
Home Automation, Networking, and Entertainment Lab

Dept. of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN

Chung-Ping Young
楊中平

ARITHMETIC & LOGIC
INSTRUCTIONS AND

PROGRAMS

The 8051 Microcontroller and Embedded
Systems: Using Assembly and C
Mazidi, Mazidi and McKinlay

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 2HANEL

ARITHMETIC
INSTRUCTIONS

Addition of
Unsigned
Numbers

ADD A,source ;A = A + source

The instruction ADD is used to add two
operands

Destination operand is always in register A
Source operand can be a register,
immediate data, or in memory
Memory-to-memory arithmetic operations
are never allowed in 8051 Assembly
language

Show how the flag register is affected by the following instruction.

MOV A,#0F5H ;A=F5 hex
ADD A,#0BH ;A=F5+0B=00

Solution:
F5H 1111 0101

+ 0BH + 0000 1011
100H 0000 0000

CY =1, since there is a
carry out from D7
PF =1, because the number
of 1s is zero (an even
number), PF is set to 1.
AC =1, since there is a
carry from D3 to D4

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 3HANEL

ARITHMETIC
INSTRUCTIONS

Addition of
Individual

Bytes

Assume that RAM locations 40 – 44H have the following values.
Write a program to find the sum of the values. At the end of the
program, register A should contain the low byte and R7 the high byte.

40 = (7D)
41 = (EB)
42 = (C5)
43 = (5B)
44 = (30)

Solution:

MOV R0,#40H ;load pointer
MOV R2,#5 ;load counter
CLR A ;A=0
MOV R7,A ;clear R7

AGAIN: ADD A,@R0 ;add the byte ptr to by R0
JNC NEXT ;if CY=0 don’t add carry
INC R7 ;keep track of carry

NEXT: INC R0 ;increment pointer
DJNZ R2,AGAIN ;repeat until R2 is zero

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 4HANEL

ARITHMETIC
INSTRUCTIONS

ADDC and
Addition of 16-
Bit Numbers

When adding two 16-bit data operands,
the propagation of a carry from lower
byte to higher byte is concerned

Write a program to add two 16-bit numbers. Place the sum in R7 and
R6; R6 should have the lower byte.

Solution:
CLR C ;make CY=0
MOV A, #0E7H ;load the low byte now A=E7H
ADD A, #8DH ;add the low byte
MOV R6, A ;save the low byte sum in R6
MOV A, #3CH ;load the high byte
ADDC A, #3BH ;add with the carry
MOV R7, A ;save the high byte sum

When the first byte is added
(E7+8D=74, CY=1).
The carry is propagated to the
higher byte, which result in 3C
+ 3B + 1 =78 (all in hex)

1
3C E7

+ 3B 8D
78 74

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 5HANEL

ARITHMETIC
INSTRUCTIONS

BCD Number
System

The binary representation of the digits
0 to 9 is called BCD (Binary Coded
Decimal) Digit BCD

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

Unpacked BCD
In unpacked BCD, the lower 4
bits of the number represent the
BCD number, and the rest of the
bits are 0
Ex. 00001001 and 00000101 are
unpacked BCD for 9 and 5

Packed BCD
In packed BCD, a single byte has
two BCD number in it, one in the
lower 4 bits, and one in the
upper 4 bits
Ex. 0101 1001 is packed BCD for
59H

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 6HANEL

ARITHMETIC
INSTRUCTIONS

Unpacked and
Packed BCD

Adding two BCD numbers must give a
BCD result

MOV A, #17H
ADD A, #28H

The result above should have been 17 + 28 = 45 (0100 0101).
To correct this problem, the programmer must add 6 (0110) to the
low digit: 3F + 06 = 45H.

Adding these two
numbers gives
0011 1111B (3FH),
Which is not BCD!

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 7HANEL

ARITHMETIC
INSTRUCTIONS

DA Instruction

DA A ;decimal adjust for addition

The DA instruction is provided to
correct the aforementioned problem
associated with BCD addition

The DA instruction will add 6 to the lower
nibble or higher nibble if need

Example:

MOV A,#47H ;A=47H first BCD operand
MOV B,#25H ;B=25H second BCD operand
ADD A,B ;hex(binary) addition(A=6CH)
DA A ;adjust for BCD addition

(A=72H)

The “DA” instruction works only on A. In other word, while the source
can be an operand of any addressing mode, the destination must be in
register A in order for DA to work.

