in terms of I2(s),
we find the transfer function between Eo(s) and Ei(s) to be

(3–33)

The term R1C2s in the denominator of the transfer function represents the interaction
of two simple RC circuits. Since the two roots
of the denominator of Equation (3–33) are real.

The present analysis shows that, if two RC circuits are connected in cascade so
that the output from the first circuit is the input to the second, the overall transfer
function is not the product of and The reason for this
is that, when we derive the transfer function for an isolated circuit, we implicitly as-
sume that the output is unloaded. In other words, the load impedance is assumed to
be infinite, which means that no power is being withdrawn at the output.When the sec-
ond circuit is connected to the output of the first, however, a certain amount of power
is withdrawn, and thus the assumption of no loading is violated.Therefore, if the trans-
fer function of this system is obtained under the assumption of no loading, then it is
not valid. The degree of the loading effect determines the amount of modification of
the transfer function.
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EXAMPLE 3–8 Figure 3–16 shows an electrical circuit involving an operational amplifier. Obtain the output eo.
Let us define

Noting that the current flowing into the amplifier is negligible, we have

Hence

Since we have

Taking the Laplace transform of this last equation, assuming the zero initial condition, we have

which can be written as

The op-amp circuit shown in Figure 3–16 is a first-order lag circuit. (Several other circuits involving
op amps are shown in Table 3–1 together with their transfer functions. Table 3–1 is given on
page 85.)
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Figure 3–16
First-order lag circuit
using operational
amplifier.
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§ Pendekatan dengan diagram blok
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Complex Impedances. In deriving transfer functions for electrical circuits, we
frequently find it convenient to write the Laplace-transformed equations directly,
without writing the differential equations. Consider the system shown in Figure 3–9(a).
In this system, Z1 and Z2 represent complex impedances. The complex impedance 
Z(s) of a two-terminal circuit is the ratio of E(s), the Laplace transform of the 
voltage across the terminals, to I(s), the Laplace transform of the current through 
the element, under the assumption that the initial conditions are zero, so that
Z(s)=E(s)/I(s). If the two-terminal element is a resistance R, capacitance C, or
inductance L, then the complex impedance is given by R, 1/Cs, or Ls, respectively. If
complex impedances are connected in series, the total impedance is the sum of the
individual complex impedances.

Remember that the impedance approach is valid only if the initial conditions
involved are all zeros. Since the transfer function requires zero initial conditions, the
impedance approach can be applied to obtain the transfer function of the electrical
circuit. This approach greatly simplifies the derivation of transfer functions of elec-
trical circuits.

Consider the circuit shown in Figure 3–9(b).Assume that the voltages ei and eo are
the input and output of the circuit, respectively. Then the transfer function of this
circuit is

For the system shown in Figure 3–7,

Hence the transfer function Eo(s)/Ei(s) can be found as follows:

which is, of course, identical to Equation (3–26).

Eo(s)
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=

1
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Figure 3–9
Electrical circuits.
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Consider the circuit shown in Figure 3–9(b).Assume that the voltages ei and eo are
the input and output of the circuit, respectively. Then the transfer function of this
circuit is

For the system shown in Figure 3–7,

Hence the transfer function Eo(s)/Ei(s) can be found as follows:

which is, of course, identical to Equation (3–26).
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In terms of vector-matrix equations, we have

(3–22)

(3–23)

Equations (3–22) and (3–23) give a state-space representation of the inverted-pendulum system.
(Note that state-space representation of the system is not unique. There are infinitely many such
representations for this system.)

By1

y2
R = B1 0 0 0

0 0 1 0
R Dx1

x2

x3

x4

T
Dx# 1

x# 2

x# 3

x# 4

T = F 0
M + m

Ml
g

0

- m
M

g

1

0

0

0

0

0

0

0

0

0

1

0

V Dx1

x2

x3

x4

T + F 0

- 1
Ml
0
1

M

Vu

3–3 MATHEMATICAL MODELING OF ELECTRICAL SYSTEMS

Basic laws governing electrical circuits are Kirchhoff’s current law and voltage law.
Kirchhoff’s current law (node law) states that the algebraic sum of all currents entering and
leaving a node is zero. (This law can also be stated as follows: The sum of currents enter-
ing a node is equal to the sum of currents leaving the same node.) Kirchhoff’s voltage law
(loop law) states that at any given instant the algebraic sum of the voltages around any loop
in an electrical circuit is zero. (This law can also be stated as follows:The sum of the volt-
age drops is equal to the sum of the voltage rises around a loop.) A mathematical model
of an electrical circuit can be obtained by applying one or both of Kirchhoff’s laws to it.

This section first deals with simple electrical circuits and then treats mathematical
modeling of operational amplifier systems.

LRC Circuit. Consider the electrical circuit shown in Figure 3–7. The circuit con-
sists of an inductance L (henry), a resistance R (ohm), and a capacitance C (farad).
Applying Kirchhoff’s voltage law to the system, we obtain the following equations:

(3–24)

(3–25) 
1
C

 3 i dt = eo

 L 
di
dt

+ Ri + 1
C

 3 i dt = ei

L

eo

R

Cei

iFigure 3–7
Electrical circuit.
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Complex Impedances. In deriving transfer functions for electrical circuits, we
frequently find it convenient to write the Laplace-transformed equations directly,
without writing the differential equations. Consider the system shown in Figure 3–9(a).
In this system, Z1 and Z2 represent complex impedances. The complex impedance 
Z(s) of a two-terminal circuit is the ratio of E(s), the Laplace transform of the 
voltage across the terminals, to I(s), the Laplace transform of the current through 
the element, under the assumption that the initial conditions are zero, so that
Z(s)=E(s)/I(s). If the two-terminal element is a resistance R, capacitance C, or
inductance L, then the complex impedance is given by R, 1/Cs, or Ls, respectively. If
complex impedances are connected in series, the total impedance is the sum of the
individual complex impedances.

