
Teknik Informatika – Universitas Komputer Indonesia

UML Diagramming and Notation

List of Material

• Introduction of UML

• Use Case Modelling

• Activity Diagram Modelling

• Sequence Diagram Modelling

• Class and Object Diagram Modelling

• State Diagram Modelling

• Deployment Diagram

IL/Best Practice Prg ITTA-7 2

Introduction of UML

IL/Best Practice Prg ITTA-7 3

UML History (1)

1. OO languages muncul pada pertengahan tahun 70 sampai 80.

2. Antara tahun 89 sampai 94, metode OO meningkat dari 10% sampai

50%.

3. Dicetuskan oleh Three Amigos:

a. Grady Booch - Fusion

b. James Rumbaugh – Object Modeling Technique (OMT)

c. Ivar Jacobson – Object-oriented Software Engineering: A Use Case

Approach (Objectory)

d. (And David Harel - StateChart)

IL/Best Practice Prg ITTA-7 4

UML History

Unification of ideas began in mid 90’s.
Rumbaugh joins Booch at Rational ’94
v0.8 draft Unified Method ’95
Jacobson joins Rational ’95
UML v0.9 in June ’96

UML 1.0 offered to OMG in January ’97
UML 1.1 offered to OMG in July ’97
Maintenance through OMG RTF
UML 1.2 in June ’98
UML 1.3 in fall ’99
UML 1.5 http://www.omg.org/technology/documents/formal/uml.htm

UML 2.0 underway http://www.uml.org/

 IL/Best Practice Prg ITTA-7 5

http://www.omg.org/technology/documents/formal/uml.htm
http://www.uml.org/

UML (Unified Modelling Language)

• An effort by IBM (Rational) – OMG to standardize OOA&D notation

• Combine the best of the best from

 Data Modeling (Entity Relationship Diagrams);

 Business Modeling (work flow); Object Modeling

 Component Modeling (development and reuse - middleware,

COTS/GOTS/OSS/…:)

• Offers vocabulary and rules for communication

• Not a process but a language

IL/Best Practice Prg ITTA-7 6

UML for Visual Modelling

IL/Best Practice Prg ITTA-7 7

Business Process

Places Order

Item

Ships the Item

via

Fulfill Order

Customer

Sales

Representative

A picture is worth a thousand words!

Building Blocks of UML

1. Things - important modelling concepts

2. Relationships – tying individual things

3. Diagram – grouping interrelated collections

of things and relationships

IL/Best Practice Prg ITTA-7 8

Structural Thing in UML

IL/Best Practice Prg ITTA-7 9

IGrade

Manage Course

Registration

Register

for Courses

Event Mgr

thread

time

Start

suspend()

stop()

 Course.cpp

Collaboration
Use Case

UnivWebServer <<interface>>

IGrade

setGrade()

getGrade()

(chain of responsibility

shared by a web of interacting objects,

structural and behavioral)

(a system service

-sequence of

Interactions w. actor)

Behavioral Thing in UML

IL/Best Practice Prg ITTA-7 10

Two primary kinds of behavioral things:

 Verbs.
 Dynamic parts of UML models: “behavior over time”
 Usually connected to structural things.

 Interaction
a set of objects exchanging messages, to accomplish a specific purpose.

 State Machine
specifies the sequence of states an object or an interaction goes through during its

lifetime in response to events.

inParty inStudy
received-an-A/

buy-beer

sober/turn-on-PC

ask-for-an-A harry: Student

name = “Harry Kid”

katie: Professor

 name = “Katie Holmes”

Group Thing in UML

IL/Best Practice Prg ITTA-7 11

• For organizing elements (structural/behavioral) into groups.
• Purely conceptual; only exists at development time.
• Can be nested.

• Variations of packages are: Frameworks, models, & subsystems.

Course Manager

Annotational Things in UML: Note

- Explanatory/Comment parts of UML models - usually called adornments

- Expressed in informal or formal text.

flexible

 drop-out dates

Course Manager
Student Admission

-Student

+Department

operation()

{for all g in children

 g.operation()

}

Relationship in UML

IL/Best Practice Prg ITTA-7 12

1. Associations

Structural relationship that describes a set of links, a link being a connection

between objects. variants: aggregation & composition

4. Dependency

a change to one thing (independent) may affect the semantics of the other thing

(dependent).

2. Generalization

a specialized element (the child) is more specific the generalized element.

