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PREFACE

Overview

Modelling and simulation is a tool that provides support for the planning, 
design, and evaluation of systems as well as the evaluation of strategies for 
system transformation and change. Its importance continues to grow at a 
remarkable rate, in part because its application is not constrained by 
discipline boundaries. This growth is also the consequence of the 
opportunities provided by the ever-widening availability of significant 
computing resources and the expanding pool of human skill that can 
effectively harness this computational power. However, the effective use 
of any tool and especially a multifaceted tool such as modelling and 
simulation involves a learning curve. This book addresses some of the 
challenges that lie on the path that ascends that curve. 

Consistent with good design practice, the development of this textbook 
began with several clearly defined objectives. Perhaps the most 
fundamental was the intent that the final product provide a practical (i.e., 
useful) introduction to the main facets of a typical modelling and 
simulation project. This objective was, furthermore, to include projects 
emerging from both the discrete-event and the continuous-time domains. 
In addition, the work was not to evolve into a treatise on any particular 
software tool, nor was it to be overly biased towards the statistical notions 
that play a key role in handling projects from the discrete-event domain. 
To a large extent, these objectives were the product of insights acquired by 
the first author over the course of several decades of teaching a wide range 
of modelling and simulation topics. Our view is that we have been 
successful in achieving these objectives. 

Features

We have taken a project-oriented perspective of the modelling and 
simulation enterprise. The implication here is that modelling and 
simulation is, in fact, a collection of activities that are all focused on one 
particular objective, namely, providing a credible resolution to a clearly 
stated goal, a goal that is formulated within a specific system context. 
There can be no project unless there is a goal. All the constituent 
subactivities work in concert to achieve the goal. Furthermore the ‘big 
picture’ must always be clearly in focus when dealing with any of the 
subactivities. We have striven to reflect this perspective throughout our 
presentation.



continuous-time domain inasmuch as the differential equations that define 
the system dynamics can be correctly regarded as the conceptual model. 
On the other hand, however, this is very significant in the case of projects 
from the discrete-event domain because there is no generally accepted 
view of what actually constitutes a conceptual model in that context. This 
invariably poses a significant hurdle from a pedagogical point of view 
because there is no abstract framework in which to discuss the structural 
and behavioural features of the system under investigation. The inevitable 
(and unfortunate) result is a migration to the semantic and syntactic 
formalisms of some programming environment.

We have addressed this problem by presenting a conceptual modelling 
environment which we call the ABCmod framework. Its basis is the 
identification of ‘units of behaviour’ within the system under investigation 
and their subsequent synthesis into individual activities. The approach is a 
version of the activity-based world view that is often mentioned in the 
modelling and simulation literature as one of three standard approaches for 
organising a computer program that captures the time evolution of a 
discrete-event dynamic system. In our ABCmod (Activity-Based 
Conceptual modelling) framework the underlying notions are elevated 
from the programming level to a more abstract and hence more conceptual 
level. The inherent implementation difficulty with the notions does not 
arise because there is no execution requirement at the conceptual level. 
The examples that are presented in the text illustrate conceptual model 
development using the ABCmod framework. Furthermore we demonstrate 
the utility of the ABCmod framework by showing how its constructs 
conveniently map onto those that are required in both the event-scheduling 
and the process-oriented programming environments. 

Audience

This textbook is intended for students (and indeed, anyone else) interested 
in learning about the problem-solving methodology called modelling and 
simulation. The book makes no pretence at being a research monograph, 
(although our ABCmod conceptual modelling framework is novel and 
previously unpublished). A meaningful presentation of the topics involved 
necessarily requires a certain level of technical maturity and our reference 
in this regard is a science or engineering background at the senior 
undergraduate or the junior graduate level. 

More specifically our readers are assumed to have a reasonable comfort 
level with standard mathematical notation which we frequently use to 
concisely express relationships. There are no particular topics from 

The notion of a conceptual model plays a central role in our 
presentation. This is not especially significant for projects within the 
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provided in Annex 1). A reasonable level of computer programming skills 
is assumed in the discussions of Chapter 5 and 8. We use Java as our 
environment of choice in developing event-scheduling simulation models. 
The GPSS programming environment is used to illustrate the process-
oriented approach to developing simulation models and we provide a 
GPSS primer in Annex 2. Our discussion of the modelling and simulation 
enterprise in the continuous-time domain is illustrated using the Open 
Desire programming environment and we provide an Open Desire primer 
in Annex 3. 

Organisation

This book is organised into three parts. The first part has two chapters and 
serves to provide an overview of the modelling and simulation discipline. 
It provides a context for the subsequent discussions and, as well, the 
process that is involved in carrying out a modelling and simulation study is 
presented. Important notions such as quality assurance are also discussed. 