DA works only
after an ADD,
but not after INC

6CH

72H

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 8HANEL

ARITHMETIC
INSTRUCTIONS

DA Instruction
(cont’)

Summary of DA instruction
After an ADD or ADDC instruction
1. If the lower nibble (4 bits) is greater than 9, or

if AC=1, add 0110 to the lower 4 bits
2. If the upper nibble is greater than 9, or if

CY=1, add 0110 to the upper 4 bits

Example:
HEX BCD
29 0010 1001

+ 18 + 0001 1000
41 0100 0001 AC=1

+ 6 + 0110
47 0100 0111

Since AC=1 after the
addition, ”DA A” will add 6 to the
lower nibble.
The final result is in BCD format.

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 9HANEL

ARITHMETIC
INSTRUCTIONS

DA Instruction
(cont’)

Assume that 5 BCD data items are stored in RAM locations starting
at 40H, as shown below. Write a program to find the sum of all the
numbers. The result must be in BCD.

40=(71)
41=(11)
42=(65)
43=(59)
44=(37)

Solution:
MOV R0,#40H ;Load pointer
MOV R2,#5 ;Load counter
CLR A ;A=0
MOV R7,A ;Clear R7

AGAIN: ADD A,@R0 ;add the byte pointer
;to by R0

DA A ;adjust for BCD
JNC NEXT ;if CY=0 don’t

;accumulate carry
INC R7 ;keep track of carries

NEXT: INC R0 ;increment pointer
DJNZ R2,AGAIN ;repeat until R2 is 0

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 10HANEL

ARITHMETIC
INSTRUCTIONS

Subtraction of
Unsigned
Numbers

In many microprocessor there are two
different instructions for subtraction:
SUB and SUBB (subtract with borrow)

In the 8051 we have only SUBB
The 8051 uses adder circuitry to perform
the subtraction

SUBB A,source ;A = A – source – CY

To make SUB out of SUBB, we have to
make CY=0 prior to the execution of
the instruction

Notice that we use the CY flag for the
borrow

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 11HANEL

ARITHMETIC
INSTRUCTIONS

Subtraction of
Unsigned
Numbers

(cont’)

SUBB when CY = 0
1. Take the 2’s complement of the

subtrahend (source operand)
2. Add it to the minuend (A)
3. Invert the carry

CLR C
MOV A,#4C ;load A with value 4CH
SUBB A,#6EH ;subtract 6E from A
JNC NEXT ;if CY=0 jump to NEXT
CPL A ;if CY=1, take 1’s complement
INC A ;and increment to get 2’s comp

NEXT: MOV R1,A ;save A in R1

Solution:
4C 0100 1100 0100 1100

- 6E 0110 1110 1001 0010
-22 01101 1110

CY =1

+

2’s
complement

Invert carry

CY=0, the result is positive;
CY=1, the result is negative
and the destination has the
2’s complement of the result

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 12HANEL

ARITHMETIC
INSTRUCTIONS

Subtraction of
Unsigned
Numbers

(cont’)

SUBB when CY = 1
This instruction is used for multi-byte
numbers and will take care of the borrow
of the lower operand

CLR C
MOV A,#62H ;A=62H
SUBB A,#96H ;62H-96H=CCH with CY=1
MOV R7,A ;save the result
MOV A,#27H ;A=27H
SUBB A,#12H ;27H-12H-1=14H
MOV R6,A ;save the result

Solution:

We have 2762H - 1296H = 14CCH.

A = 62H – 96H – 0 = CCH
CY = 1

A = 27H - 12H - 1 = 14H
CY = 0

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 13HANEL

ARITHMETIC
INSTRUCTIONS

Unsigned
Multiplication

The 8051 supports byte by byte
multiplication only

The byte are assumed to be unsigned data
MUL AB ;AxB, 16-bit result in B, A

MOV A,#25H ;load 25H to reg. A
MOV B,#65H ;load 65H to reg. B
MUL AB ;25H * 65H = E99 where

;B = OEH and A = 99H

Multiplication Operand1 Operand2 Result
Byte x byte A B B = high byte

A = low byte

Unsigned Multiplication Summary (MUL AB)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 14HANEL

ARITHMETIC
INSTRUCTIONS

Unsigned
Division

The 8051 supports byte over byte
division only

The byte are assumed to be unsigned data
DIV AB ;divide A by B, A/B

MOV A,#95 ;load 95 to reg. A
MOV B,#10 ;load 10 to reg. B
MUL AB ;A = 09(quotient) and

;B = 05(remainder)

Division Numerator Denominator Quotient Remainder
Byte / byte A B A B

Unsigned Division Summary (DIV AB)

CY is always 0
If B ≠ 0, OV = 0
If B = 0, OV = 1 indicates error

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 15HANEL

ARITHMETIC
INSTRUCTIONS

Application for
DIV

(a) Write a program to get hex data in the range of 00 – FFH from
port 1 and convert it to decimal. Save it in R7, R6 and R5.
(b) Assuming that P1 has a value of FDH for data, analyze program.

