

Data Model as an Architectural View

Paulo Merson

October 2009

TECHNICAL NOTE

CMU/SEI-2009-TN-024

Research, Technology, and System Solutions

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2009 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for
internal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions
and derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

 SOFTWARE ENGINEERING INSTITUTE | i

Table of Contents

Acknowledgments vii

Abstract ix

1 Introduction 1
1.1 Goal of This Report 1
1.2 Structure of This Report 2

2 Data Model Overview 3

3 Elements, Relations and Constraints 5
3.1 Elements 5
3.2 Relations 6
3.3 Constraints 6

4 What the Data Model Is For 8

5 Notations for the Data Model 10
5.1 Peter Chen’s ERD Notation 10
5.2 Crow’s Foot ERD Notation 10
5.3 IDEF1X 11
5.4 UML 12

6 Relations to Other Styles 13

7 Example 15

8 Summary of the Data Model Architectural Style 16

9 Why the Data Model Is an Architectural View and What Type of View It Is 17
9.1 What Type of View Is the Data Model? 18

10 Conclusion 19

References/Bibliography 21

ii | CMU/SEI-2009-TN-024 – DRAFT – PLEASE DO NOT CIRCULATE

 SOFTWARE ENGINEERING INSTITUTE | iii

List of Figures

Figure 1: Example of a Template for an Architecture View 2

Figure 2: Conceptual Data Model – First Draft 4

Figure 3: Logical Data Model 4

Figure 4: Physical Data Model 4

Figure 5: Entity ProjectAssignment Before Normalization 7

Figure 6: Data Model for ProjectAssignment After Normalization 7

Figure 7: Simple Example Showing Peter Chen’s ERD Notation 10

Figure 8: Simple Example Showing Crow’s Foot ERD Notation 11

Figure 9: Simple Example Showing IDEF1X Notation 11

Figure 10: Simple Example Showing UML Notation 12

Figure 11: Example of a CRUD Matrix 13

Figure 12: Data Model for the Pet Shop Application 15

iv | CMU/SEI-2009-TN-024 – DRAFT – PLEASE DO NOT CIRCULATE

 SOFTWARE ENGINEERING INSTITUTE | v

List of Tables

Table 1: Summary of the Data Model Architectural Style 16

vi | CMU/SEI-2009-TN-024 – DRAFT – PLEASE DO NOT CIRCULATE

 SOFTWARE ENGINEERING INSTITUTE | vii

Acknowledgments

I want to thank Scott Ambler, Paul Clements, Rod Nord, Linda Northrop, Nick Rozanski, and

Eoin Woods for their thoughtful feedback and discussion that greatly improved the quality of this

technical note.

viii | CMU/SEI-2009-TN-024 – DRAFT – PLEASE DO NOT CIRCULATE

 SOFTWARE ENGINEERING INSTITUTE | ix

Abstract

A data model is commonly created to describe the structure of the data handled in information

systems and persisted in database management systems. That structure is often represented in

entity-relationship diagrams or UML class diagrams. These diagrams basically show data entities

and their relationships. The data model for a given system can be seen as an architectural view.

Code units (e.g., classes, packages) and runtime components (e.g., processes, threads) are most

commonly regarded as software architecture elements. However, a software architecture docu-

ment may contain architectural views that show other types of elements beyond these first class

software elements—a deployment view showing hardware nodes and deployment files is an ex-

ample. The data model showing the structure of the database in terms of data entities and their

relationships is another example. Among other practical purposes, the data model serves as the

blueprint for the physical database, helps implementation of the data access layer of the system,

and has strong impact on performance and modifiability. This technical note describes the ele-

ments, relations, constraints, and notations for the data model.

x | CMU/SEI-2009-TN-024 – DRAFT – PLEASE DO NOT CIRCULATE

 SOFTWARE ENGINEERING INSTITUTE | 1

1 Introduction

Data modeling is a common activity in the software development process of information systems,

which typically use database management systems to store information. The output of this activity

is the data model, which describes the static information structure in terms of data entities and

their relationships. This structure is often represented graphically in entity-relationship diagrams

(ERDs) or UML class diagrams.

Architectural views found in software architecture documents usually concentrate on describing

the organization and dependencies among implementation/functional units, structure and interac-

tion of runtime elements, the hardware infrastructure, and the correspondence among all of these.

The data model of a system is also an architectural view. In fact, some multi-view approaches for

architecture documentation geared towards information systems prescribe a data view [Garland

2003], data architecture view [TOGAF 2007], or information viewpoint [Rozanski 2005] that em-

bodies the data model.

The data model for a given system contains important architectural information and serves the

following practical purposes:

 Provide a conceptual description of the objects (e.g., Customer, Order, Catalog) in the sys-

tem’s domain and their relationships.

 Provide a blueprint for creating the database structure.

 Guide implementation of code units that access the database.

 Guide performance enhancements in data access operations.

 Serve as input for automatic generation of database schema and data access code.

