



## **Perancangan Eksperimental**



- Tujuan: Mencari faktor yang berkontribusi sebelum dan selama eksperimen berlangsung bukan hanya setelah analisis
- Contoh Pengujian Workstation
  - CPU (Intel Dual Core, Intel Core 2 Duo, Atom)
  - RAM (DDR2 1 Gb, DDR2 2 Gb, DDR3 1 GB)
  - External DVD(1, 2, 3, 4)
- \* Beban kerja: Sekretaris, Manajer, riset
- Pengguna: Sekretaris, Dosen, Praktikan





# Istilah (Terminologi)



**Eksperimental** 

- Variabel Respon (Variabel yang diubah) Keluaran dari eksperimen merupakan kinerja yang dicapai
- Faktor Variabel pengubah (Predictor Factor) di dalam eksperimen
  - Faktor Primer: variabel pengubah yang diamati dan ditentukan nilainya
  - Faktor Sekunder: variabel pengubah yang tidak diamati tetapi mempengaruhi kinerja
- Level:

Nilai-nilai yang mungkin dari faktor, bisa berupa himpunan nilai, rentang, diskrit atau kontinu

\* Replikasi Jumlah pengulangan dari tiap-tiap eksperimen





### Istilah (Terminologi)



Langkah-langkah untuk menentukan jumlah eksperimen, level dari tiap eksperimen, jumlah replikasi eksperimen

Contoh faktorial penuh dengan 5 replikasi: (Jml CPU)(Jml RAM)(Jml DVD)(Jml Workload)(Jml User)(Replikasi:  $3 \times 3 \times 4 \times 3 \times 3 \times 5 = 1620$ 

- Unit eksperimental Entitas/penamaan dari eksperimen Contoh: Workstation berbeda, Pasien, Pemetaan tanah pertanian
- Interaksi: A dan B berinteraksi jika A tergantung pada B dan sebaliknya





# Kesalahan dalam Eksperimental



- Variasi karena error (Lingkungan, noise) tidak diatasi (isolasi atau koreksi)
- Faktor penting tidak dapat dikontrol
   Ada faktor yang tidak teramati dari parameter (beban kerja, lingkungan, sistem)
- Ada beberapa variabel pengubah yang tidak terisolasi saat menguji suatu variabel . Beberapa faktor bervariasi secara simultan
- Terlalu banyak perulangan eksperimen karena mengejar one factor one experiment
- Terlalu banyak eksperimen dalam waktu bersamaan
- Interaksi terabaikan. Efek pada satu faktor tergantung dari level faktor yang lain, interaksi tidak terlihat dari disain yg sederhana

5



#### **Tipe Perancangan Eksperimental**



- Disain Sederhana
  - Pilih konfigurasi perancangan
  - Variasikan satu faktor terhadap waktu
  - Tetapkan faktor yang menghasilkan kondisi terbaik
  - Kompleksitas: k faktor, n<sub>i</sub> level

$$n = 1 + \sum_{i=1}^{k} (n_i - 1)$$

- Masalah: Jika terjadi pengaruh urutan percobaan, maka kesimpulan menjadi salah
- Not recommended

6





- Disain Faktorial Penuh (Full Factorial Design)
  - Setiap kombinasi dicoba
  - Kompleksitas: k faktor, n<sub>i</sub> level

$$n = \prod_{i=1}^{k} n_i$$

Contoh:

(3 CPU)(3 level Memori)x(4 DVD Konfigurasi)x(3 beban kerja)x(3 Pengguna) = 324 eksperimen

- Keuntungan: efek setiapfaktor (termasuk faktor sekunder) dan interaksinya bisa terlihat dan dinilai
- Problem :Terlalu banyak eksperimen
  - · Kurangi jumlah level
  - Kurangi jumlah faktor
  - · Gunakan fractional factorial design





- 2<sup>k</sup> Factorial Design
  - Dibatasi hanya pada dua level
  - Perbnadingan :
     untuk 4 faktor pada 3 level :
     Full Factorial Design (3<sup>4</sup> desain) memerlukan 81 eksperimen
     untuk 2<sup>k</sup> faktorial memerlukan 2<sup>4</sup> = 16 eksperimen
  - Contoh 2K

| • • • • • • • • • • • • • • • • • • • • |           |             |
|-----------------------------------------|-----------|-------------|
| Faktor                                  | Level 1   | Level 2     |
| CPU                                     | Dual Core | Core 2 Duo  |
| RAM                                     | DDR2 1 Gb | DDR3 1GB    |
| DVD                                     | Tipe 1    | Tipe 2      |
| User                                    | Dosen     | Sekretariat |



8





- 2<sup>k</sup> Factorial Design
  - Dibatasi hanya pada dua level
  - Perbandingan : untuk 4 faktor pada 3 level : Full Factorial Design (3<sup>4</sup> desain)

Full Factorial Design ( $3^4$  desain) memerlukan 81 eksperimen untuk  $2^k$  faktorial memerlukan  $2^4$  = 16 eksperimen

|       |       |          | CP       | U                    |  |
|-------|-------|----------|----------|----------------------|--|
|       |       | Dual Co  | ore      | Core 2 Duo           |  |
|       |       | RAM DDR2 | RAM DDR3 | R3 RAM DDR2 RAM DDR3 |  |
| DVD 1 | Dosen |          |          |                      |  |
|       | Sekre |          |          |                      |  |
| DVD2  | Dosen |          |          |                      |  |
|       | Sekre |          |          |                      |  |
|       |       |          |          | ı                    |  |