Solution:
(a)

MOV A,#0FFH
MOV P1,A ;make P1 an input port
MOV A,P1 ;read data from P1
MOV B,#10 ;B=0A hex
DIV AB ;divide by 10
MOV R7,B ;save lower digit
MOV B,#10
DIV AB ;divide by 10 once more
MOV R6,B ;save the next digit
MOV R5,A ;save the last digit

(b) To convert a binary (hex) value to decimal, we divide it by 10
repeatedly until the quotient is less than 10. After each division the
remainder is saves.

Q R
FD/0A = 19 3 (low digit)
19/0A = 2 5 (middle digit)

2 (high digit)
Therefore, we have FDH=253.

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 16HANEL

SIGNED
ARITHMETIC

INSTRUCTIONS

Signed 8-bit
Operands

D7 (MSB) is the sign and D0 to D6 are
the magnitude of the number

If D7=0, the operand is positive, and if
D7=1, it is negative

Positive numbers are 0 to +127
Negative number representation (2’s
complement)

1. Write the magnitude of the number in 8-bit
binary (no sign)

2. Invert each bit
3. Add 1 to it

Sign Magnitude

D7 D6 D5 D4 D3 D2 D1 D0

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 17HANEL

SIGNED
ARITHMETIC

INSTRUCTIONS

Signed 8-bit
Operands

(cont’)

Show how the 8051 would represent -34H

Solution:
1. 0011 0100 34H given in binary

2. 1100 1011 invert each bit
3. 1100 1100 add 1 (which is CC in hex)

Signed number representation of -34 in 2’s complement is CCH

Decimal Binary Hex

-128 1000 0000 80
-127 1000 0001 81
-126 1000 0010 82
...
-2 1111 1110 FE
-1 1111 1111 FF
0 0000 0000 00
+1 0000 0001 01
+2 0000 0010 02
...
+127 0111 1111 7F

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 18HANEL

SIGNED
ARITHMETIC

INSTRUCTIONS

Overflow
Problem

Examine the following code and analyze the result.

MOV A,#+96 ;A=0110 0000 (A=60H)
MOV R1,#+70 ;R1=0100 0110(R1=46H)
ADD A,R1 ;A=1010 0110

;A=A6H=-90,INVALID
Solution:

+96 0110 0000

+ +70 0100 0110
+ 166 1010 0110 and OV =1

According to the CPU, the result is -90, which is wrong. The CPU
sets OV=1 to indicate the overflow

If the result of an operation on signed
numbers is too large for the register

An overflow has occurred and the
programmer must be noticed

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 19HANEL

SIGNED
ARITHMETIC

INSTRUCTIONS

OV Flag

In 8-bit signed number operations,
OV is set to 1 if either occurs:

1. There is a carry from D6 to D7, but no
carry out of D7 (CY=0)

2. There is a carry from D7 out (CY=1), but
no carry from D6 to D7

MOV A,#-128 ;A=1000 0000(A=80H)

MOV R4,#-2 ;R4=1111 1110(R4=FEH)
ADD A,R4 ;A=0111 1110(A=7EH=+126,INVALID)

-128 1000 0000

+ -2 1111 1110
-130 0111 1110 and OV=1

OV = 1
The result +126 is wrong

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 20HANEL

SIGNED
ARITHMETIC

INSTRUCTIONS

OV Flag
(cont’)

MOV A,#-2 ;A=1111 1110(A=FEH)
MOV R1,#-5 ;R1=1111 1011(R1=FBH)
ADD A,R1 ;A=1111 1001(A=F9H=-7,

;Correct, OV=0)
-2 1111 1110

+ -5 1111 1011
-7 1111 1001 and OV=0

OV = 0
The result -7 is correct

MOV A,#+7 ;A=0000 0111(A=07H)
MOV R1,#+18 ;R1=0001 0010(R1=12H)
ADD A,R1 ;A=0001 1001(A=19H=+25,

;Correct,OV=0)
7 0000 0111

+ 18 0001 0010
25 0001 1001 and OV=0

OV = 0
The result +25 is correct

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 21HANEL

SIGNED
ARITHMETIC

INSTRUCTIONS

OV Flag
(cont’)

In unsigned number addition, we must
monitor the status of CY (carry)

Use JNC or JC instructions

In signed number addition, the OV
(overflow) flag must be monitored by
the programmer

JB PSW.2 or JNB PSW.2

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 22HANEL

SIGNED
ARITHMETIC

INSTRUCTIONS

2's
Complement

To make the 2’s complement of a
number

CPL A ;1’s complement (invert)
ADD A,#1 ;add 1 to make 2’s comp.