Remember that the impedance approach is valid only if the initial conditions
involved are all zeros. Since the transfer function requires zero initial conditions, the
impedance approach can be applied to obtain the transfer function of the electrical
circuit. This approach greatly simplifies the derivation of transfer functions of elec-
trical circuits.

Consider the circuit shown in Figure 3–9(b).Assume that the voltages ei and eo are
the input and output of the circuit, respectively. Then the transfer function of this
circuit is

For the system shown in Figure 3–7,

Hence the transfer function Eo(s)/Ei(s) can be found as follows:

which is, of course, identical to Equation (3–26).
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EXAMPLE 3–8 Figure 3–16 shows an electrical circuit involving an operational amplifier. Obtain the output eo.
Let us define

Noting that the current flowing into the amplifier is negligible, we have

Hence

Since we have

Taking the Laplace transform of this last equation, assuming the zero initial condition, we have

which can be written as

The op-amp circuit shown in Figure 3–16 is a first-order lag circuit. (Several other circuits involving
op amps are shown in Table 3–1 together with their transfer functions. Table 3–1 is given on
page 85.)

Eo(s)

Ei(s)
= -

R2

R1

1
R2 Cs + 1

Ei(s)

R1
= -

R2 Cs + 1
R2

Eo(s)

ei

R1
= -C

deo

dt
-

eo

R2

e¿ ! 0,

ei - e¿
R1

= C
dAe¿ - eoB

dt
+

e¿ - eo

R2

i1 = i2 + i3

i1 =
ei - e¿

R1
,  i2 = C

dAe¿ - eoB
dt

,  i3 =
e¿ - eo

R2

ei eo

R2
R1

C

i1

i3

i2

+

–
e9

Figure 3–16
First-order lag circuit
using operational
amplifier.
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Impedance Approach to Obtaining Transfer Functions. Consider the op-amp
circuit shown in Figure 3–17. Similar to the case of electrical circuits we discussed ear-
lier, the impedance approach can be applied to op-amp circuits to obtain their transfer
functions. For the circuit shown in Figure 3–17, we have

Since we have

(3–34)
Eo(s)

Ei(s)
= -

Z2(s)

Z1(s)

E¿(s) ! 0,

Ei(s) - E¿(s)

Z1
=

E¿(s) - Eo(s)

Z2

+

–

Eo(s)

I (s)

I (s)

Ei(s)

E9(s)
Z1(s)

Z2(s)

Figure 3–17
Operational-
amplifier circuit.

EXAMPLE 3–9 Referring to the op-amp circuit shown in Figure 3–16, obtain the transfer function Eo(s)/Ei(s) by
use of the impedance approach.

The complex impedances Z1(s) and Z2(s) for this circuit are

and

The transfer function Eo(s)/Ei(s) is, therefore, obtained as

which is, of course, the same as that obtained in Example 3-8.

Eo(s)

Ei(s)
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Z2(s)

Z1(s)
= -

R2

R1

1
R2 Cs + 1

Z2(s) = 1

Cs + 1
R2

=
R2

R2 Cs + 1
Z1(s) = R1
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§ Tentukan Transfer Function dari rangkaian elektrik berikut ini : 

Problems 99

B–3–9. Derive the transfer function of the electrical circuit
shown in Figure 3–38. Draw a schematic diagram of an
analogous mechanical system.

R1 C1

R2

C2

eoei

Figure 3–38 Electrical circuit.

+

–
C

AR1

R2

ei eo

Figure 3–39 Operational-amplifier circuit.

B–3–10. Obtain the transfer function of the 
op-amp circuit shown in Figure 3–39.

Eo(s)!Ei(s)

+

–

C A

B

R1

R2

R3

ei eo

Figure 3–40 Operational-amplifier circuit.

B–3–11. Obtain the transfer function of the 
op-amp circuit shown in Figure 3–40.

Eo(s)!Ei(s)

B–3–12. Using the impedance approach, obtain the trans-
fer function of the op-amp circuit shown in
Figure 3–41.

Eo(s)!Ei(s)

+

–
C

A

B

R1

R1

R2ei
eo

Figure 3–41 Operational-amplifier circuit.

B–3–13. Consider the system shown in Figure 3–42. An
armature-controlled dc servomotor drives a load consisting
of the moment of inertia JL . The torque developed by the
motor is T. The moment of inertia of the motor rotor is Jm .
The angular displacements of the motor rotor and the load
element are um and u, respectively. The gear ratio is

Obtain the transfer function Q (s)!Ei(s).n = u!um .

L R

T

n

ei Jm

JL

um

u

Figure 3–42 Armature-controlled dc servomotor system.
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Equations (3–24) and (3–25) give a mathematical model of the circuit.
A transfer-function model of the circuit can also be obtained as follows: Taking the

Laplace transforms of Equations (3–24) and (3–25), assuming zero initial conditions,
we obtain

If ei is assumed to be the input and eo the output, then the transfer function of this system
is found to be

(3–26)

A state-space model of the system shown in Figure 3–7 may be obtained as follows: First,
note that the differential equation for the system can be obtained from Equation (3–26) as

Then by defining state variables by

and the input and output variables by

we obtain

and

These two equations give a mathematical model of the system in state space.

Transfer Functions of Cascaded Elements. Many feedback systems have com-
ponents that load each other. Consider the system shown in Figure 3–8. Assume that ei

is the input and eo is the output. The capacitances C1 and C2 are not charged initially.
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Electrical system.
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