 Facilitate stakeholder communication in domain analysis and requirements elicitation tasks.

In the early 1980s, relational database management systems became popular. Not coincidentally,

at the same time, data modeling techniques and the Information Engineering approach [Martin

1989] became common practice in many organizations. Since then many organizations that have a

family of information systems sharing data have created and maintained an enterprise data model

(EDM), also known as corporate data model. The EDM is somewhat independent of the individu-

al systems but is augmented and changed based on their requirements. Some organizations even

have a dedicated person or team (the data administrators or data analysts) to maintain the EDM.

This team pairs with the software architects in the data modeling activity and has to approve any

changes and additions to the EDM. These days, many EDMs are also driven by application inte-

gration scenarios (e.g., service-oriented architecture; messaging systems; extract, transform, load).

Regardless of whether the data model for a particular software system is kept as part of an EDM

or part of the Software Architecture Document, it describes an important structure of the auto-

mated solution.

1.1 GOAL OF THIS REPORT

The goal of this report is to describe the data model as an architectural style. The description of

the data model as an architectural style should help architects applying this style to create data

model architectural views. The style has guidelines for when it is applicable, what notations

2 | CMU/SEI-2009-TN-024

should be used, what properties of elements and relations can be recorded, what constraints may

apply, and so on.

Documenting the data model integrated with the other architectural views has the benefits de-

scribed below:

 A stakeholder of the architecture documentation will likely be interested in the data model

and vice-versa. If the data model is co-located with the other architectural views, information

is easier for the reader to find.

 Architectural views should be documented by following a template (Figure 1 shows an

example). For the data model, the primary presentation would typically contain an entity-

relationship diagram. The template requires the writer to record relevant information beyond

the diagram, such as rationale for design decisions and description of variation points. A data

model documented in a richer format is more useful for the stakeholders.

 If the data model is recorded using the same template used for other views, it is easier for the

readers to navigate and locate information because they are already familiar with the stan-

dard organization.

 Recording the relations between the data model and other views may provide insight to some

stakeholders. For example, noting which data entities in the data model will reside on each

database in the deployment view should be useful for the database administrator (DBA).

These relations are more easily captured in an architecture document that has a generic me-

chanism for recording the mapping between views.

Figure 1: Example of a Template for an Architecture View

1.2 STRUCTURE OF THIS REPORT

Sections 2 to 8 of the report reflect the information typically found in a style guide [Clements

2002]. Section 2 gives an overview of the data model style. An architectural style defines a voca-

bulary of component and connector types, and constraints on how they can be combined [Shaw

1996], so Section 3 describes the vocabulary of element and relation types, as well as constraints

that apply to data models. Section 4 discusses what the data model is for. Section 5 shows com-

mon notations used to represent data models. Section 6 discusses relations to other architectural

styles. Section 7 provides an example of a data model. Section 8 has a summary table of the data

model style. Section 9 presents an argument for considering the data model part of the software

architecture and discusses what type of architecture view it is. Section 10 has concluding remarks.

 SOFTWARE ENGINEERING INSTITUTE | 3

2 Data Model Overview

The data model simply describes the structure of data entities and their relationships. For exam-

ple, in a banking system, entities will typically include Account, Customer and Loan. Account has

several attributes, such as account number, type (savings or checking), status, and current balance.

A relationship may dictate that one customer can have one or more accounts, and one account is

associated to one or two customers.

An architectural view in general is first drafted with very little detail. Over time, as design deci-

sions are made, design details are added until the architect considers the information captured in

that architecture view to be sufficient. The same thing happens with the data model. Data model-

ing spans the evolution of the high-level model that displays the data entities in a given business

domain into a model that shows details of how the data is stored, for example, in a database man-

agement system. As a result, different organizations focus the modeling and documentation effort

on different stages of the data model evolution. Thus organizations sometimes use qualifiers to the

data model to distinguish these different stages. Examples of qualifiers include

 Conceptual. The conceptual data model abstracts implementation details to focus on the

entities and their relationships and properties that are elicited in the problem domain. It’s the

model best suited for communication with stakeholders in general. Figure 2 shows a frag-

ment of a conceptual data model of an online store order-processing system.

 Logical. The logical data model is an evolution of the conceptual data model towards a data

management technology (e.g., relational databases). It is typically the subject of normaliza-

tion (see Section 3.3). Figure 3 has an example of a logical data model.

 Physical. The physical data model is concerned with the implementation of the data entities.

It incorporates optimizations that may include partitioning or merging entities, duplicating

data, creating identification keys and indexes. For example, in Figure 4 a column ―total-

Price‖ was added to entity ―Order.‖ It was probably added as a performance optimization be-

cause the total price could also be obtained by reading all order items and adding up their

prices.

In this report all of these variations are treated uniformly, although the physical data model in

general is not considered architectural.