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 23HANEL

LOGIC AND
COMPARE

INSTRUCTIONS

AND

ANL destination,source
;dest = dest AND source

This instruction will perform a logic
AND on the two operands and place
the result in the destination

The destination is normally the
accumulator
The source operand can be a register, in
memory, or immediate

X Y X AND Y

0 0 0

0 1 0

1 0 0

1 1 1

Show the results of the following.

MOV A,#35H ;A = 35H
ANL A,#0FH ;A = A AND 0FH

35H 0 0 1 1 0 1 0 1
0FH 0 0 0 0 1 1 1 1
05H 0 0 0 0 0 1 0 1

ANL is often used to
mask (set to 0) certain
bits of an operand

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 24HANEL

LOGIC AND
COMPARE

INSTRUCTIONS

OR

ORL destination,source
;dest = dest OR source

The destination and source operands
are ORed and the result is placed in
the destination

The destination is normally the
accumulator
The source operand can be a register, in
memory, or immediate

X Y X OR Y

0 0 0

0 1 1

1 0 1

1 1 1

Show the results of the following.

MOV A,#04H ;A = 04
ORL A,#68H ;A = 6C

04H 0 0 0 0 0 1 0 0
68H 0 1 1 0 1 0 0 0
6CH 0 1 1 0 1 1 0 0

ORL instruction can be
used to set certain bits
of an operand to 1

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 25HANEL

LOGIC AND
COMPARE

INSTRUCTIONS

XOR

XRL destination,source
;dest = dest XOR source

This instruction will perform XOR
operation on the two operands and
place the result in the destination

The destination is normally the
accumulator
The source operand can be a register, in
memory, or immediate

Show the results of the following.

MOV A,#54H
XRL A,#78H

54H 0 1 0 1 0 1 0 0
78H 0 1 1 1 1 0 0 0
2CH 0 0 1 0 1 1 0 0

X Y X XOR Y

0 0 0

0 1 1

1 0 1

1 1 0

XRL instruction can be
used to toggle certain
bits of an operand

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 26HANEL

LOGIC AND
COMPARE

INSTRUCTIONS

XOR
(cont’)

The XRL instruction can be used to clear the contents of a register by
XORing it with itself. Show how XRL A,A clears A, assuming that
AH = 45H.

45H 0 1 0 0 0 1 0 1
45H 0 1 0 0 0 1 0 1
00H 0 0 0 0 0 0 0 0

Read and test P1 to see whether it has the value 45H. If it does, send
99H to P2; otherwise, it stays cleared.

Solution:
MOV P2,#00 ;clear P2
MOV P1,#0FFH ;make P1 an input port
MOV R3,#45H ;R3=45H
MOV A,P1 ;read P1
XRL A,R3
JNZ EXIT ;jump if A is not 0
MOV P2,#99H

EXIT: ...

XRL can be used to
see if two registers
have the same value

If both registers have the same
value, 00 is placed in A. JNZ
and JZ test the contents of the
accumulator.

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 27HANEL

LOGIC AND
COMPARE

INSTRUCTIONS

Complement
Accumulator

CPL A ;complements the register A

This is called 1’s complement

To get the 2’s complement, all we
have to do is to to add 1 to the 1’s
complement

MOV A, #55H
CPL A ;now A=AAH

;0101 0101(55H)
;becomes 1010 1010(AAH)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 28HANEL

LOGIC AND
COMPARE

INSTRUCTIONS

Compare
Instruction

CJNE destination,source,rel. addr.

The actions of comparing and jumping
are combined into a single instruction
called CJNE (compare and jump if not
equal)

The CJNE instruction compares two
operands, and jumps if they are not equal
The destination operand can be in the
accumulator or in one of the Rn registers
The source operand can be in a register, in
memory, or immediate

The operands themselves remain unchanged

It changes the CY flag to indicate if the
destination operand is larger or smaller

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 29HANEL

LOGIC AND
COMPARE

INSTRUCTIONS

Compare
Instruction

(cont’)

Notice in the CJNE instruction that any
Rn register can be compared with an
immediate value

There is no need for register A to be
involved

CJNE R5,#80,NOT_EQUAL ;check R5 for 80
... ;R5 = 80

NOT_EQUAL:
JNC NEXT ;jump if R5 > 80
... ;R5 < 80

NEXT: ...

