
Modul 6 : Pengunaan Library

In this tutorial we will use the following web service to convert currencies:

http://www.webservicex.net/CurrencyC...ToCurrency=EUR

There are several important aspects in this application.

This tutorial will only briefly touch each topic.

Files

You can add files to your project using the Files tab:

45

http://www.webservicex.net/CurrencyConvertor.asmx/ConversionRate?FromCurrency=USD&ToCurrency=EUR

In our case we have two file. CountryCodes.txt is a text file containing the list of

currencies. Each line contains exactly one value.
layout1.bal is the layout file created with the designer. Layout files are

added automatically to the file manager.

Note that the layout file contains another two image files, the buttons arrows. These

files are listed in the designer. If we remove layout1.bal they will be removed from the

package as well.

The packaged files are also named assets. Locally they are stored under the Files sub

folder.

This code reads the text file and stores the data in a list:

Code:
If FirstTime Then

countries = File.ReadList(File.DirAssets, "CountryCodes.txt")

File.ReadList is a convenient method that opens a file and adds all its lines to a List.

Files are always referenced by their folder and name.
The assets are referenced by the File.DirAssets value.
Android file system is case sensitive. Which means that image1.jpg is not the same

as Image1.jpg (unlike Windows file system).

Structures

You can create new types or structures using the Type keyword. Later you can

declare variables of these new types.
Types can hold any other objects, including other types and including themselves (and

including arrays of all of these).

Structures will be covered more deeply in a different tutorial...
Structures are declared in one of the global subs.

Code:
Type MyTag (FromValue As EditText, ToValue As EditText, _

FromCurrency As Spinner, ToCurrency As Spinner)

Dim CurrentTask As MyTag

This code declares a type that holds two EditTexts (textboxes) and two

Spinners (Comboboxes).

We also declare a variable of that type named CurrentTask.

In the code you will see that we have another type named StateType which we use to

store the current state.

All views have a property named Tag. You can set this property to any object you like.

We are using it together with the Sender keyword to handle both buttons with the same

sub.

46

Libraries

As you can see in the image, the Libraries tab page shows a list of available libraries.

The checked libraries are referenced. Note that you cannot remove the reference to the

core library.

Adding additional libraries

Libraries are made of a pair of files. The xml file that describes the library and the jar

file which holds the compiled code.

Additional libraries and updates to official libraries are available here:

http://www.basic4ppc.com/forum/addit...icial-updates/

Note that only users who bought Basic4android can download these libraries.

To add a library to Basic4android all you need to do is to copy both files to a

folder recognized by Basic4android.

By default this is the 'Libraries' folder that is usually located in: c:\Program

Files\Anywhere Software\Basic4android\Libraries.

You can also configure an additional libraries folder by choosing Tools - Configure

Paths. Note that the additional folder is scanned first for libraries. This means that you

can update an existing library by putting the new files in the additional libraries folder

(there is no need to delete the old files from the internal folder).

Http library

The Http library includes three objects.

HttpClient - This is the main object that executes and manages the requests and

responses. The HttpClient can execute multiple requests concurrently.

It is very important to declare it as a Process global. The HttpClient handles requests

that run in the background and it should not be tied to the activity life cycle.

Communication is done in two steps. First a connection is established by sending a

HttpRequest object and then the response is read from the server.

The first step is always a non blocking action. It can take a long period till the connection

47

http://www.basic4ppc.com/forum/additional-libraries-official-updates/

is established and you do not want to make your application be non-responsive at this

time. Note that Android has a special "Application not responding" dialog which

allows the user to force close the application.

The second step, which is the consumption of the response can be either blocking

or nonblocking. If you download a file for example you should probably choose the

nonblocking option.

This code creates and sends the GET request.

Code:
Dim request As HttpRequest

request.InitializeGet(URL & fromCountry & "&ToCurrency="

& toCountry)
request.Timeout = 10000 'set timeout to 10 seconds
If HttpClient1.Execute(request, 1) = False Then Return 'Will

be false if their is already a running task (with the same id).
We are setting the timeout to 10 seconds which is quite short. The default is 30 seconds.

The target web service is pretty unstable, which makes things more interesting. I prefer it

to fail fast in our case.

HttpClient.Execute method receives two parameters. The first is the request object and

the second is the Task ID. This integer will be passed back in the ResponseSuccess or

ResponseError events.
It allows you to differentiate between different tasks that may be running in

the background.

HttpClient.Execute will return false if their is already a running task with the same ID.
This helps you prevent unnecessary multiple requests.
You can also check the status of running tasks with the

IsBackgroundTaskRunning keyword.

Once the response is ready, ResponseSuccess or ResponseError will be raised. If things

went well, we can now read the response, find the rate and display it. Otherwise we

display a "toast" message with the error message.

As I wrote above, this specific web service seems to be unstable so your experience

may vary.

State

As discussed in the life cycle tutorial we are required to save and restore the state of the

application. In our case the state is made of the values in the text boxes and the current

selected currencies.

48

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://www.basic4ppc.com/forum/basic4android-getting-started-tutorials/6487-android-process-activities-life-cycle.html

The following type and variable are declared in Sub Process_Globals:

Code:
Type StateType (TextUp As String, TextDown As String,

_ IndexUp As Int, IndexDown As Int)

Dim State As StateType 'This must be a process variable as

it stores the state
'and should not be released when the

activity is destroyed.