Figure 2, Figure 3, and Figure 4 represent a simplistic example of data model evolution. The dia-

grams are fragments of the data model of an online store order-processing system at different

stages. Perhaps the first draft was elaborated by the architect during discussion of requirements.

After eliciting more information, the architect created the logical data view. Later on, the physical

view was created possibly with the assistance of a DBA.

4 | CMU/SEI-2009-TN-024

Figure 2: Conceptual Data Model – First Draft

Figure 3: Logical Data Model

Figure 4: Physical Data Model

 SOFTWARE ENGINEERING INSTITUTE | 5

3 Elements, Relations and Constraints

3.1 ELEMENTS

The elements in a data model are called data entities or, as most data administrators and develop-

ers refer to them, entities.
1
 An entity is any distinguishable object that is to be represented in the

database [Date 1999]. The original paper that proposed the Entity-Relationship Model initially

describes an entity in a purely conceptual way: an entity is a ―thing‖ that can be distinctly identi-

fied [Chen 1976]. Then later the paper adds a practical caveat: ―From now on, we shall consider

only the entities and relationships (and the information concerning them) which are to enter into

the design of a database.‖ Thus, an entity can be related to any object in the real world: a car, a

person, an event, a company, and so on. But, for practical reasons, data modeling in general is

concerned with entities and respective attributes that are relevant to the software system and

hence will be persisted in the database. The same focus is true in the context of software architec-

ture documentation.

Properties of entities may include

 the name of the entity.

 a description of the meaning and significance of the entity

 list of attributes of the entity. For example, a car entity may have these attributes: year,

manufacturer, model, mileage, price, and license. Each attribute may have properties, such as

data type, size, and whether it’s a required attribute or not.

 the attribute (or attributes) that are used to uniquely identify an entity (i.e., the primary key)

 whether an entity is weak. A weak entity, also known as dependent entity, depends on the exis-

tence of another entity to exist (e.g., an OrderItem requires the existence of a PurchaseOrder in

Figure 4).

 constraints on the values of individual or combined attributes (e.g., ―returning date cannot be

prior to arrival date‖)

 rules that will be used to grant permissions to users or user groups to access the entity

 expected number of entity instances and expected growth rate

Other properties concern implementation details and only apply to the physical data model. Al-

though they may reflect architectural decisions that impact the achievement of quality attribute

requirements, the physical data model with these implementation details is often not part of the

software architecture documentation. Examples include

 a list of attributes that should be indexed to optimize access time

 a list of attributes that should be encrypted or compressed

 whether the entity should become a database view instead of a table. A database view is a

virtual table that is defined by a SQL query command on one or more tables. When a subset

of the data (or some aggregation of the data such as sums and averages) is accessed in many

1
 Strictly speaking, an entity is a particular instance of an entity set or entity type (e.g., Earth is an entity of entity

set PLANET). For simplicity, this report won’t make that distinction and will refer to entity sets/types as entities.

In physical data models, entities equate to tables or views.

6 | CMU/SEI-2009-TN-024

points of the application, defining a database view makes the application implementation

easier.

 whether the entity should become a materialized view, which means it will be implemented

as a database table that stores a subset of the data copied from a master table. Like a regular

database view, the subset is defined by a query command. The data in the materialized view

is periodically refreshed with the data in the master table. Materialized views are useful

when an entity must be accessed by applications in multiple locations or different subsets of

data must be available to different applications.

 list of database triggers that should be implemented for that entity. A trigger is a special pro-

cedure that is automatically executed by the database management system when data is in-

serted, updated, or deleted. Choosing whether a given data operation or validation will be

implemented as a database trigger or not can be an architecture decision.

3.2 RELATIONS

There are three types of relations
2
 used in data models:

 Relationship: used to designate a logical association between entities. It is usually qualified

by the cardinality of the participant entities: one-to-one, one-to-many, or many-to-many rela-

tionship. In addition, a relationship can be identifying or non-identifying.
3
 An identifying re-

lationship from A to B means that the existence of B depends on the existence of A, that is,

the primary key of B contains the primary key of A. In this case, A is the parent entity and B

is the dependent entity (B is a weak entity).

 Generalization/specialization: indicates an ―is-a‖ relation between entities. For example,

entity Insurance is a generalization of different types of insurances; at the same time entities

Car Insurance and House Insurance are specializations of entity Insurance. This relation is

more easily found in conceptual data models because it is not directly supported by relational

databases.

 Aggregation: is an abstraction that turns a relationship between entities into an aggregate

entity [Smith 1977]. For example, a relationship between a patient, a physician, and a date

can be abstracted as an aggregate entity called Appointment. In practice, this relation is rare-

ly used.

3.3 CONSTRAINTS

Conceptually, there are no topological constraints with respect to the relations in a data model.