3. Realization

one element guarantees to carry out what is expected by the other element.

(e.g, interfaces and classes/components; use cases and collaborations)

UML 1.x VS UML 2.0

IL/Best Practice Prg ITTA-7 13 13

Behavioral Diagrams

Represent the dynamic aspects.

 Use case

 Sequence;

 Collaboration

 Statechart

 Activity

Structural Diagrams

Represent the static aspects of a

system.

 Class;

 Object

 Component

 Deployment

Behavioral Diagrams

 Use case

 Statechart

 Activity

Structural Diagrams

 Class;

 Object

 Component

 Deployment

 Composite Structure

 Package

Interaction Diagrams

 Sequence;

 Communication

 Interaction

Overview

 Timing

UML 2.0: 12 diagram types UML 1.x: 9 diagram types.

UML Diagram

• Structural diagrams

 Used to describe the relation between classes

• Behavior diagrams

 Used to describe the interaction between people (actors)

and a use case (how the actors use the system)

IL/Best Practice Prg ITTA-7 14

Structural Diagram

1. Class diagram

2. Object diagram

3. Component diagram

4. Deployment diagrams

IL/Best Practice Prg ITTA-7 15

Behavioral Diagram

1. Use case diagrams

2. Sequence diagrams

3. Collaboration diagrams

4. Statechart diagrams

5. Activity diagrams

IL/Best Practice Prg ITTA-7 16

Commonly Used Diagram (1)

• Use case diagram

 Describing how the system is used

 The starting point for UML modeling

• Use case scenario

 A verbal articulation of exceptions to the main behavior

described by the primary use case

• Activity diagram

 Illustrates the overall flow of activities

IL/Best Practice Prg ITTA-7 17

Commonly Used Diagram (2)

• Sequence diagrams

 Show the sequence of activities and class relationships

• Class diagrams

 Show classes and relationships

• Statechart diagrams

 Show the state transitions

IL/Best Practice Prg ITTA-7 18

Overview of UML
Diagram

IL/Best Practice Prg
ITTA-7

19

Use Case Modelling

IL/Best Practice Prg ITTA-7 20

Use Case Model

• Describes what a user expects the system to do

 functional requirements

• May describe only the functionalities that are visible to the

user

 requirements view

• May include additional functionalities to elaborate those in the

previous step

 design view

• Consists of use case diagrams and textual descriptions

IL/Best Practice Prg ITTA-7 21

Element of Use Case Diagram

IL/Best Practice Prg ITTA-7 22

actor

Use case Use case

Use case Use case

generalization

dependency

dependency

Subject

Use Case Symbol

IL/Best Practice Prg ITTA-7 23

SYMBOL NAME OF SYMBOL EXPLANATION

Actor Accessing use case

Use Case Show what the system do

Association Relate the actor with use case

System Boundary

Show boundary between system

and its environment

System

Use Case Definition (1)

• Subject

 A black box that describes the system or subsystem that is modeled

 Example: ATM system, login subsystem

 Represented optionally as a rectangle in the use case diagram, but generally

not shown

• Actor

 A role played by an external entity that interacts with the subject

 One object may play multiple roles in a context in which case there will be

multiple actors

example: bank manager playing the role of a teller or that of a customer

IL/Best Practice Prg ITTA-7 24

Use Case Definition (2)

• Primary actor

 An actor who initiates the major, main or important use cases in the system

 Example : a customer in a banking system

• Secondary actor

 An actor who is involved with one or more use cases but does not initiate

any use case

 Example : database

• There is no syntactic difference between a primary actor and a

secondary actor

IL/Best Practice Prg ITTA-7 25

Use Case Definition (3)

• Generalization between actors

 One actor can be a specialization of another actor

 Based on the same concept as the specialization relationship between classes

 Example : preferred customer in a bank is a specialization of a customer

• Use case

 An important functionality to be implemented and is visible to the actors

 An interacting behavior between an actor and the subject

• Must yield an observable result to the actor

 Example: “deposit” in a banking system

IL/Best Practice Prg ITTA-7 26

Use Case Definition (4)

• Association

 An interaction between an actor and a use case

 Unidirectional associations must be represented by arrows

 Direction of arrow indicates information flow

 Bi-directional associations can be represented by double-

sided arrows or straight lines

IL/Best Practice Prg ITTA-7 27

Use Case Definition (5)

• “include” dependency

 One use case may include another use case

 If use case A includes use case B, B must be implemented in order to

implement A

 Represented as a dashed arrow from A to B with a label “<<include>>”

