
Branch and Bound Strategy



Compare to backtracking

• Very similar to backtrack in that a space tree is 

used to solve the problem. 

• The complexity, in worst case, exponential

• The differences :• The differences :

– BnB doesn’t limit us to any particular way of 

traversing the tree

– Used only for optimization problem



The idea behind the BnB

• BnB computes a number (bound) at a node to 

determine whether the node is promising. 

• The number is a bound on the value of the 

solution that could be obtained beyond 
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solution that could be obtained beyond 

expanding the node

• If the bound is no better the the value of the 

best solution found so far, the node is 

nonpromising



0/1 Knapsack : Case-1

i Pi wi Pi/wi

1 $40 2 $20

2 $30 5 $6

3 $50 10 $53 $50 10 $5

4 $10 5 $2



Two strategies in traversing tree

• Breadth-first branch and bound

• Best-first branch and bound
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Breadth First Search with BnB Pruning



1. Maxprofit = $0

2. Visit (0,0)

a. profit = $0, weight = 0

b. bound, i=0, and k=3 (because 2+5+7 = 17>16) 
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3. Visit (1,1)

a. profit = $0 + $40 = $40, and weight = 0 + 2 = 2

b. maxprofit = $40

c. bound, i=1, and k=3 (because 2+5+7 = 17>16) 
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4. Visit (1,2)

a. profit = $0, and weight = 0

b. maxprofit = $40

c. bound, i=1, and k=4 (because 5+10+5 = 20>16) 

∑
−

+=

=+=+=

14

11

15105
j

wjweighttotweight

c.  Promising ? 

weight < W and bound > maxprofit �promising

+= 11j

∑
−

+=

−++=

14

11

)4/4()(
j

wPxtotweightwPjprofitbound

82$5/10$)1516(50$30$0$ =−+++= x



General scheme of Breadth First
Procedure breadth_first_BnB(T: state_space_tree; var best : number)

Var 

Q : queue_of_node;

u,v :node

Begin

initialize(Q);
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initialize(Q);

v:=root of T;

enqueue(Q,v);

best := value(v);

while not empty(Q) do

dequeue(Q,v)

for each u child of v do

if value(u) is greater than best than

best := value(u)

if bound(u) is better than best than

enqueue(Q,u)

end



Breadth First Algorithm







Compare with depth first search

• Node (1,2) found promising

• Decision to visit node’s children is made at the 

time the node visited 



Exercise : 0/1 Knapsack

• Consider the following instance of the 0/1 Knapsack

n=4, W=19

i vi wi vi /wi

1 $20 2 10

Branch and Bound 15

1 $20 2 10

2 $30 5 6

3 $35 7 5

4 $12 3 4

5 $3 1 3



Best First with BnB Pruning



1. Visit (0,0)

a. profit = $0, weight = 0, maxprofit = $0

b. bound = $115

2. Visit (1,1)

a. profit = $40, weight = 2, maxprofit = $40

b. bound = $115

3. Visit (1,1)

a. profit = $0, weight = 0, maxprofit = $40

b. bound = $82

4. Best bound = node (1,1)



5.  Visit (2,1)

a. profit = $70, weight = 7, maxprofit = $70

b. bound = $115

6.  Visit (2,2)

a. profit = $40, weight = 2, maxprofit = $70

b. bound = $98

7.  Best bound = node (2,1)

8.  Visit (3,1)

a. profit = $120, weight = 17,maxprofit = $70

b. bound = $0



9.  Visit (3,2)

a. profit = $70, weight = 7, maxprofit = $70

b. bound = $80

10.Best bound = node (2,2)

11.Visit (3,3)

a. profit = $90, weight = 12, maxprofit = $90

b. bound = $98

c. node (3,2) and node (1,2) nonpromising

12.Visit (3,4)

a. profit = $40, weight = 2,maxprofit = $90

b. bound = $50



13. Best bound = node(3,3)

14. Visit (4,1)

a. profit = $100, weight = 17, maxprofit = $90

b. bound = $0 � nonpromising

10.Visit (4,2)

a. profit = $90, weight = 12, maxprofit = $90a. profit = $90, weight = 12, maxprofit = $90

b. bound = $90 � nonpromising



General scheme of Best First
Procedure best_first_BnB(T: state_space_tree; var best : number)

Var 

PQ : Priority_queue_of_node;

u,v :node

Begin

initialize(Q);

v:=root of T;
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v:=root of T;

best := value(v);

insert(PQ,v)

while not empty(PQ) do

remove(PQ,v)

if bound(v) is better than best then

for each u child of v do

if value(u) is greater than best than

best := value(u)

if bound(u) is better than best than

insert(PQ,u)

end



Best First 

Algorithm



notes

• Best first : 11 node, breadth first = 17 node, 

deepth first : 13 node

• No guarantee that node appears to be best 

will lead to an optimal solutionwill lead to an optimal solution



Traveling Salesperson Problem

• Goal : find shortest path in a directed graph that start 

at a given vertex, visit each vertex exactly once, and  

end up back at starting vertex

• Need to determine the lower bound on the length of Need to determine the lower bound on the length of 

any tour that can be obtained by expanding beyond a 

given node

• Promising, if bound is less than current minimum 

tour length

• IniGally, set minimum tour length to ∞



Traveling Salesman Problem







787014

20104140

Adjacency matrix
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













 0417718

209711

167054

787014



Traveling Salesman Problem

• Lower bound on the cost of leaving vertex v1 is given 

by the minimum of all nonzero entries in row 1 of the 

adjacency matrix,

• Lower bound on the cost of leaving vertex v2 is given 

Branch and Bound 26

Lower bound on the cost of leaving vertex 2 is given 

by the minimum of all nonzero entries in row 2 of the 

adjacency matrix,

• And so on..



Traveling Salesman Problem

• Lower bound on the cost of leaving the five vertices 

are:

v1 minimum (14, 4, 10, 20) = 4

v2 minimum (14, 7, 8, 7)     = 7
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v2 minimum (14, 7, 8, 7)     = 7

v3 minimum (4, 5, 7, 16)     = 4

v4 minimum (11, 7, 9, 2)     = 2

v5 minimum (18, 7, 17, 4)   = 4

• The sum of these minimums is 21



Lower bound
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Lower bound

• Lower bound on the node containing [1,2] :
– The cost of getting to v

2
is 14

– Obtain the minimum for v
2
, it doesn’t include the edge to v

1

– Obtain the minimums for the other vertices it doesn’t include v
2

because it’s already been at v
2
.

v = 14
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v
1

= 14

v
2

minimum(7, 8, 7)     = 7

v
3

minimum(4, 7, 16)   = 4

v
4

minimum(11, 9, 2)   = 2

v
5

minimum(18, 17, 4) = 4

• Lower bound obtained by expanding beyond the node 
containing [1,2] is 14+7+4+2+4=31



Lower bound

• Lower bound on the node containing [1,2,3]. Any tour 
obtained by expanding beyond this node has the following 
lower bound on the cost of leaving the vertices:

v
1

= 14

v
2

= 7

v
3

minimum(7, 16)    = 7
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v
3

minimum(7, 16)    = 7

v
4

minimum(11, 2)    = 2

v
5

minimum(18, 4)    = 4

• The lower bound on the node [1,2,3] is 14+7+7+2+4=34



Best-first search with branch-and-
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Best-first search with branch-and-

bound pruning



[1,5]

Lb=42

4
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[1,4,2]

Lb=45

12

[1,4,5]

Lb=30

14

[1,4,5,2]=

[1,4,5,2,3,1]

Lb=30

15



TSP: an optimal tour
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