However, the database normalization technique imposes restrictions on the data model based on

the dependencies between entities and their attributes [Date 1999]. Normalization is used by data

administrators with the main objective of avoiding duplication of information in order to safe-

guard the consistency (integrity) of the data. As an example of normalization, consider entity Pro-

jectAssignment in Figure 5. The attributes that uniquely identify a project assignment (i.e., the

primary key) are EmpId and ProjNo. One of the rules of normalization is that non-key attributes

2
 Element and relation are the generic terms for the things we find in architecture views. Not to be confused with

a (mathematical) relation that is the cornerstone for the relational theory behind relational databases.

3
 Some authors consider these to be two separate relation types.

 SOFTWARE ENGINEERING INSTITUTE | 7

should have functional dependencies to the whole primary key only. Attribute ProjDesc has a

functional dependency to ProjNo, which is not the whole primary key. After fixing this and other

violations of the normalization rules, we obtain the data model diagram shown in Figure 6.

Figure 5: Entity ProjectAssignment Before Normalization

(adapted from [Ponniah 1976])

Figure 6: Data Model for ProjectAssignment After Normalization

8 | CMU/SEI-2009-TN-024

4 What the Data Model Is For

The data model facilitates stakeholder communication during domain analysis and requirements

elicitation tasks. But foremost, the data model is the blueprint for the implementation of the data

entities, for example, in a relational database.

A carefully created data model also helps to achieve performance requirements in a software sys-

tem. In data-centric applications, access to the database usually represents a significant amount of

the time that it takes to process user requests. The architect and the data administrator should un-

derstand what kinds of data access operations will be more critical to the system and what their

performance requirements are. Driven by these requirements, denormalizations, optimizations,

and other design decisions are applied to the data model aiming at improved system performance.

Examples of these design decisions include

 merging two entities to avoid an expensive outer join or union operation in a query

 adding a derived attribute to avoid scanning an entire data table to obtain the derived value

 creating an index on attributes that are often parameters in a query

 changing the granularity (e.g., table, row, or page) and type (e.g., optimistic) of locks on cer-

tain entities to avoid contention and deadlocks

After the software system is implemented, even when the data model is carefully created, it’s

common to find performance bottlenecks in data access operations. To remove these bottlenecks,

the data model comes in handy once again in a task that is often referred to as query optimization

or SQL optimization.
4

In information systems, the data model is essential input to modifiability analysis. To analyze the

impact of required modifications to a system, one cannot look exclusively at the code structure.

Many modifications require altering the data model and hence the physical database structure. By

its nature, data in the database is often shared across applications. Therefore, modifications to the

semantics of elements in the data model other than adding entities or attributes can be costly be-

cause they may require changing the code of multiple applications. Even if the database is used by

a single application, a simple change like making a certain attribute of an entity (e.g., date of birth

for customer) mandatory may require changes to all screens and functions that allow creating or

updating that information. Versioning and redeployment of applications is more complicated

when data model changes are involved. Moreover, larger data model modifications, such as merg-

ing with the data model of a legacy system, may also require the implementation of extract, trans-

form, and load (ETL) operations to fix the data itself. Indeed, the data model is an important input

to data warehouse projects and to the integration of data schemas required by some business part-

nerships (e.g., an airline company needs to share data with a car rental company). Nevertheless,

there are techniques, such as database refactoring, that significantly reduce the effect of introduc-

ing changes to data models [Ambler 2006a].

4
 The data model doesn’t help much in identifying performance bottlenecks; it helps with understanding and fixing

them. Likewise, the plumbing diagram of a house doesn’t show pipe leaks, but once you have a leak, the dia-

gram helps you to understand and fix the problem.

 SOFTWARE ENGINEERING INSTITUTE | 9

The data model is an architectural view that should ideally be created with a thorough understand-

ing of incremental development plans, future extensions, and integration of data across informa-

tion systems. A comprehensive data model makes the extension of the system’s functionality eas-

ier in the future by precluding changes to the structure and relationships of data entities. Data is a

valuable asset and the existence of an enterprise data model and a data administration group helps

to enforce data quality. Consider the following situation: A new system needs to retrieve sales

information. The enterprise data model may already contain that information. The new system’s

architect may not be aware of the data entities that hold sales information, but the data administra-

tor is and will point out those entities instead of creating new ones in the database. Disparate, re-

dundant data is one of the primary contributing factors to poor data quality [Kendle 2005].

Based on the data model, data modeling tools can generate scripts to create the physical database.

Some tools can also generate application code to access the data tables, classes to hold the data,

forms for end-users to enter data, message schemas, and simple reports.

Finally, the data model can help application developers to write code to access the database. It is

easier to understand an entity-relationship diagram than to browse through the table creation

commands or the database management system dictionary.

.

10 | CMU/SEI-2009-TN-024

5 Notations for the Data Model

The data model can be described graphically using informal or semi-formal visual notations that

include

 Peter Chen’s entity-relationship diagram notation

 Crow’s Foot entity-relationship diagram notation

 IDEF1X

 UML class diagram

The first three notations are ERD variations and the last one is the UML alternative to ERD.