 Example : use case “withdraw” includes use case “update account”

IL/Best Practice Prg ITTA-7 28

B
<<include>>

A

Use Case Definition (6)

• “extend” dependency

 One use case may be extended by another use case

 If use case A is extended by use case B, then both A and B

can be independently implemented and used

• A will occasionally use B depending on some constraints

IL/Best Practice Prg ITTA-7 29

Use Case Definition (6)

• “extend” dependency (continued)

– Represented as a dashed arrow from B to A with a label “<<extend>>”

• Notice that the arrow is reversed

– Example :

• Use case “withdraw” is extended by use case “compute penalty” when the user

withdraws an amount more than the balance in the account; the use case

“compute penalty” is therefore occasionally used by “withdraw”.

IL/Best Practice Prg ITTA-7 30

B
<<extend>>

A

Use Case Definition (7)

IL/Best Practice Prg ITTA-7 31

• “generalization” dependency

 Aktor dan use case bisa digeneralisasi

 Generalisasi digunakan untuk membuat aktor atau use

case yang lebih spesifik dari suatu aktor dan use case.

A

B C

a

b c

Example of Generalization, Extension, and Inclusion

IL/Best Practice Prg ITTA-7 32

Constraints in Use Case Model

• Every use case must be connected to an actor or

be included in another use case or extends

another use case

• Every use case connected to an actor must return

an observable result to the actor

 The result may be data, confirmation or termination of an action

IL/Best Practice Prg ITTA-7 33

How To Find Use Case?

• Every requirement is a use case

• Every functionality that supports the implementation of a requirement is a

use case

 Design issue

 Found when the first (abstract) use case model is refined to express a

design

• Do not confuse a “use case” with a “method” in implementation

 Generally, there is a one-to-many relationship between a use case and

a method

IL/Best Practice Prg ITTA-7 34

How To Find Use Case Relationship?

• Extracted from the application domain

• Must be justifiable from the application domain or from the

designer’s choice

• Examples

 Use case “withdraw” includes use case “update account” is justifiable

from application domain

 Use case “withdraw” is extended by “compute penalty” is a designer’s

choice

• Designer can decide to implement two different versions of

withdrawals or just only one with no extension

IL/Best Practice Prg ITTA-7 35

Use Case Narrative/Scenario

• Important for design and implementation of use

cases

• Different types

 Textual (informal) descriptions

 Algorithmic descriptions

 Diagrammatic descriptions (activity diagram)

IL/Best Practice Prg ITTA-7 36

Describe An Use Case

A. Name: Give a short, descriptive name to the use case

B. Actors: List the actors who can perform this use case

C. Goals: Explain what the actor or actors are trying to achieve

D. Preconditions: State of the system before the use case

E. Summary: Give a short informal description

F. Related use cases

G. Steps: Describe each step using a 2-column format

H. Postconditions: State of the system in following completion

A and G are the most important

IL/Best Practice Prg ITTA-7 37

Example of Use Case Narrative/Scenario

IL/Best Practice Prg ITTA-7 38

Case Study for Use Case Modelling

IL/Best Practice Prg ITTA-7 39

Case Study - ATM

• Model only the transactions

• Customer accounts assumed to exist

 Opening and closing of accounts are handled by another

portion of the system

• Include operations “deposit”, withdraw”, “check

balance”, “transfer”

• If balance is zero or less than the amount to be

withdrawn, then withdrawal should fail

IL/Best Practice Prg ITTA-7 40

Case Study - ATM

IL/Best Practice Prg ITTA-7 41

Deposit

Withdraw

Check balance

Transfer
Database

customer

Login

Logout

Case Study – ATM (Revised)

IL/Best Practice Prg ITTA-7 42

Deposit

Withdraw

Check balance

Transfer
Database

Logout

Validate

account

Update

account

All dependency relationships are of type

<<include>>

Use case diagram for ATM – revised to show design issues

Login

Activity Diagram Modelling

IL/Best Practice Prg ITTA-7 43

Activity Diagram

• Represents a sequence of activities

• An activity is a group of atomic actions

• An action is indivisible (atomic) task

 Example: change the value of a variable/field

• An activity may consist of sub-activities or actions or both

• In general, activities may be decomposable but actions

are not.

 Activities can be interrupted by events, but actions are not.

