Branch and Bound Strategy

Compare to backtracking

* Very similar to backtrack in that a space tree is
used to solve the problem.

 The complexity, in worst case, exponential
* The differences:

— BnB doesn’t limit us to any particular way of
traversing the tree

— Used only for optimization problem

The idea behind the BnB

 BnB computes a number (bound) at a node to
determine whether the node is promising.

* The number is a bound on the value of the
solution that could be obtained beyond
expanding the node

e If the bound is no better the the value of the
best solution found so far, the node is
nonpromising

0/1 Knapsack : Case-1

-mm
1 $40 $20
2 $30 5 $6
3 $50 10 S5
4 $10 5 $2

Two strategies in traversing tree

e Breadth-first branch and bound
e Best-first branch and bound

Breadth First Search with BnB Pruning

(0,0)
$0

oy F?ﬂ $ﬂ5

(1, D (2]

$40

e o
il [:5;0:! $115 $82
2,1 2,2) (2, 3) (2,4)

7
| ${]
115 $98 $82 :
Tremi3 [ﬁ%ﬂ | =

(3, 1) 3.2) (3,3 Eud)i 0 (3,:5) (3,6)

$ IZD $70 < $9 % $40 $80 $30
w2 2 15 5
$30 ; $50 $82 $40

$uﬂ
Item 4
Al [5 4, 1) 4, 2)(4, 3) 4, 4)
$30 $?0 5100 $90
12

$80 $70 \$90 /

1. Maxprofit = SO
2. Visit (0,0)
a. profit = SO, weight =0
b. bound, i=0, and k=3 (3Iglecause 2+5+7 = 17>16)
totweight = weight + ij =0+2+5=7

Jj=0+1

3—1
bound = profit + Z Pj+(w—totweight)x(P3/w?3)

Jj=0+1

=$0+%$40 +$30 + (16 —7)x$50 /10 = $115

c. Promising ?

weight < W and bound > maxprofit =»promising

3. Visit (1,1)
a. profit = SO + S40 = S40, and weight=0+2 =2
b. maxprofit = S40
c. bound, i=1, and k=3 (because 2+5+7 = 17>16)

3—1
totweight = weight + Z wj=2+5=7

j=1+1

3—1
bound = profit + Z Pj+(w—totweight)x(P3/w3)

Jj=1+1

= $40 + 330 + (16 = 7)x$50 /10 = $115

c. Promising ?

weight < W and bound > maxprofit =»promising

4. Visit (1,2)
a. profit = SO, and weight =0
b. maxprofit = S40
c. bound, i=1, and k=4 (because 5+10+5 = 20>16)

4—-1
totweight = weight + Z wji=5+10=135

Jj=1+1

4-1
bound = profit + Z Pj+ (w—totweight)x(P4/w4)

j=1+1

=%$0+%$30 +$50 + (16 —15)x$10 /5 = $82

c. Promising ?

weight < W and bound > maxprofit =»promising

General scheme of Breadth First

Procedure breadth_first BnB(T: state_space_tree; var best : number)

Var
Q : queue_of node;
u,v :node

Begin
initialize(Q);
v:=root of T;
enqueue(Q,v);
best := value(v);
while not empty(Q) do
dequeue(Q,v)
for each u child of v do
if value(u) is greater than best than
best := value(u)
if bound(u) is better than best than
enqueue(Q,u)
end

Breadth First Algorithm

Problem: Let n items be given. where each item has a weight and a profit, The
-u.-j:jgl':u and profits are positive integers. Furthermore, let a positive intezer Wbe
given. Determine a set of items with maximum total profit, under the v:-h:rnztrain:
that the sum of their weights cannot excesd W

fﬂpu::: positive integers n and W, arrays w and p, each containing n positive
integers and sorted in nonincreasing order according to the value of pli]fw]].

Quiputs: an inleger maxprofif that is the sum of the profits in an optimal set.
type

node = record
level: integer; {the node’s level in the tree)
profit: integer;
weight: integer

aend:

procedure knapsack2(n: integer;
pow array[|.n] of intager;
W integer;
var maxprofit: integer);
var
@ queue_of node:
Y mode:

begin
initialize(Q);
vlevel:= 0; v.profit:= 0; v.weight:= 0;
maxprofit:= 0;
enqueue(Q,v);
while not empty(Q) do
dequeue(Q,v);
ulevel:= vlevel+ |;
u.weight:= v.weight + wlu.level];
u.profit:= v.profit + plu.level];
if u.weight = W and u.profit > maxprofit then
maxprofit:= u.profit
end;
if bound(u) > maxprofit then
enqueue(Q,u)
end;
u.weight:= v.weight;
u.profit:= v.profit;
if bound(u) = maxprofit then
enqueue(Q,u)
end
end
end;

{Initialize Q to be empty.}
{Initialize v to the root.}

{Set u to a child of v.}
{Set u to the child that}
{includes the next item.}

{Set u to the child that}
{does not include the}
{next item.}

function bownd(u: node): real;

¥ar

ik indess totwelght: integer;
begin
if wwetght = W then

bound:= 0
else
B = o, profit;
J= wlevel+1;
totweight:= w.welght,
while j = n and totweight + w{j] = W do {Grab as many items as}
totwelght:= totweight + wij]; {passible.}
beund:= bound + p[]];
=y |
end;
kz= f; {Use k for consiscency}
if k = n then fwith formula in textc}
bound:= baund + (W — maoxwelsht) p[k]M{k] {Grab fraction of keh)
end; {itam.}
end

end;

Compare with depth first search

* Node (1,2) found promising
e Decision to visit node’s children is made at the
time the node visited