Compare Carry Flag
destination ≥ source CY = 0

destination < source CY = 1
CY flag is always
checked for cases
of greater or less
than, but only after
it is determined that
they are not equal

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 30HANEL

LOGIC AND
COMPARE

INSTRUCTIONS

Compare
Instruction

(cont’)

The compare instruction is really a
subtraction, except that the operands
remain unchanged

Flags are changed according to the
execution of the SUBB instruction

Write a program to read the temperature and test it for the value 75.
According to the test results, place the temperature value into the
registers indicated by the following.

If T = 75 then A = 75
If T < 75 then R1 = T
If T > 75 then R2 = T

Solution:
MOV P1,#0FFH ;make P1 an input port
MOV A,P1 ;read P1 port
CJNE A,#75,OVER ;jump if A is not 75
SJMP EXIT ;A=75, exit

OVER: JNC NEXT ;if CY=0 then A>75
MOV R1,A ;CY=1, A<75, save in R1
SJMP EXIT ; and exit

NEXT: MOV R2,A ;A>75, save it in R2
EXIT: ...

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 31HANEL

ROTATE
INSTRUCTION

AND DATA
SERIALIZATION

Rotating Right
and Left

RR A ;rotate right A

In rotate right
The 8 bits of the accumulator are rotated
right one bit, and
Bit D0 exits from the LSB and enters into
MSB, D7

MSB LSB

MOV A,#36H ;A = 0011 0110
RR A ;A = 0001 1011
RR A ;A = 1000 1101
RR A ;A = 1100 0110
RR A ;A = 0110 0011

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 32HANEL

ROTATE
INSTRUCTION

AND DATA
SERIALIZATION

Rotating Right
and Left

(cont’)

RL A ;rotate left A

In rotate left
The 8 bits of the accumulator are rotated
left one bit, and
Bit D7 exits from the MSB and enters into
LSB, D0

MSB LSB

MOV A,#72H ;A = 0111 0010
RL A ;A = 1110 0100
RL A ;A = 1100 1001

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 33HANEL

ROTATE
INSTRUCTION

AND DATA
SERIALIZATION

Rotating
through Carry

RRC A ;rotate right through carry

In RRC A
Bits are rotated from left to right
They exit the LSB to the carry flag, and
the carry flag enters the MSB

MSB LSB

CLR C ;make CY = 0
MOV A,#26H ;A = 0010 0110
RRC A ;A = 0001 0011 CY = 0
RRC A ;A = 0000 1001 CY = 1
RRC A ;A = 1000 0100 CY = 1

CY

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 34HANEL

ROTATE
INSTRUCTION

AND DATA
SERIALIZATION

Rotating
through Carry

(cont’)

RLC A ;rotate left through carry

In RLC A
Bits are shifted from right to left
They exit the MSB and enter the carry flag,
and the carry flag enters the LSB

MSB LSBCY

Write a program that finds the number of 1s in a given byte.
MOV R1,#0
MOV R7,#8 ;count=08
MOV A,#97H

AGAIN: RLC A
JNC NEXT ;check for CY
INC R1 ;if CY=1 add to count

NEXT: DJNZ R7,AGAIN

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 35HANEL

ROTATE
INSTRUCTION

AND DATA
SERIALIZATION

Serializing Data

Serializing data is a way of sending a
byte of data one bit at a time through
a single pin of microcontroller

Using the serial port, discussed in Chapter
10
To transfer data one bit at a time and
control the sequence of data and spaces
in between them

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 36HANEL

ROTATE
INSTRUCTION

AND DATA
SERIALIZATION

Serializing Data
(cont’)

Transfer a byte of data serially by
Moving CY to any pin of ports P0 – P3
Using rotate instruction

Write a program to transfer value 41H serially (one bit at a time)
via pin P2.1. Put two highs at the start and end of the data. Send the
byte LSB first.

Solution:
MOV A,#41H
SETB P2.1 ;high
SETB P2.1 ;high
MOV R5,#8

AGAIN: RRC A
MOV P2.1,C ;send CY to P2.1
DJNZ R5,HERE
SETB P2.1 ;high
SETB P2.1 ;high

P2.1CYRegister A
D7 D0

Pin

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 37HANEL

ROTATE
INSTRUCTION

AND DATA
SERIALIZATION

Serializing Data
(cont’)

Write a program to bring in a byte of data serially one bit at a time
via pin P2.7 and save it in register R2. The byte comes in with the
LSB first.