IL/Best Practice Prg ITTA-7 44

Activity Diagram

IL/Best Practice Prg ITTA-7 45

initial

branch

subactivity

action

merge

final

C

~C

C – Boolean expression

action

Semantic of Activity Diagram (1)

• An activity diagram consists of a collection of action states, sub-

activities and transitions

• Every activity diagram must have only one initial state and one or

more final states

 The initial state represents the beginning of the activity and a final state

represents the termination of an activity

• Actions are represented by action states (rounded rectangles)

• A sub-activity is also represented by a rounded rectangle but with an

icon inside the rectangle

IL/Best Practice Prg ITTA-7 46

Semantic of Activity Diagram (2)

• When expanded, each sub-activity is diagrammatically

substituted with the incoming and outgoing transitions

matched

• Sequence of actions is represented by transitions between

actions

 Transitions are simple straight arrows with no labels or parameters

 Transitions may have guards/conditions, send-clause and actions (very

similar to those in state transition diagrams)

 Transitions are augmented with conditions at branching

IL/Best Practice Prg ITTA-7 47

Semantic of Activity Diagram (3)

• A branch is represented by a diamond

 Has one incoming transition to enter the branch

 Two or more outgoing transitions augmented with mutually

exclusive conditions

• A merger is also represented by a diamond

 Two or more incoming transitions and one outgoing transition

 The outgoing transition will be fired only when all the incoming

transitions are fired

IL/Best Practice Prg ITTA-7 48

When to Use Activity Diagram

• An activity diagram can be used to

 describe a use case

 describe a method in a sequence or communication diagram

 describe an action associated with a transition in a state

diagram, or the entry action or the exit action of a state diagram

• Caution: the word “action” in state diagram represents a

higher level task while the same word in an activity diagram

represents an atomic non-divisible computation

IL/Best Practice Prg ITTA-7 49

More Syntax in Activity Diagram

IL/Best Practice Prg ITTA-7 50

action

action action

Fork node

Join node

action : Class

Object

Obj.action

(params)

Example of Activity Diagram

IL/Best Practice Prg ITTA-7 51

Activity Partition

• An activity partition represents a group of actions

 Actions grouped based on who performs the actions

 Actions grouped based on the functionality achieved by the

actions

 Actions grouped based on timing events

• Previous versions of UML call this as “swim lane”.

IL/Best Practice Prg ITTA-7 52

More Syntax in Activity Diagram

IL/Best Practice Prg ITTA-7 53

Display Bar
Update status

of Bar

Initialize Bar

DisplayWindow Installer

:Progress Bar

Sub Activity

IL/Best Practice Prg ITTA-7 54

An action state in an activity diagram can be

represented by a sub activity as shown below

A sub activity represents a simplification of

another activity diagram

It reduces the space for an activity diagram

Subactivity

Sub Activity Semantics

• A subactivity is a representation of another activity diagram

• The incoming arrow to a subactivity matches with the initial

state of the activity diagram represented by the subactivity

• The outgoing arrow from a subactivity matches with the final

state of the activity diagram represented by the subactivity

IL/Best Practice Prg ITTA-7 55

IL/Best Practice Prg ITTA-7 56

Customer Sales Stockroom

Request

service

Take Order

Pay
Fill Order

Deliver

order Collect

order

Object as Parameters

• Objects passed as parameters between action states can be

represented in the activity diagram (and in swimlane diagram) using

the same syntax for objects

• The transition between an object parameters and an action state is

represented with a dashed line, instead of a solid line

IL/Best Practice Prg ITTA-7 57

IL/Best Practice Prg ITTA-7 58

Customer Sales Stockroom

Request

service

Take Order

Pay
Fill Order

Deliver

order
Collect

order

: Order

[placed]

:Order

[entered]

: Order

[filled]

:Order

[delivered

]

Sequence Diagram Modelling

IL/Best Practice Prg ITTA-7 59

Sequence diagram

IL/Best Practice Prg ITTA-7 60

• A two-dimensional chart that describes collaborations

• Each sequence diagram describes a particular scenario

 E.g., a sequence diagram can describe successful

withdrawal operation

 Another sequence diagram can describe failure of

withdrawal operation due to insufficient funds

 It is also possible to describe both scenarios in one

sequence diagram

Sequence diagram: basic syntax

IL/Best Practice Prg ITTA-7 61

Obj1 : ClassA : ClassB Obj2 : ClassC

method-in-B()

return

stimulus

message to

self

return

[condition] method(parameters)

concurrent method() concurrent method()

lifeline

return

message

Sequence diagram – semantics (1)

