
Branch and Bound Strategy

Compare to backtracking

• Very similar to backtrack in that a space tree is

used to solve the problem.

• The complexity, in worst case, exponential

• The differences :• The differences :

– BnB doesn’t limit us to any particular way of

traversing the tree

– Used only for optimization problem

The idea behind the BnB

• BnB computes a number (bound) at a node to

determine whether the node is promising.

• The number is a bound on the value of the

solution that could be obtained beyond

Branch and Bound 3

solution that could be obtained beyond

expanding the node

• If the bound is no better the the value of the

best solution found so far, the node is

nonpromising

0/1 Knapsack : Case-1

i Pi wi Pi/wi

1 $40 2 $20

2 $30 5 $6

3 $50 10 $53 $50 10 $5

4 $10 5 $2

Two strategies in traversing tree

• Breadth-first branch and bound

• Best-first branch and bound

Branch and Bound 5

Breadth First Search with BnB Pruning

1. Maxprofit = $0

2. Visit (0,0)

a. profit = $0, weight = 0

b. bound, i=0, and k=3 (because 2+5+7 = 17>16)

∑
−

+=

=++=+=

13

10

7520
j

wjweighttotweight

c. Promising ?

weight < W and bound > maxprofit �promising

∑
−

+=

−++=

13

10

)3/3()(
j

wPxtotweightwPjprofitbound

115$10/50$)716(30$40$0$ =−+++= x

3. Visit (1,1)

a. profit = $0 + $40 = $40, and weight = 0 + 2 = 2

b. maxprofit = $40

c. bound, i=1, and k=3 (because 2+5+7 = 17>16)

∑
−

+=

=+=+=

13

11

752
j

wjweighttotweight

c. Promising ?

weight < W and bound > maxprofit �promising

+= 11j

∑
−

+=

−++=

13

11

)3/3()(
j

wPxtotweightwPjprofitbound

115$10/50$)716(30$40$ =−++= x

4. Visit (1,2)

a. profit = $0, and weight = 0

b. maxprofit = $40

c. bound, i=1, and k=4 (because 5+10+5 = 20>16)

∑
−

+=

=+=+=

14

11

15105
j

wjweighttotweight

c. Promising ?

weight < W and bound > maxprofit �promising

+= 11j

∑
−

+=

−++=

14

11

)4/4()(
j

wPxtotweightwPjprofitbound

82$5/10$)1516(50$30$0$ =−+++= x

General scheme of Breadth First
Procedure breadth_first_BnB(T: state_space_tree; var best : number)

Var

Q : queue_of_node;

u,v :node

Begin

initialize(Q);

Branch and Bound 10

initialize(Q);

v:=root of T;

enqueue(Q,v);

best := value(v);

while not empty(Q) do

dequeue(Q,v)

for each u child of v do

if value(u) is greater than best than

best := value(u)

if bound(u) is better than best than

enqueue(Q,u)

end

Breadth First Algorithm

Compare with depth first search

• Node (1,2) found promising

• Decision to visit node’s children is made at the

time the node visited

Exercise : 0/1 Knapsack

• Consider the following instance of the 0/1 Knapsack

n=4, W=19

i vi wi vi /wi

1 $20 2 10

Branch and Bound 15

1 $20 2 10

2 $30 5 6

3 $35 7 5

4 $12 3 4

5 $3 1 3

Best First with BnB Pruning

1. Visit (0,0)

a. profit = $0, weight = 0, maxprofit = $0

b. bound = $115

2. Visit (1,1)

a. profit = $40, weight = 2, maxprofit = $40

b. bound = $115

3. Visit (1,1)

a. profit = $0, weight = 0, maxprofit = $40

b. bound = $82

4. Best bound = node (1,1)

5. Visit (2,1)

a. profit = $70, weight = 7, maxprofit = $70

b. bound = $115

6. Visit (2,2)

a. profit = $40, weight = 2, maxprofit = $70

b. bound = $98

7. Best bound = node (2,1)

8. Visit (3,1)

a. profit = $120, weight = 17,maxprofit = $70

b. bound = $0

9. Visit (3,2)

a. profit = $70, weight = 7, maxprofit = $70

b. bound = $80

10.Best bound = node (2,2)