Crow’s foot and UML class diagrams are more widely used in industry and more commonly

supported by tools. The following subsections have more information on these four notations.

5.1 PETER CHEN’S ERD NOTATION

Peter Chen invented entity-relationship modeling in the mid 1970s. In his original ERD notation,

entities are represented as rectangles, and relationships are lines with a diamond-shaped symbol in

the middle. Inside the diamond is a label that describes the relationship. Cardinality is represented

explicitly as a number (0, 1, or N) at each end of the relationship. The attributes of an entity are

optionally shown as separate circles connected to the entity rectangle. This notation was later ex-

tended to show minimum and maximum cardinality at each end and to show attributes within (or

as annotation of) the entity box. Figure 7 shows the simplified data model of a human resource

system using Chen’s ERD notation.

Figure 7: Simple Example Showing Peter Chen’s ERD Notation

5.2 CROW’S FOOT ERD NOTATION

One of the most popular ERD notations uses lines for relationships with special symbols at each

end to indicate cardinality. These symbols include a dash (indicating one), a ring (indicating zero),

and a crow’s foot (indicating many). The crow’s foot ERD notation was initially used by Richard

Barker in the 1980s [Barker 1990], as well as in the Information Engineering approach developed

 SOFTWARE ENGINEERING INSTITUTE | 11

by James Martin and Clive Finkelstein [Martin 1989]. The symbology found in today’s tools pro-

vides slight variations on the Barker’s original notation and the Information Engineering notation.

Figure 8 is the simplified HR system data model using a crow’s foot ERD notation.

Figure 8: Simple Example Showing Crow’s Foot ERD Notation

5.3 IDEF1X

Integration Definition for Information Modeling (IDEF1X) was developed in the 1980s as an in-

itiative of the U.S. Air Force [IEEE 1998]. The visual notation and semantics of IDEF1X are

similar to other traditional ERD notations. There are entities with attributes; one-to-one, one-to-

many, and many-to-many relationships; and a generalization relationship (a mutually exclusive

―is-a‖ relation) between entities. Cardinality is indicated graphically by dots at the relationship

ends—a hollow dot means at most one, a solid dot means zero or more, the absence of a dot

means exactly one. Figure 9 shows the simplified HR system data model in IDEF1X notation.

Figure 9: Simple Example Showing IDEF1X Notation

12 | CMU/SEI-2009-TN-024

5.4 UML

The data model can be represented as a UML class diagram, where the classes correspond to data

entities. The attribute compartment lists the entity attributes and the operation compartment is

empty. UML associations represent the relationships between entities and the multiplicity inter-

vals (e.g., ―1..*‖) shown at both ends of the association lines indicate the cardinality of the rela-

tionship. Figure 10 is a UML class diagram that depicts the simplified HR system data model ex-

ample.

Figure 10: Simple Example Showing UML Notation

UML was originally created for object-oriented modeling, not for data modeling. Therefore, it

doesn’t provide built-in mechanisms for indicating primary keys, weak entities, or foreign keys.

In addition, class diagrams are more flexible than ERDs—for example, a class Order may include

a list of items as an attribute, whereas in an ERD Item would naturally be a separate entity. Some

constraints are needed in order to use UML class diagrams as an ERD alternative. In 2002, Scott

Ambler published a comprehensive UML profile for data modeling that uses stereotypes such as

<<Entity>> in the conceptual data model and other stereotypes such as <<Index>> in the physical

data model [Ambler 2002]. More recently, OMG issued a request for proposal for a UML 2 pro-

file for data modeling [OMG 2005].

 SOFTWARE ENGINEERING INSTITUTE | 13

6 Relations to Other Styles

The entities in the data model are intrinsically connected to some of the modules in the module

view, especially the modules that contain the in-memory representation of the data. In object-

oriented systems that use a relational database, we typically find classes that correspond to the

entities in the data model.
5
 The mapping is not always one-to-one because the entities are stored

in a relational database and the relational paradigm has fundamental differences to the object-

oriented paradigm. This problem is known as the object-relational impedance mismatch [Ambler

2006b] and is addressed by object-relational mapping (ORM) tools and frameworks, such as Hi-

bernate for Java and LLBLGen for Microsoft .NET.

The architect may find it useful to indicate which modules (in a module view), which components

(in a component and connector view), or even which use cases from the functional requirements

use which data entities. Moreover, the architect can indicate whether each element creates, reads,

updates, or deletes data from each data entity. This generic mapping can be represented as a

CRUD matrix [Brandon 2002]. Figure 11 shows an example of a CRUD matrix for a system that

sells travel packages online.

Figure 11: Example of a CRUD Matrix

The rows are modules (implementation units) and the columns are entities from the data model.