IL/Best Practice Prg ITTA-7 62

• Rectangular boxes on the top indicate objects

• The dotted vertical line indicates the life line of the corresponding

object

• Rectangular boxes on the dotted vertical line indicate the duration in

which the corresponding object is active; the object is idle otherwise

• A solid arrow with solid arrowhead indicates a message

• A solid arrow with thin arrowhead indicates a stimulus

• A dashed arrow indicates return of control

Sequence diagram – semantics (2)

IL/Best Practice Prg ITTA-7 63

• Messages/stimuli may be augmented with conditions

• Messages/stimuli can be concurrent

 start from one object and send messages or signals to

more than one object at the same time

• The vertical dimension indicates time axis

 A message ‘Y’ placed below a message ‘X’ in a

sequence diagram indicates that message ‘X’ is sent

before message ‘Y’

Sequence diagram – semantics (3)

IL/Best Practice Prg ITTA-7 64

• Objects with dashed vertical line for the entire diagram have lifeline for the entire

scenario

 These objects are assumed to be already created before this scenario starts

and assumed to exist even after the scenario ends

• Objects with short life span within a scenario can be shown differently (see the

next diagram)

• There is no ordering required among the placement of objects on the horizontal

line

 A designer may choose the ordering for the convenience of drawing the

diagram

Sequence diagram – extended syntax

IL/Best Practice Prg ITTA-7 65

: ClassB

 : ClassC

constructor of B ()

constructor of C ()

message to

self

[condition] method(parameters)

return

 : ClassA

Sequence diagram – semantics (4)

IL/Best Practice Prg ITTA-7 66

• The creation of an object is shown by the vertical

displacement of the object from the top of the diagram. The

object is placed at the point of creation

– See the creation of objects from class A and from class B

• The termination of an object can be shown by placing an “X”

at the bottom of its life line

– See the destruction of the object from class C

Sequence diagram – Specifying Loops

IL/Best Practice Prg ITTA-7 67

: User : Accounts DB

: Account

Deposit (act[], amount)

Validate Account (act[i])

Create (act[i], bal)

Deposit(amount)

return

Loop

(1..act.length)

Depositing the same amount into several accounts

Reserved

word

Delete()

Concurrent messages / stimuli - semantics

IL/Best Practice Prg ITTA-7 68

• an object can send two messages / stimuli to two different objects at the same

time

 concurrent execution

 there may be a condition on each of these messages / stimuli but they can be

totally different

 the tail end of these two messages / stimuli coincide at the originating object

 the arrow heads may physically be on different horizontal levels but logically

they are at the same time line (horizontal level)

 see “Op4() and Op5()” in the diagram (next page)

Time-based messages / stimuli- semantics

IL/Best Practice Prg ITTA-7 69

• a message can be split into two, leading to two destination objects with

mutually exclusive conditions

 see “Op1(x)” in the diagram

• a lifeline can be split into a side track for a specific duration to indicate

mutually exclusive situations

 see “Obj4” in the diagram

• iterations can be specified using a condition at the beginning of a message /

stimulus

 see “Op2(y)” in the diagram

• timing constraints can be added onto the messages / stimuli or on the vertical

time axis

Concurrent and time-based messages and stimuli

IL/Best Practice Prg ITTA-7 70

X

Obj1 : C1 Obj2 : C2

Obj3 : C3

Obj4 : C4

[x > 0] Op1(x)

[x <= 0] Op1(x)
[for each y] Op2(y)

[y >= 0]

Op3(y)

return

return

return

[t = 0]

[t <= 30]
Op4()

Op5()

Example – Course registration system

IL/Best Practice Prg ITTA-7 71

• Scenario

 A student object checks the availability of seats in a course. If

available, it sends a message to register. The course object checks for

the prerequisites first. Upon acceptance, the course object returns the

message back to the student object and at the same time informs the

account object to bill the student. The account object then

communicates with the student to get the payment for the course.