On the first run we set its values with the default values we want:

Code:
Sub ResetState

'set the starting state
State.TextUp = 1
State.TextDown = ""

State.IndexUp = 0 'USD
State.IndexDown = 43 'Euro

End Sub

Later we save and read it as needed:

Code:
Sub Activity_Resume

txtUp.Text = State.TextUp
txtDown.Text = State.TextDown

spnrUp.SelectedIndex = State.IndexUp
spnrDown.SelectedIndex = State.IndexDown

End Sub

Sub Activity_Pause (UserClosed As Boolean)

If UserClosed Then
ResetState 'reset the state to the initial settings.

Else
State.TextUp = txtUp.Text

State.TextDown = txtDown.Text
State.IndexUp = spnrUp.SelectedIndex

state.IndexDown = spnrDown.SelectedIndex
End If

End Sub

In Activity_Resume we read the values and set the required views. Note that

Activity_Resume is called right after Activity_Create. So it will also be called on the

first time we run the application.

In Activity_Pause we save the value in the state object (which is a process variable).

Note that if the user pressed on the back key (which means that he wants to close our

application) we return the state to the initial state. Therefore the user will see a "clean

new" application the next time he will run our application.

49

It is worth paying attention to this line:

Code:
CurrentTask.FromCurrency.SelectedItem.SubString2(0, 3)

CurrentTask is of type MyTag.

It has a field named FromCurrency which is of type Spinner.

Spinner has a property named SelectedItem which returns a String.

String has a method named Substring2.

Also note that this code is valid:

"abcd".Substring(2)

The complete code (file is also attached):

Code:
'Activity module

Sub Process_Globals

Dim countries As List

Dim URL As String
URL =

"http://www.webservicex.net/CurrencyConvertor.asmx/ConversionRate?FromC
urrency="

Dim HttpClient1 As HttpClient

Type StateType (TextUp As String, TextDown As String,

_ IndexUp As Int, IndexDown As Int)
Dim State As StateType 'This must be a process variable as

it stores the state
'and should not be released when the

activity is destroyed.
End Sub

Sub Globals

Dim txtUp, txtDown As EditText
Dim spnrUp, spnrDown As Spinner
Dim btnUp, btnDown As Button
Type MyTag (FromValue As EditText, ToValue As EditText, _

FromCurrency As Spinner, ToCurrency As Spinner)

Dim CurrentTask As MyTag
End Sub
Sub ResetState

'set the starting state

State.TextUp = 1
State.TextDown = ""

State.IndexUp = 0 'USD
State.IndexDown = 43 'Euro

End Sub

Sub Activity_Create(FirstTime As Boolean)

If FirstTime Then
Log("************************")

50

'load the list of countries

countries = File.ReadList(File.DirAssets, "CountryCodes.txt")

'initialize the HttpClient object which is responsible for all
communication.

HttpClient1.Initialize("HttpClient1")
ResetState

End If

Activity.LoadLayout("layout1")

spnrUp.AddAll(countries)
spnrDown.AddAll(countries)

Dim t1 As MyTag

t1.FromValue = txtUp
t1.ToValue = txtDown
t1.FromCurrency = spnrUp

t1.ToCurrency = spnrDown
btnDown.Tag = t1

Dim t2 As MyTag

t2.FromValue = txtDown

t2.ToValue = txtUp
t2.FromCurrency = spnrDown

t2.ToCurrency = spnrUp
btnUp.Tag = t2

End Sub

Sub Activity_Resume

txtUp.Text = State.TextUp
txtDown.Text = State.TextDown

spnrUp.SelectedIndex = State.IndexUp
spnrDown.SelectedIndex = State.IndexDown

End Sub

Sub Activity_Pause (UserClosed As Boolean)

If UserClosed Then
ResetState 'reset the state to the initial settings.

Else
State.TextUp = txtUp.Text State.TextDown =

txtDown.Text State.IndexUp =

spnrUp.SelectedIndex state.IndexDown =

spnrDown.SelectedIndex
End If

End Sub
Sub btn_Click

Dim btn As Button

btn = Sender 'Fetch the actual button that raised this event.

CurrentTask = btn.Tag 'Take the object from its Tag property.

Dim fromCountry, toCountry As String
fromCountry = CurrentTask.FromCurrency.SelectedItem.SubString2(0, 3)

'get the currency code

51

toCountry = CurrentTask.ToCurrency.SelectedItem.SubString2(0, 3)

Dim request As HttpRequest

request.InitializeGet(URL & fromCountry & "&ToCurrency="

& toCountry)
request.Timeout = 10000 'set timeout to 10 seconds
If HttpClient1.Execute(request, 1) = False Then Return 'Will

be false if their is already a running task (with the same id).
ProgressDialogShow("Calling server...")

End Sub
Sub HttpClient1_ResponseSuccess (Response As HttpResponse, TaskId

As Int)
Log("ResponseSuccess")

ProgressDialogHide
Dim result As String
result = Response.GetString("UTF8") 'Convert the response to

a string
Log(result)

Dim rate As Double
'Parse the result

i = result.IndexOf(".NET/")
If i = -1 Then

Msgbox("Invalid response.", "Error")
Return

End If
i2 = result.IndexOf2("<", i + 1)
rate = result.substring2(i + 7, i2)

Log("Rate = " & rate)
If IsNumber(CurrentTask.FromValue.Text) = False Then

Msgbox("Please enter a valid number.", "Error")

Return
End If
'Set the answer

CurrentTask.ToValue.Text = Round2(CurrentTask.FromValue.Text *

rate, 2)
End Sub

Sub HttpClient1_ResponseError (Reason As String, StatusCode As

Int, TaskId As Int)
Log(Reason)
Log(StatusCode)

ProgressDialogHide
msg = "Error connecting to server."

If reason <> Null Then msg = msg & CRLF &

Reason ToastMessageShow (msg, True)

End Sub

52