5
 In UML, it’s common to use the <<entity>> stereotype for these classes.

14 | CMU/SEI-2009-TN-024

The data model describes the structure of data entities and relationships that will typically be dep-

loyed to a shared data store component such as an Oracle database. Data stores are typically de-

picted in a component and connector view of the architecture, along with the other runtime com-

ponents that access them. Also, a deployment view typically shows which machine(s) the data

stores are allocated to. Documenting the mapping of entities in a data model to different data

stores and the mapping of data stores to specific machines is especially useful when the solution

uses distributed or replicated databases.

 SOFTWARE ENGINEERING INSTITUTE | 15

7 Example

Figure 12 shows the data model reconstructed and adapted from the Microsoft .NET Pet Shop

application [Microsoft 2002]. It is a web store that keeps a catalog of pets and takes purchase or-

ders from registered web users. The data is persisted in a relational database. The majority of the

functionality consists of retrieving, creating, or updating the data elements shown in the data

model. The entity-relationship diagram uses the Information Engineering crow’s foot notation.

Figure 12: Data Model for the Pet Shop Application

16 | CMU/SEI-2009-TN-024

8 Summary of the Data Model Architectural Style

Table 1 has a summary of the data model described as an architectural style.

Table 1: Summary of the Data Model Architectural Style

Overview Describes how information manipulated by the system is structured as a set of data entities
and their relationships.

Elements Data entity. Properties include

 name

 list of attributes and their data types

 what attributes identify an entity (primary key)

 rules used to grant permissions to users or user groups to access the entity in the data-

base

 expected number of entity instances and expected growth rate

Relations one-to-one, one-to-many, and many-to-many relationships

 generalization/specialization

Constraints Database normalization is often used to impose restrictions based on dependencies between

entities and their attributes to avoid duplication of information

What it’s for serves as the blueprint for the physical database

 helps stakeholder communication during domain analysis and requirements elicitation

 helps to analyze performance of transactions that involve database operations

 helps in modifiability analysis to assess the impact of changes that involve the database

structure

 enables code generation of data table creation scripts and data access code

 SOFTWARE ENGINEERING INSTITUTE | 17

9 Why the Data Model Is an Architectural View and What

Type of View It Is

The software architecture of a system comprises the structures of the system, each one containing

elements and relations. These structures are documented as architectural views. Different systems

contain different structures and the architecting effort will focus on different aspects of the design

and produce different architectural views. For example, architectural design of information sys-

tems emphasizes data modeling, and architecture design of telecommunication software empha-

sizes continuous operation, live upgrade, and interoperability [Hofmeister 2007].

The data modeling activity starts in the problem space, where its main purpose is to elicit and de-

scribe the domain objects that are manipulated by the system. However, data modeling crosses the

boundary between problem and solution space because the data model ultimately describes the

structure of the database. For example, a relational database with data tables, foreign keys, data-

base views, indexes, and other elements may be an essential component of the software system

solution.

Section 4 describes how the data model embeds architecturally significant design decisions that

affect modifiability and performance. That whole section serves as the argument for considering

the data model an architectural view. But one may argue that software architecture documentation

should focus exclusively on software elements. Architectural views that fall into the category of

module views, also known as code views, show the structure of code units (e.g., classes, pro-

grams, packages) and undoubtedly describe software elements of a system. Views in the compo-

nent and connector (C&C) category, also known as runtime views, describe the structure of com-

ponents (e.g., DLLs, EJBs, data stores, threads, and processes) and their runtime connections.

C&C views certainly show a perspective of the software system as well. Nevertheless, there is a

third category of architectural views whose focus is not software elements. These show primarily

non-software resources in the environment that are required or affected by the software system.

Examples of these views include

 a view that shows primarily the hardware infrastructure with server machines, database serv-

ers, client machines, network channels, firewalls, and other computing or communication

nodes, along with indication of what files are deployed to each machine

 a view that shows the tree structure of folders, subfolders, and files used in the development

environment, production environment, or deployment artifacts

 a view that describes the human resources available or assigned to implement, test, deploy,

and maintain the software system

In the context of the software architecture, these views showing environmental resources become

relevant as long as there is a relation between the non-software resources they show and the soft-

ware elements that live in module or C&C views. For that reason, these views have been called

allocation views because they should show the allocation of software elements to environment

resources [Clements 2002].

18 | CMU/SEI-2009-TN-024

9.1 WHAT TYPE OF VIEW IS THE DATA MODEL?

In what category of architectural views does the data model fit? There are at least two possible

answers:

1. We could say the data model is a module view. In that case, the notion of modules as code

units [Clements 2002] has to be generalized to encompass both traditional implementation

units and data entities. A data entity would be regarded as a software module. A broad gene-

ralization of module views to accommodate elements beyond source code units is welcome

for another reason. Today’s development platforms and frameworks require the creation of

implementation artifacts of various natures, such as XML files and XML schemas, scripts,

configuration files, html, CSS and JSP files, and so on. These files may determine: location

of components for dynamic binding; properties of data sources, queues, and other elements;

which classes should be instantiated or injected; navigation rules for web pages; composition

of components to build a member of a product line; and so on. In other words, these ―aux-

iliary‖ files may not look like source code, but may deeply affect the way the system is built

or executed. Therefore, they should be considered architectural and described in the software

architecture.