 The following diagram shows a successful course registration process

IL/Best Practice Prg ITTA-7 72

:Account :Student :Course
check seat availability()

return

register (id, prereqs)

return initiate payment (id, course number)

request payment (course number, amount)

payment (id, course number, amount)

check prerequisites(prereqs)

update student record

(id, course number,

amount)

return

update enrollment (id)

Class and Object Diagram
Modelling

IL/Best Practice Prg ITTA-7 73

Class diagram – basic syntax

IL/Best Practice Prg ITTA-7 74

Class name

Methods

Class name

Attributes

Methods

Class name

Class name

Attributes

Association

name

aggregation

specialization

This is a

subclass

comments

Aggregate

Component This is a

superclass

Class Diagram: semantics (1)

IL/Best Practice Prg ITTA-7 75

• A class icon must have a class name. Optionally, it can have attributes

and/or methods.

• Attributes and methods are strings and will not be validated by the

modeling tools.

• Attributes can be specified by their names or by <name : type> pairs.

• Methods can be specified by their names or with partial signatures or

with complete signatures.

Class Diagram: semantics (2)

IL/Best Practice Prg ITTA-7 76

• Comments can be included in any diagram with a rectangle folded at right

top corner

 The dotted line from the comment is important to indicate which

portion of the diagram is explained by the comment

• Suggestion

 For validation purposes, when showing aggregation relationship, the

aggregate (the one near the diamond edge) must include an attribute

whose type is the component class

Class

IL/Best Practice Prg ITTA-7 77

Details of a class icon

IL/Best Practice Prg ITTA-7 78

Account

- Account number : Integer

- Balance : Real

- Overdraft : Boolean = true

+ GetAccountNumber () : Integer

UpdateBalance (sign :Sign, amt : Integer)

~ ReturnBalance () : Real

- ChangeOverdraft ()

+ public

- private

protected

~ visible within

the package

Initial value

An abstract class

IL/Best Practice Prg ITTA-7 79

Polygon

{abstract, author = Kasi, last

modified = Oct 2002}

<<constructor>>

+ Polygon(List of Vertex vertices)

<<query>>

#area () : Real

Multiplicity

IL/Best Practice Prg ITTA-7 80

Multiplicity Explanation

0..1 0 or 1

1 Mandatory 1

0..* 0 or Many

1..* 1 or Many

* Many

Object Diagram

IL/Best Practice Prg ITTA-7 81

act : Account

Account # = 1256

UserID = 120

Balance = 0

act : Account

Various representations of an account object

: Account

Association –syntax

IL/Best Practice Prg ITTA-7 82

User
Account

-Account number

-Balance

-Overdraft

+Get accountID ()

+Update balance()

+Return balance()

uses

1
n

Association label
Direction of association

cardinality

Manager

customer

Unary association

Role names

Corporate Account

1

n

{xor}

Association – Semantics (1)

IL/Best Practice Prg ITTA-7 83

• Every association is expected to be labeled

 UML does not require a name for an association

• Direction of an association, cardinality, role name are all optional

 For unary associations, it is better to include role names

• Representations of cardinality

 0, 1, * (zero or more), n..m (values in the range between n and

m both inclusive)

Association – Semantics (2)

IL/Best Practice Prg ITTA-7 84

• A constraint may be [optionally] placed between two associations

 See the example in the previous slide that asserts an Exclusive OR

relationship between the associations

• When a subclass specializes a superclass, it also inherits all associations

between the superclass and other classes

• In the previous example, the association “uses” between “User” and

“Account” is also inherited by the pair “User” and “Corporate Account”

Association with qualifiers

IL/Best Practice Prg ITTA-7 85

User
Account

-Account number

-Balance

-Overdraft

+Get accountID ()

+Update balance()

+Return balance()

uses

1 n

Corporate Account

A
cco

u
n
t n

u
m

b
er

Qualifier

Qualifier attribute

Association - Qualifiers

IL/Best Practice Prg ITTA-7 86

• Qualifiers can be attached to a “one-to-many” association

 It is rectangle attached to the “many” end of the association

• A qualifier is a collection of variables whose values uniquely

identify an instance at the “many” end of the association

 In the example, an account number uniquely identifies an

account in a collection of accounts

• Qualifier is part of the association

Association Class

IL/Best Practice Prg ITTA-7 87

User Account

Transaction

Employee Job

Salary

Association Class - semantics

IL/Best Practice Prg ITTA-7 88

• A piece of information that belongs to both classes in an association is put

into a separate class called “association class”

– Association class is a dependent class that depends on the other two

classes in the association

– An association class cannot exist independently

– An object of an association class must refer to objects of the other two

classes in the association

• Example: A “Transaction” object depends on a “User” object and

on an “Account” object.