Solution:
MOV R5,#8

AGAIN: MOV C,P2.7 ;bring in bit
RRC A
DJNZ R5,HERE
MOV R2,A ;save it

P2.7 CY Register A
D7 D0

Pin

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 38HANEL

ROTATE
INSTRUCTION

AND DATA
SERIALIZATION

Single-bit
Operations with

CY

There are several instructions by which
the CY flag can be manipulated directly

Instruction Function
SETB C Make CY = 1
CLR C Clear carry bit (CY = 0)
CPL C Complement carry bit
MOV b,C Copy carry status to bit location (CY = b)
MOV C,b Copy bit location status to carry (b = CY)
JNC target Jump to target if CY = 0
JC target Jump to target if CY = 1
ANL C,bit AND CY with bit and save it on CY
ANL C,/bit AND CY with inverted bit and save it on CY
ORL C,bit OR CY with bit and save it on CY
ORL C,/bit OR CY with inverted bit and save it on CY

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 39HANEL

ROTATE
INSTRUCTION

AND DATA
SERIALIZATION

Single-bit
Operations with

CY
(cont’)

Assume that bit P2.2 is used to control an outdoor light and bit P2.5
a light inside a building. Show how to turn on the outside light and
turn off the inside one.

Solution:
SETB C ;CY = 1
ORL C,P2.2 ;CY = P2.2 ORed w/ CY
MOV P2.2,C ;turn it on if not on
CLR C ;CY = 0
ANL C,P2.5 ;CY = P2.5 ANDed w/ CY
MOV P2.5,C ;turn it off if not off

Write a program that finds the number of 1s in a given byte.

Solution:
MOV R1,#0 ;R1 keeps number of 1s
MOV R7,#8 ;counter, rotate 8 times
MOV A,#97H ;find number of 1s in 97H

AGAIN: RLC A ;rotate it thru CY
JNC NEXT ;check CY
INC R1 ;if CY=1, inc count

NEXT: DJNZ R7,AGAIN ;go thru 8 times

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 40HANEL

ROTATE
INSTRUCTION

AND DATA
SERIALIZATION

SWAP

SWAP A

It swaps the lower nibble and the
higher nibble

In other words, the lower 4 bits are put
into the higher 4 bits and the higher 4 bits
are put into the lower 4 bits

SWAP works only on the accumulator
(A)

D7-D4before :

after : D3-D0

D3-D0

D7-D4

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 41HANEL

ROTATE
INSTRUCTION

AND DATA
SERIALIZATION

SWAP
(cont’)

(a) Find the contents of register A in the following code.
(b) In the absence of a SWAP instruction, how would you

exchange the nibbles? Write a simple program to show the
process.

Solution:
(a)

MOV A,#72H ;A = 72H
SWAP A ;A = 27H

(b)
MOV A,#72H ;A = 0111 0010
RL A ;A = 0111 0010
RL A ;A = 0111 0010
RL A ;A = 0111 0010
RL A ;A = 0111 0010

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 42HANEL

BCD AND ASCII
APPLICATION
PROGRAMS

Key ASCII (hex) Binary BCD (unpacked)

0 30 011 0000 0000 0000

1 31 011 0001 0000 0001

2 32 011 0010 0000 0010

3 33 011 0011 0000 0011

4 34 011 0100 0000 0100

5 35 011 0101 0000 0101

6 36 011 0110 0000 0110

7 37 011 0111 0000 0111

8 38 011 1000 0000 1000

9 39 011 1001 0000 1001

ASCII code and BCD for digits 0 - 9

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 43HANEL

BCD AND ASCII
APPLICATION
PROGRAMS

Packed BCD to
ACSII

Conversion

The DS5000T microcontrollers have a
real-time clock (RTC)

The RTC provides the time of day (hour,
minute, second) and the date (year,
month, day) continuously, regardless of
whether the power is on or off

However this data is provided in
packed BCD

To be displayed on an LCD or printed by
the printer, it must be in ACSII format

Packed BCD Unpacked BCD ASCII

29H 02H & 09H 32H & 39H
0010 1001 0000 0010 & 0011 0010 &

0000 1001 0011 1001

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 44HANEL

BCD AND ASCII
APPLICATION
PROGRAMS

ASCII to
Packed BCD
Conversion

To convert ASCII to packed BCD
It is first converted to unpacked BCD (to
get rid of the 3)
Combined to make packed BCD

key ASCII Unpacked BCD Packed BCD

4 34 0000 0100
7 37 0000 0111 0100 0111 or 47H

MOV A, #’4’ ;A=34H, hex for ‘4’
MOV R1,#’7’ ;R1=37H,hex for ‘7’
ANL A, #0FH ;mask upper nibble (A=04)
ANL R1,#0FH ;mask upper nibble (R1=07)
SWAP A ;A=40H
ORL A, R1 ;A=47H, packed BCD

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 45HANEL

BCD AND ASCII
APPLICATION
PROGRAMS

ASCII to
Packed BCD
Conversion

(cont’)

Assume that register A has packed BCD, write a program to convert
packed BCD to two ASCII numbers and place them in R2 and R6.