11.Visit (3,3)

a. profit = $90, weight = 12, maxprofit = $90

b. bound = $98

c. node (3,2) and node (1,2) nonpromising

12.Visit (3,4)

a. profit = $40, weight = 2,maxprofit = $90

b. bound = $50

13. Best bound = node(3,3)

14. Visit (4,1)

a. profit = $100, weight = 17, maxprofit = $90

b. bound = $0 � nonpromising

10.Visit (4,2)

a. profit = $90, weight = 12, maxprofit = $90a. profit = $90, weight = 12, maxprofit = $90

b. bound = $90 � nonpromising

General scheme of Best First
Procedure best_first_BnB(T: state_space_tree; var best : number)

Var

PQ : Priority_queue_of_node;

u,v :node

Begin

initialize(Q);

v:=root of T;

Branch and Bound 21

v:=root of T;

best := value(v);

insert(PQ,v)

while not empty(PQ) do

remove(PQ,v)

if bound(v) is better than best then

for each u child of v do

if value(u) is greater than best than

best := value(u)

if bound(u) is better than best than

insert(PQ,u)

end

Best First

Algorithm

notes

• Best first : 11 node, breadth first = 17 node,

deepth first : 13 node

• No guarantee that node appears to be best

will lead to an optimal solutionwill lead to an optimal solution

Traveling Salesperson Problem

• Goal : find shortest path in a directed graph that start

at a given vertex, visit each vertex exactly once, and

end up back at starting vertex

• Need to determine the lower bound on the length of Need to determine the lower bound on the length of

any tour that can be obtained by expanding beyond a

given node

• Promising, if bound is less than current minimum

tour length

• IniGally, set minimum tour length to ∞

Traveling Salesman Problem







787014

20104140

Adjacency matrix

Branch and Bound 25















 0417718

209711

167054

787014

Traveling Salesman Problem

• Lower bound on the cost of leaving vertex v1 is given

by the minimum of all nonzero entries in row 1 of the

adjacency matrix,

• Lower bound on the cost of leaving vertex v2 is given

Branch and Bound 26

Lower bound on the cost of leaving vertex 2 is given

by the minimum of all nonzero entries in row 2 of the

adjacency matrix,

• And so on..

Traveling Salesman Problem

• Lower bound on the cost of leaving the five vertices

are:

v1 minimum (14, 4, 10, 20) = 4

v2 minimum (14, 7, 8, 7) = 7

Branch and Bound 27

v2 minimum (14, 7, 8, 7) = 7

v3 minimum (4, 5, 7, 16) = 4

v4 minimum (11, 7, 9, 2) = 2

v5 minimum (18, 7, 17, 4) = 4

• The sum of these minimums is 21

Lower bound

Branch and Bound 28

Lower bound

• Lower bound on the node containing [1,2] :
– The cost of getting to v

2
is 14

– Obtain the minimum for v
2
, it doesn’t include the edge to v

1

– Obtain the minimums for the other vertices it doesn’t include v
2

because it’s already been at v
2
.

v = 14

Branch and Bound 29

v
1

= 14

v
2

minimum(7, 8, 7) = 7

v
3

minimum(4, 7, 16) = 4

v
4

minimum(11, 9, 2) = 2

v
5

minimum(18, 17, 4) = 4

• Lower bound obtained by expanding beyond the node
containing [1,2] is 14+7+4+2+4=31

Lower bound

• Lower bound on the node containing [1,2,3]. Any tour
obtained by expanding beyond this node has the following
lower bound on the cost of leaving the vertices:

v
1

= 14

v
2

= 7

v
3

minimum(7, 16) = 7

Branch and Bound 30

v
3

minimum(7, 16) = 7

v
4

minimum(11, 2) = 2

v
5

minimum(18, 4) = 4

• The lower bound on the node [1,2,3] is 14+7+7+2+4=34

Best-first search with branch-and-

Branch and Bound 31

Best-first search with branch-and-

bound pruning

[1,5]

Lb=42

4

Branch and Bound 32

[1,4,2]

Lb=45

12

[1,4,5]

Lb=30

14

[1,4,5,2]=

[1,4,5,2,3,1]

Lb=30

15

TSP: an optimal tour

Branch and Bound 33