Shared Aggregation

IL/Best Practice Prg ITTA-7 89

An aggregation relationship in which the component can be

shared by classes/objects outside the aggregation

Team Person Family

Person object is shared by both Team and Family objects

Shared aggregation is indicated by a hallow diamond

Caution: Changes made to a component object will

affect all the aggregates that include the component.

Composite Aggregation

IL/Best Practice Prg ITTA-7 90

An aggregation relationship in which the component is an

exclusive part of the aggregate; hence, not shared.

Air Plane

Wing

Engine

1
2

1 2

Composite aggregation is indicated by a filled diamond

Composition VS Aggregation

Bila Universitas ditutup maka Fakultas dan Jurusan akan hilang akan tetapi Dosen tetap akan

ada. Begitupun relasi antar Fakultas dengan Jurusan

IL/Best Practice Prg ITTA-7 91

Jurusan Dosen

1 1..*

Fakultas Universitas

1

1..*

1..* 1

Association VS Composition VS Aggregation

IL/Best Practice Prg ITTA-7 92

Advanced Specialization

IL/Best Practice Prg ITTA-7 93

Person

Boy Girl Swimmer Runner

Gender

{complete, disjoint}

Sports activity

{incomplete, overlapping}

These optional domain words make the relationships easier to understand.

How to find classes? (1)

IL/Best Practice Prg ITTA-7 94

• Nouns in requirements document or use case descriptions may

provide a good starting point, but often are inadequate

• Each class should contain a distinct set of operations relevant to

the system under consideration

 Think of a class as an ADT

• Remove vague classes

 Classes that do not adequately describe themselves

• A class that represents the internet

How to find classes? (2)

IL/Best Practice Prg ITTA-7 95

• Try not to include implementation-oriented classes in the

analysis model

 May be introduced later during design and/or

implementation

 Examples: array, tree, list

 These classes will not only occupy so much space in the

diagram but also tend to divert the focus of analysis

How to identify associations? (1)

IL/Best Practice Prg ITTA-7 96

• An association corresponds to a semantic dependency

between classes

 Class A uses a service from class B (client-server)

 Class A has a structural component whose type is class

B (aggregation)

 Class A sends data to or receives data from class B

(communication)

How to identify associations? (2)

IL/Best Practice Prg ITTA-7 97

• Include only those associations that are relevant to the current model

 Constrained by assumptions, simplifications, system boundary (what is

expected to be provided by the system)

 Three different associations between “Faculty member” and “Course”

• “Faculty member” teaches “Course” in a course registration system

• “Faculty member” creates “Course” in a curriculum development system

• “Faculty member” evaluates “Course” in a course evaluation/inspection

system

How to identify associations? (3)

IL/Best Practice Prg ITTA-7 98

• Eliminate redundant associations

 “Faculty member” teaches “Course”

 “Course” is taught between “Time” to “Time”

 Therefore, “Faculty member” teaches between “Time” to

“Time”

• use transitivity between associations

• Remember that subclasses inherit the associations of a superclass

How to identify aggregations?

IL/Best Practice Prg ITTA-7 99

• Aggregations are also associations

• Identify as Association if it is not clear whether it is Association or

Aggregation

 “Mail” has “Address” (aggregation)

 “Mail” uses “Address” for delivery (association)

 “Customer” has “Address” (aggregation)

 “Customer” resides at “Address” (association)

 “TV” includes “Screen” (aggregation)

 “TV” sends information to “Screen” (association)

How to identify specialization?

IL/Best Practice Prg ITTA-7 100

• Generally, specialization relationships are noticeable in the

application domain

• Top-down approach

 “Student”, “Full-time Student”, “Part-time Student”

 “TV”, “Plasma TV”, “Flat Panel TV”

 “Customer”, “Bank manager”, “Teller”

How to identify specialization (2)

IL/Best Practice Prg ITTA-7 101

• Some of them are discovered during analysis

• Bottom-up approach

 “Part-time Instructor” derived from “Instructor” and “Student” while

modeling a department

 “User” derived from “Customer”, “Bank Manager” and “Teller” while

modeling an ATM system

 “Material” derived from “Book”, “Journal” and “Magazine” while

modeling a library catalog system

Statechart Diagram Modelling

IL/Best Practice Prg ITTA-7 102

IL/Best Practice Prg ITTA-7 103

State diagram – basic syntax

initial

final

State name

Unnamed states

entry/ …

exit/ …

do/

event (EventParams)

[guard] /

action (ActionParams)

actions

actions

event (Eparams) /

action (Aparams)