MOV A,#29H ;A=29H, packed BCD
MOV R2,A ;keep a copy of BCD data
ANL A,#0FH ;mask the upper nibble (A=09)
ORL A,#30H ;make it an ASCII, A=39H(‘9’)
MOV R6,A ;save it
MOV A,R2 ;A=29H, get the original
data
ANL A,#0F0H ;mask the lower nibble
RR A ;rotate right
RR A ;rotate right
RR A ;rotate right
RR A ;rotate right
ORL A,#30H ;A=32H, ASCII char. ’2’
MOV R2,A ;save ASCII char in R2

SWAP A

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 46HANEL

BCD AND ASCII
APPLICATION
PROGRAMS

Using a Look-
up Table for

ASCII

Assume that the lower three bits of P1 are connected to three
switches. Write a program to send the following ASCII characters
to P2 based on the status of the switches.

000 ‘0’
001 ‘1’
010 ‘2’
011 ‘3’
100 ‘4’
101 ‘5’
110 ‘6’
111 ‘7’

Solution:
MOV DPTR,#MYTABLE
MOV A,P1 ;get SW status
ANL A,#07H ;mask all but lower 3
MOVC A,@A+DPTR ;get data from table
MOV P2,A ;display value
SJMP $;stay here

;------------------
ORG 400H

MYTABLE DB ‘0’,‘1’,‘2’,‘3’,‘4’,‘5’,‘6’,‘7’
END

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 47HANEL

BCD AND ASCII
APPLICATION
PROGRAMS

Checksum Byte
in ROM

To ensure the integrity of the ROM
contents, every system must perform
the checksum calculation

The process of checksum will detect any
corruption of the contents of ROM
The checksum process uses what is called
a checksum byte

The checksum byte is an extra byte that is
tagged to the end of series of bytes of data

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 48HANEL

BCD AND ASCII
APPLICATION
PROGRAMS

Checksum Byte
in ROM
(cont’)

To calculate the checksum byte of a
series of bytes of data

Add the bytes together and drop the
carries
Take the 2’s complement of the total sum,
and it becomes the last byte of the series

To perform the checksum operation,
add all the bytes, including the
checksum byte

The result must be zero
If it is not zero, one or more bytes of data
have been changed

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 49HANEL

BCD AND ASCII
APPLICATION
PROGRAMS

Checksum Byte
in ROM
(cont’)

Assume that we have 4 bytes of hexadecimal data: 25H, 62H, 3FH, and
52H.(a) Find the checksum byte, (b) perform the checksum operation to
ensure data integrity, and (c) if the second byte 62H has been changed
to 22H, show how checksum detects the error.
Solution:
(a) Find the checksum byte.

25H The checksum is calculated by first adding the
+ 62H bytes. The sum is 118H, and dropping the carry,
+ 3FH we get 18H. The checksum byte is the 2’s
+ 52H complement of 18H, which is E8H

118H
(b) Perform the checksum operation to ensure data integrity.

25H
+ 62H Adding the series of bytes including the checksum
+ 3FH byte must result in zero. This indicates that all the
+ 52H bytes are unchanged and no byte is corrupted.
+ E8H

200H (dropping the carries)
(c) If the second byte 62H has been changed to 22H, show how

checksum detects the error.
25H

+ 22H Adding the series of bytes including the checksum
+ 3FH byte shows that the result is not zero, which indicates
+ 52H that one or more bytes have been corrupted.
+ E8H

1C0H (dropping the carry, we get C0H)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 50HANEL

BCD AND ASCII
APPLICATION
PROGRAMS

Binary (Hex)
to ASCII

Conversion

Many ADC (analog-to-digital converter)
chips provide output data in binary
(hex)

To display the data on an LCD or PC
screen, we need to convert it to ASCII

Convert 8-bit binary (hex) data to decimal
digits, 000 – 255
Convert the decimal digits to ASCII digits,
30H – 39H