## 2<sup>2</sup> Factorial Design



- Eksperimen 2<sup>2</sup> adalah kasus khusus dari 2<sup>k</sup> factorial design
- Terdapat 2 faktor dan 2 level
- Dapat mudah menggunakan regresi linier

Contoh: Studi kasus dampak dari ukuran memori dan ukuran cache terhadap kinerja workstation.Kinerja workstation dalam MIPS (Million Instruction Per Second)

| Cache        | Memory size | Memory Size |
|--------------|-------------|-------------|
| Size (Kbyte) | 1 GB        | 2GB         |
| 256          | 15          | 45          |
| 512          | 25          | 75          |

10





- Definisikan variabel x<sub>A</sub> dan x<sub>B</sub>:
  - $x_A = \begin{cases} -1 & \text{if 4 Mbytes memory} \\ 1 & \text{if 16 Mbytes memory} \end{cases}$   $x_B = \begin{cases} -1 & \text{if 1 kbyte cache} \\ 1 & \text{if 2 kbytes cache} \end{cases}$

Kinerja dalam y dalam MIPS:  $y = q_0 + q_{_A}x_{_A} + q_{_B}x_{_B} + q_{_{AB}}x_{_A}x_{_B}$ 

Substitusi ke model observasi:

$$15 = q_{0} - q_{A} - q_{B} + q_{AB}$$
 
$$45 = q_{0} + q_{A} - q_{B} - q_{AB}$$
 
$$25 = q_{0} - q_{A} + q_{B} + q_{AB}$$

 $75 = q_0 + q_A + q_B + q_{AB}$ 

Diperoleh:

 $y = 40 + 20x_A + 10x_B + 5x_A x_B$ 





Diperoleh :

$$y = 40 + 20x_A + 10x_B + 5x_A x_B$$

Kinerja rata-rata ; 40 MIPS Efek dari Memori : 20 MIPS Efek dari Cache : 10 MIPS

Interaksi antara memory dan cache: 5 MIPS







|   | Tabel ini<br>Cache<br>Size (Kbyte) | Memory size<br>1 GB |    | nory Size<br>GB |
|---|------------------------------------|---------------------|----|-----------------|
|   | 256<br>512                         | 15<br>25            |    | 15<br>75        |
| * | Dapat ditulis                      |                     |    |                 |
|   | Eksperimen                         | Α                   | В  | у               |
|   | 1                                  | -1                  | -1 | y1 = 15         |
|   | 2                                  | 1                   | -1 | y2 = 45         |
|   | 3                                  | -1                  | 1  | y3 = 25         |
|   | 4                                  | 1                   | 1  | y4 = 75         |



Substitusi ke model:

$$y_1 = q_0 - q_A - q_B + q_{AB}$$

$$y_2 = q_0 + q_A - q_B - q_{AB}$$

$$y_3 = q_0 - q_A + q_B - q_{AB}$$



$$\Rightarrow$$

$$q_0 = \frac{1}{4}(y_1 + y_2 + y_3 + y_4)$$

$$q_A = \frac{1}{4}(-y_1 + y_2 - y_3 + y_4)$$

$$q_B = \frac{1}{4}(-y_1 - y_2 + y_3 + y_4)$$

$$q_{AB} = \frac{1}{4}(y_1 - y_2 - y_3 + y_4)$$

TABLE 17.3 Sign Table Method of Calculating Effects In a 22 Design

| y       | AB | В  | A  | I   |
|---------|----|----|----|-----|
| 15      | 1  | -1 | -1 | 1   |
| 45      | -1 | -1 | 1  | 1   |
| 25      | -1 | 1  | -1 | 1   |
| 75      | 1  | 1  | 1  | 1   |
| Total   | 20 | 40 | 80 | 160 |
| Total/4 | 5  | 10 | 20 | 40  |





13

Sample variance of  $y = s_y^2 = \frac{\sum_{i=1}^{2^2} (y_i - \overline{y})^2}{2^2 - 1}$ 

 $\overline{y}$  mean of responses from all four experiments. Sum of Squares Total (SST):

Total variation of 
$$y = SST = \sum_{i=1}^{2^2} (y_i - \overline{y})^2$$

For a 2<sup>2</sup> design, the variation can be divided into three parts:

$$SST = 2^2 q_A^2 + 2^2 q_B^2 + 2^2 q_{AB}^2$$
 (17.1)

$$SST = SSA + SSB + SSAB$$

These parts can be expressed as a fraction; for example,

Fraction of variation explained by 
$$A = \frac{SSA}{SST}$$

When expressed as a percentage, this fraction provides an easy way to gauge the importance of the factor A.





TABLE 17.3 Sign Table Method of Calculating Effects In a 22 Design

| y       | AB | В  | $\boldsymbol{A}$ | I   |
|---------|----|----|------------------|-----|
| 15      | 1  | -1 | -1               | 1   |
| 45      | -1 | -1 | 1                | 1   |
| 25      | -1 | 1  | -1               | 1   |
| 75      | 1  | 1  | 1                | 1   |
| Total   | 20 | 40 | 80               | 160 |
| Total/4 | 5  | 10 | 20               | 40  |

$$\overline{y} = \frac{1}{4}(15 + 55 + 25 + 75) = 40$$

Total variation = 
$$\sum_{i=1}^{4} (y_i - \overline{y})^2 = (25^2 + 15^2 + 15^2 + 35^2)$$
  
=  $2100 = 4 \times 20^2 + 4 \times 10^2 + 4 \times 5^2$ 

Thus the total variation is 2100, of which 1600 (76%) can be attributed to memory, 400 (19%) can be attributed to cache, and only 100 (5%) can be 16 attributed to interaction.