2. The other option is to classify the data model as an allocation view, that is, a view that pri-

marily shows resources of the software environment. Akin to the views mentioned earlier

that show hardware, folders and files, and even human resources, the data model also de-

scribes a set of resources—the data entities—that will be accessed and manipulated by soft-

ware elements.

Classifying architectural views into categories is important when we teach software architecture and

explain the multiple perspectives of a generic software system. Thus, the categories are relevant in

a book or in a class about software architecture documentation. However, when we create the

software architecture document for system X, documenting a variety of views according to the

needs of the various stakeholders is far more important than labeling each view as belonging to

one or another category.

 SOFTWARE ENGINEERING INSTITUTE | 19

10 Conclusion

Data modeling is not new for software engineers. They have created entity-relationship diagrams

for decades. It is an important activity in the development of information systems that store and

access data persisted in database management systems. The data model influences modifiability

and performance.

In mid-sized organizations, one or more databases can easily store hundreds or even thousands of

tables that may be shared by multiple information systems. In many organizations, there is a

group of data administrators who watch for the integrity and tidiness of the enterprise data model.

They work together with the software architects to make sure the data model for a new system is

properly designed and integrated into the enterprise model. This data model is often created with-

out much detail (conceptual data model). As more information as well as constraints and optimi-

zations are applied, it evolves towards a physical data model that serves as the blueprint for the

database. The data model can be part of the architecture documentation. In an early stage, the do-

cumentation may contain the data model with the key entities and important relationships. Later

on, this initial model is superseded by the detailed model approved by the data administrators.

Data modeling has been recognized in some multi-view architecture approaches. The Department

of Defense Architecture Framework (DODAF) defines the OV-7 Logical Data Model as part of

the Operational View—IDEF1X and UML class diagrams are mentioned as examples of possible

notations. The OV-7 Logical Data Model is a first step towards the creation of SV-11 Physical

Schema, which is part of the Systems View, and can also be represented using entity-relationship

diagrams. The Open Group Architecture Framework (TOGAF) suggests entity-relationship dia-

grams to illustrate the Information Systems Architecture – Data Architecture views [TOGAF

2007]. The ―4+1‖ View Model of Software Architecture indicates that entity-relationship dia-

grams can be used in the logical view of very data-driven applications as an alternative to an ob-

ject-oriented modeling approach [Kruchten 1995]. Garland and Anthony prescribe the creation of

a logical data architecture that shows the structure of entities, data relationships, and constraints,

and is often referred to as data schema or logical data model [Garland 2003]. The logical data ar-

chitecture can be represented as UML class diagrams or ER diagrams. Rozanski and Woods de-

scribe the information viewpoint that captures the result of data modeling as well as information

flow and other properties of data [Rozanski 2005].

The data model has not been explicitly treated as an architectural view in the SEI Views and

Beyond approach. This report is a milestone in the production of a second edition of the Docu-

menting Software Architectures – Views and Beyond book.
6
 The new edition will fill the gap of

representing the data perspective of a software architecture using the data model style.

6
 Paul Clements; Felix Bachmann; Len Bass; David Garlan; James Ivers; Reed Little; Paulo Merson; Robert

Nord; & Judith Stafford. Documenting Software Architectures – Views and Beyond 2
nd

 ed. Addison-Wesley.

To be published.

20 | CMU/SEI-2009-TN-024

 SOFTWARE ENGINEERING INSTITUTE | 21

References/Bibliography

URLs are valid as of the publication date of this document.

[Ambler 2006a]

Scott Ambler & Pramodkumar Sadalage. Refactoring Databases: Evolutionary Database

Design. Addison-Wesley, 2006.

[Ambler 2006b]

Scott Ambler. The Object-Relational Impedance Mismatch. 2006.

http://www.agiledata.org/essays/impedanceMismatch.html

[Ambler 2002]

Scott Ambler. A UML Profile for Data Modeling.

http://www.agiledata.org/essays/umlDataModelingProfile.html (2002).

[Barker 1990]

Richard Barker. Case*Method: Entity Relationship Modelling. Addison-Wesley, 1990.

[Brandon 2002]

Daniel Brandon Jr. ―CRUD Matrices for Detailed Object Oriented Design.‖ Journal of Computing

Sciences in Colleges 18, 2, December 2002.

[Chen 1976]

Peter Chen. ―The Entity-Relationship Model—Toward a Unified View of Data.‖ ACM Transac-

tions on Database Systems 1, 1, March 1976.

[Clements 2002]

Paul Clements; Felix Bachmann; Len Bass; David Garlan; James Ivers; Reed Little; Robert Nord;

& Judith Stafford. Documenting Software Architectures: Views and Beyond. Addison-Wesley,

2002 (ISBN 0-201-70372-6).