	ARITHMETIC & LOGIC INSTRUCTIONS AND PROGRAMS
	ARITHMETIC INSTRUCTIONS��Addition of Unsigned Numbers
	ARITHMETIC INSTRUCTIONS��Addition of Individual Bytes
	ARITHMETIC INSTRUCTIONS��ADDC and Addition of 16-Bit Numbers
	ARITHMETIC INSTRUCTIONS��BCD Number System
	ARITHMETIC INSTRUCTIONS��Unpacked and Packed BCD
	ARITHMETIC INSTRUCTIONS��DA Instruction
	ARITHMETIC INSTRUCTIONS��DA Instruction�(cont’)
	ARITHMETIC INSTRUCTIONS��DA Instruction�(cont’)
	ARITHMETIC INSTRUCTIONS��Subtraction of Unsigned Numbers
	ARITHMETIC INSTRUCTIONS��Subtraction of Unsigned Numbers�(cont’)
	ARITHMETIC INSTRUCTIONS��Subtraction of Unsigned Numbers�(cont’)
	ARITHMETIC INSTRUCTIONS��Unsigned Multiplication ��
	ARITHMETIC INSTRUCTIONS��Unsigned Division��
	ARITHMETIC INSTRUCTIONS��Application for DIV
	SIGNED ARITHMETIC INSTRUCTIONS��Signed 8-bit �Operands
	SIGNED ARITHMETIC INSTRUCTIONS��Signed 8-bit �Operands �(cont’)
	SIGNED ARITHMETIC INSTRUCTIONS��Overflow Problem
	SIGNED ARITHMETIC INSTRUCTIONS��OV Flag
	SIGNED ARITHMETIC INSTRUCTIONS��OV Flag�(cont’)
	SIGNED ARITHMETIC INSTRUCTIONS��OV Flag�(cont’)
	SIGNED ARITHMETIC INSTRUCTIONS��2's Complement
	LOGIC AND COMPARE INSTRUCTIONS��AND
	LOGIC AND COMPARE INSTRUCTIONS��OR
	LOGIC AND COMPARE INSTRUCTIONS��XOR
	LOGIC AND COMPARE INSTRUCTIONS��XOR�(cont’)
	LOGIC AND COMPARE INSTRUCTIONS��Complement Accumulator
	LOGIC AND COMPARE INSTRUCTIONS��Compare Instruction
	LOGIC AND COMPARE INSTRUCTIONS��Compare Instruction�(cont’)
	LOGIC AND COMPARE INSTRUCTIONS��Compare Instruction�(cont’)�
	ROTATE INSTRUCTION� AND DATA SERIALIZATION� �Rotating Right and Left
	ROTATE INSTRUCTION� AND DATA SERIALIZATION� �Rotating Right and Left�(cont’)
	ROTATE INSTRUCTION� AND DATA SERIALIZATION� �Rotating through Carry
	ROTATE INSTRUCTION� AND DATA SERIALIZATION� �Rotating through Carry�(cont’)
	ROTATE INSTRUCTION� AND DATA SERIALIZATION� �Serializing Data
	ROTATE INSTRUCTION� AND DATA SERIALIZATION� �Serializing Data�(cont’)
	ROTATE INSTRUCTION� AND DATA SERIALIZATION� �Serializing Data�(cont’)
	ROTATE INSTRUCTION� AND DATA SERIALIZATION�� Single-bit Operations with CY
	ROTATE INSTRUCTION� AND DATA SERIALIZATION�� Single-bit Operations with CY�(cont’)
	ROTATE INSTRUCTION� AND DATA SERIALIZATION� �SWAP
	ROTATE INSTRUCTION� AND DATA SERIALIZATION� �SWAP�(cont’)
	BCD AND ASCII APPLICATION PROGRAMS
	BCD AND ASCII APPLICATION PROGRAMS� �Packed BCD to ACSII Conversion
	BCD AND ASCII APPLICATION PROGRAMS��ASCII to Packed BCD Conversion
	BCD AND ASCII APPLICATION PROGRAMS��ASCII to Packed BCD Conversion�(cont’)
	BCD AND ASCII APPLICATION PROGRAMS��Using a Look-up Table for ASCII
	BCD AND ASCII APPLICATION PROGRAMS��Checksum Byte in ROM
	BCD AND ASCII APPLICATION PROGRAMS��Checksum Byte in ROM�(cont’)
	BCD AND ASCII APPLICATION PROGRAMS��Checksum Byte in ROM�(cont’)
	BCD AND ASCII APPLICATION PROGRAMS�� Binary (Hex) to ASCII Conversion