Exercise : 0/1 Knapsack

* Consider the following instance of the 0/1 Knapsack

n=4, W=i9

1 v, w, vi/wi
I $20 2 10

2 $30 5 6

3 $35 7 5

4 $12 3 4

5 $3 I 3

Best First with BnB Pruning

(0, 0)

. Visit (0,0)

a. profit = SO, weight = 0, maxprofit = SO

b. bound = $115

. Visit (1,1)

a. profit = S40, weight = 2, maxprofit = $40
b. bound = 5115

. Visit (1,1)

a. profit = SO, weight = 0, maxprofit = $40
b. bound = $82

. Best bound = node (1,1)

5. Visit (2,1)
a. profit = S70, weight = 7, maxprofit = S70
b. bound = $115
6. Visit (2,2)
a. profit = S40, weight = 2, maxprofit = $70
b. bound = $98
7. Best bound = node (2,1)
8. Visit (3,1)
a. profit = $120, weight = 17,maxprofit = $70
b. bound = SO

9. Visit (3,2)
a. profit = S70, weight = 7, maxprofit = S70
b. bound = $80
10.Best bound = node (2,2)
11.Visit (3,3)
a. profit = $90, weight = 12, maxprofit = S90
b. bound = 598
c. node (3,2) and node (1,2) nonpromising
12 .Visit (3,4)
a. profit = $40, weight = 2,maxprofit = $90
b. bound = S50

13. Best bound = node(3,3)
14. Visit (4,1)
a. profit = $100, weight = 17, maxprofit = S90
b. bound = SO = nonpromising
10.Visit (4,2)
a. profit = $90, weight = 12, maxprofit = S90
b. bound = S90 = nonpromising

General scheme of Best First

Procedure best_first BnB(T: state_space_tree; var best : number)

Var
PQ : Priority_queue_of node;
u,v :node

Begin
initialize(Q);
v:=root of T;
best := value(v);
insert(PQ,v)
while not empty(PQ) do
remove(PQ,v)
if bound(v) is better than best then
for each u child of v do
if value(u) is greater than best than
best := value(u)
if bound(u) is better than best than
insert(PQ,u)
end

Best First
Algorithm

type
node = record
level: integer;
profit: integer;
weight: integer;
bound: real
end;

procedure knapsock3(n: inceger;

¥ar

pow: array[l..n] of integer;
W integer;
var maxprofit: integer);

PQ: priority_queue_of_node: uy: node;

begin

initislized(PO);

wievel:= 0 vwelght:= 0 vprofit:= 0;

maxprafit:= 0;

v.bound:= boundi{v);

insert(PCLv):

while not empty(PQ) do
remave(PCLv;

if

v.bownd = maxprafit then

w.level:= vlevel+ |:

w.weight:= voweight + wiwlevel];

wprofit:= v.profit + pluteved];

if wweight = W and v profit = maxprofit then
maxprofit: = u.profit

end;

wbaund:= bownd{u);

if wbound = maxprofit themn
insert{FCu)

end;

wweight:= yoweight; u.profit:= v.profit;

ubound: = bound{u);

if wbound = maxprofit then
msert[P0,u)

end

emnd

and
end;

{Initialize v to be the}
{root}

{Remave node with}
{bezt bound.}

{Check if node Is still}
{Promising.)

{Set u o the child}
tthat includes the}
{next item.)

{Ser w to the child)
{that does nat}
finclude the nesxt}

 {ivem.}

nhotes

e Best first : 11 node, breadth first = 17 node,
deepth first : 13 node

* No guarantee that node appears to be best
will lead to an optimal solution

Traveling Salesperson Problem

Goal : find shortest path in a directed graph that start
at a given vertex, visit each vertex exactly once, and
end up back at starting vertex

Need to determine the lower bound on the length of
any tour that can be obtained by expanding beyond a
given node

Promising, if bound is less than current minimum
tour length

Initially, set minimum tour length to oo

Traveling Salesman Problem

Adjacency matrix

0 14 4 10 20
14 0 7 8 7
4 5 0 7 16
11 7 9 0 2
18 7 17 4 0|

Traveling Salesman Problem

* Lower bound on the cost of leaving vertex v, is given
by the minimum of all nonzero entries in row 1 of the

adjacency matrix,

* Lower bound on the cost of leaving vertex v, is given
by the minimum of all nonzero entries in row 2 of the

adjacency matrix,
 And so on..

Traveling Salesman Problem

* Lower bound on the cost of leaving the five vertices
are:

v; minimum (14, 4, 10, 20) = 4

v, minimum (14,7,8,7) =7
v;minimum (4,5,7,16) =4
v, minimum (11, 7,9, 2) =2

vs minimum (18, 7,17,4) =4
e The sum of these minimums is 21

Lower bound

Lower bound

 Lower bound on the node containing [1,2] :
— The cost of getting to v, is 14
— Obtain the minimum for v,, it doesn’t include the edge to v,

— Obtain the minimums for the other vertices it doesn’t include v,
because it’s already been at v,.

V; = 14
v, minimum(7,8,7) = 7
v; minimum(4, 7, 16) = 4
v,minimum(11,9, 2) = 2
vs minimum(18, 17, 4) = 4

 Lower bound obtained by expanding beyond the node
containing [1,2] is 14+7+4+2+4=31

Lower bound

Lower bound on the node containing [1,2,3]. Any tour
obtained by expanding beyond this node has the following
lower bound on the cost of leaving the vertices:

Vi
V2
v; minimum(7, 16)
v, minimum(11, 2)
vs minimum(18, 4)

14

AN NN

The lower bound on the node [1,2,3] is 14+7+7+2+4=34

Best-first search with branch-and-
bound pruning

I\ .
o0

8 9 10 1

Branch and Bound

32

TSP: an optimal tour

Branch and Bound

33