[Date 1999]

C. J. Date. An Introduction to Database Systems, 7th ed. Addison-Wesley, 1999.

[DODAF 2007]

DoD Architecture Framework Version 1.5 – Volume II. Department of Defense, United States of

America, 2007. http://www.defenselink.mil/cio-nii/docs/DoDAF_Volume_II.pdf

[Garland 2003]

Jeff Garland & Richard Anthony. Large-Scale Software Architecture: A Practical Guide

Using UML. John Wiley & Sons, 2003.

http://www.agiledata.org/essays/impedanceMismatch.html
http://www.agiledata.org/essays/umlDataModelingProfile.html
http://www.defenselink.mil/cio-nii/docs/DoDAF_Volume_II.pdf

22 | CMU/SEI-2009-TN-024

[Hofmeister 2007]

Christine Hofmeister; Philippe Kruchten; Robert Nord; Henk Obbink; Alexander Ran; & Pierre

America. ―A General Model of Software Architecture Design Derived from Five Industrial Ap-

proaches.‖ The Journal of Systems and Software 80, 1, January 2007.

[IEEE 1998]

Institute of Electrical and Electronics Engineers. ―IEEE Standard for Conceptual Modeling Lan-

guage Syntax and Semantics for IDEF1X97 (IDEFobject).‖ IEEE Std, 1320.2-1998, IEE Stan-

dards Association, 1998.

Available through: http://ieeexplore.ieee.org/xpl/standardstoc.jsp?isnumber=16492

[Kendle 2005]

Noreen Kendle. ―The Enterprise Data Model.‖ The Data Administration Newsletter, July 2005.

[Kruchten 1995]

P Kruchten. ―The 4+1 View Model of Architecture.‖ IEEE Software 12, 6 (November 1995): 42-

50.

[Martin 1989]

James Martin. Information Engineering: Introduction. Prentice-Hall, 1989.

[Microsoft 2002]

Microsoft Developer Network. Using .NET to Implement Sun Microsystems’ Java Pet Store J2EE

BluePrint Application. 2002. http://msdn2.microsoft.com/en-us/library/ms954626.aspx

[OMG 2002]

Object Management Group. Request for Proposal – Information Management Metamodel.

http://www.omg.org/cgi-bin/doc?ab/05-12-02

[Ponniah 2007]

Paulraj Ponniah. Data Modeling Fundamentals. John Wiley & Sons, 2007.

[Rozanski 2005]

Nick Rozanski & Eóin Woods. Software Systems Architecture: Working With Stakeholders Us-

ing Viewpoints and Perspectives. Addison-Wesley Professional, 2005.

[Shaw 1996]

M. Shaw & D. Garlan. Software Architecture: Perspectives on an Emerging Discipline. Prentice

Hall, 1996 (ISBN 0-131-82957-2).

[Smith 1977]

John Miles Smith & Diane C.P. Smith. ―Database Abstractions: Aggregation and Generalization.‖

ACM Transactions on Database Systems 2, 2, June 1977.

[TOGAF 2007]

The Open Group. TOGAF 8.1.1 Online. 2007.

http://www.opengroup.org/architecture/togaf8-doc/arch/toc.html

http://msdn2.microsoft.com/en-us/library/ms954626.aspx
http://ieeexplore.ieee.org/xpl/standardstoc.jsp?isnumber=16492
http://www.omg.org/cgi-bin/doc?ab/05-12-02

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments re-
garding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquar-
ters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office
of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

October 2009

3. REPORT TYPE AND DATES

COVERED

Final

4. TITLE AND SUBTITLE

Data Model as an Architectural View

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Paulo Merson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/EI-2009-TN-024

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

 A data model is commonly created to describe the structure of the data handled in information systems and persisted in database man-

agement systems. That structure is often represented in entity-relationship diagrams or UML class diagrams. These diagrams basically

show data entities and their relationships. The data model for a given system can be seen as an architectural view. Code units (e.g.,

classes, packages) and runtime components (e.g., processes, threads) are most commonly regarded as software architecture elements.

However, a software architecture document may contain architectural views that show other types of elements beyond these first class

software elements—a deployment view showing hardware nodes and deployment files is an example. The data model showing the

structure of the database in terms of data entities and their relationships is another example. Among other practical purposes, the data

model serves as the blueprint for the physical database, helps implementation of the data access layer of the system, and has strong

impact on performance and modifiability. This technical note describes the elements, relations, constraints, and notations for the data

model.

14. SUBJECT TERMS

data model, architectural view, architectural style

15. NUMBER OF PAGES

35

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY

CLASSIFICATION OF

ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	Data Model as an Architectural View
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	1 Introduction
	2 Data Model Overview
	3 Elements, Relations and Constraints
	4 What the Data Model Is For
	5 Notations for the Data Model
	6 Relations to Other Styles
	8 Summary of the Data Model Architectural Style
	9 Why the Data Model Is an Architectural View and What Type of View It Is
	References/Bibliography