State Diagram

IL/Best Practice Prg ITTA-7 104

• A transition between states is represented by the event that triggers the transition

• Transitions may have guards or conditions under which the transitions fire

• A state may optionally have a label

• Every state may have

 An entry action – executed as soon as the state is entered

 An exit action – executed just before leaving the state

 A “do” action – executed while the object is in this state; it may be ongoing

action until the object leaves the state

State Formal Definition (1)

IL/Best Practice Prg ITTA-7 105

• A state is a condition in the life of an object during which the object

performs an action or waits for some event

• A state is represented by the collection of attributes and their

corresponding values

• An object after being created must be in at one particular state at any

instant

– Unless otherwise mentioned, an object remains in a state for a finite

time

– UML allows modeling of transient states (states that exist only for a

very short and insignificant duration)

State Formal Definition (2)

IL/Best Practice Prg ITTA-7 106

• A state (directly or indirectly) includes links (instances of

associations) connected with the object at that instant

• A state may be decomposed into concurrent sub-states (AND

relationship)

• A state may be composed using mutually exclusive disjoint

sub-states (OR relationship)

Event Formal Definition

IL/Best Practice Prg ITTA-7 107

• A noteworthy occurrence

 UML manual version 1.5

• Something that happens within the system or interacting with
the system at an instant

• Something that has a significant impact on the system

• Examples

 sending a signal or data

 receiving a signal or data

 making a request for execution

 a Boolean condition becoming true

 a timeout condition becoming true

Four types of events in UML

IL/Best Practice Prg ITTA-7 108

• Signal event
 occurs when an object sends a signal to another object

• Call event
 occurs when a method or operation in an object is invoked

• Change event
 occurs when a Boolean condition is changed

• Time event
 occurs when a time limit has reached

Transition (1)

IL/Best Practice Prg ITTA-7 109

• Represents the change of states of an object

 switch from “Empty balance” to “Positive balance”

• A transition is an abstraction of an operation

 The above transition is an abstraction of deposit operation

• A transition has finite and significant duration

 Observable time taken to complete deposit operation

Transition (2)

IL/Best Practice Prg ITTA-7 110

• A transition may have parameters

 A transition corresponding to the deposit operation will have the

“amount” as a parameter

• A transition is triggered/invoked/fired by the occurrence of an event

 The transition corresponding to deposit will occur by the event

“request for deposit”

 The transition from “Positive balance” to “Empty balance” occurs

by the completion of the operation “withdrawal”

Transition (3)

IL/Best Practice Prg ITTA-7 111

• A transition may have a guard/condition

 The transition corresponding to the withdrawal operation will occur only if the

balance is greater than or equal to the amount to be withdrawn

 The condition associated with a transition is always the precondition for the

transition and hence must be checked before the transition occurs

• An event may cause several transitions to fire

 The event that triggers the transition to move to “Empty balance” state after

withdrawal may also cause a message to be sent to the account holder and at

the same time may also cause a note to be recorded in the account log

Example of State Diagram: Student Class

IL/Best Practice Prg ITTA-7 112

Initial continuing

completed

register[#courses <

minRequired] /

updateCourses()

register [#courses <

minRequired] /

updateCourses()

register [#courses >=

minRequired] /

updateCourses() graduated

entry/ initializeCourses()

[complete

Graduation

Requirements]

Deployment Diagram Modelling

IL/Best Practice Prg ITTA-7 113

Deployment Diagram

IL/Best Practice Prg ITTA-7 114

• Deployment diagrams show a system's physical layout,

revealing which pieces of software run an what pieces of

hardware.

• embedded system:

 Device, node, and hardware

 Client/server System

 Pure Distributed System

 Re-engineering Application

Example Deployment Diagram

IL/Best Practice Prg ITTA-7 115

Example Deployment Diagram: Embedded System

IL/Best Practice Prg ITTA-7 116

Example Deployment Diagram: Client/Server System

IL/Best Practice Prg ITTA-7 117

Example Deployment Diagram: Distributed System

IL/Best Practice Prg ITTA-7 118

Example Deployment Diagram: Distributed System

IL/Best Practice Prg ITTA-7 119

When to Use Deployment Diagram?

IL/Best Practice Prg ITTA-7 120

Don't let the brevity of this part make you think that deployment

diagrams shouldn't be used . They are very handy in showing

what is deployed where, so any nontrivial deployment can make

good use of them.