The four chapters of Part 2 explore the various facets of a modelling and 
simulation project within the realm of discrete-event dynamic systems 
(DEDS). We begin by pointing out the key role of random (stochastic) 
phenomena in modelling and simulation studies in the DEDS realm. This, 
in particular, introduces the need to deal with data models as an integral 
part of the modelling phase. Furthermore there are significant issues that 
must be recognised when handling the output data resulting from 
experiments with DEDS models. These topics are explored in some detail 
in the discussions of Part 2. 

As noted earlier, we introduce in this book an activity-based conceptual 
modelling framework that provides a means for formulating a description 
of the structure and behaviour of a model that evolves from the DEDS 
domain. An outline of this framework is provided in Part 2. A conceptual 
model is intended to provide a stepping stone for the development of a 
computer program that will serve as the ‘solution engine’ for the project. 
We show how this can be accomplished for both the event-scheduling and 
the process-oriented program development perspectives (i.e., world views). 

There are three chapters in Part 3 of the book and these are devoted to 
an examination of various important aspects of the modelling and 
simulation activity within the continuous-time dynamic system (CTDS) 
domain. We begin by showing how conceptual models for a variety of 
relatively simple systems can be formulated. Most of these originate in the 
physical world that is governed by familiar laws of physics. However, we 
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mathematics that are essential to the discussion but some familiarity with 
the basic notions of probability and statistics plays a key role in the 
material in Chapters 3 and 6. (In this regard, a probability primer is 
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We explore several options that exist in this regard and provide some 
insight into important features of the alternatives. Several properties of 
CTDS models that can cause numerical difficulty are also identified. 

Determining optimal values for some set of parameters within a CTDS 
model is a common project goal in a modelling and simulation study. The 
last chapter in Part 3 explores this task in some detail. We outline two 
particular numerical procedures that can be applied to optimisation 
problems that arise in this context. 

Web Resources 

supplementary material
 that accompanies this textbook. Included are the following.

1. A set of PowerPoint slides from which presentation material can be 
developed

2. An ABCmod tool that supports the development of discrete-event 
conceptual models based on the framework 

3. A methodology for organising student projects 
4. A set of links to other Web sites that provide modelling and simulation 

tools and information 

This site is dynamic and it is anticipated that material will be updated on 
a regular basis. 
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Inasmuch as a conceptual model in the CTDS realm is predominantly a 
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PART 1 
FUNDAMENTALS

discussions about our topic of interest; namely, modelling and simulation. 
It consists of two chapters; that is, Chapter 1 and Chapter 2. 

In Chapter 1 we briefly consider a variety of topics that can be 
reasonably regarded as background material. A natural beginning is a brief 
look at a spectrum of reasons why a modelling and simulation study might 
be undertaken. Inasmuch as the notion of a model is fundamental to our 

A generic ‘full-service’ gas station is used to illustrate some of the key 
ideas. We then acknowledge that modelling and simulation projects can 
fail and suggest a number of reasons why this might occur. 

Monte Carlo simulation and simulators are two topics which fall within 
a broadly interpreted perspective of modelling and simulation. In the 
interests of completeness, both of these topics are briefly reviewed. We 
conclude Chapter 1 with a brief look at the historical roots of the 
modelling and simulation discipline. 

Modelling and simulation is a multifaceted, goal-oriented activity and 
each of the steps involved must be duly recognized and carefully carried 
out. Chapter 2 is concerned with outlining these steps and providing an 
appreciation for the modelling and simulation process. The discussion 
begins with an examination of the essential features of a dynamic model 
and with the abstraction process that is inherent in its construction. The 
basic element in this abstraction process is the introduction of variables. 

with the goals of the study. Variables fall into three categories: namely, 
input variables, output variables, and state variables. The distinctive 
features of each of these categories are outlined.

The modelling and simulation process gives rise to a number of artefacts 
and these emerge in a natural way as the underlying process evolves. 
These various artefacts are outlined together with their interrelationships. 
The credibility of the results flowing from a modelling and simulation 

facets of this important topic. In particular, we examine the central role of 
verification and validation as it relates to the phases of the modelling and 
simulation activity. 

model and its behaviour properties which must necessarily be consistent 

topic of quality assurance and we conclude Part 1 by exploring various 

These provide the means for carrying out a meaningful dialogue about the 

project is clearly of fundamental importance. This gives rise to the 

discussions, some preliminary ideas that relate to this notion are presented. 

Part 1 of this book establishes the foundations for our subsequent 



Chapter 1 Introduction 

1.1 Opening Perspectives 

This book explores the use of modelling and simulation as a problem-
solving tool. We undertake this discussion within the framework of a 
modelling and simulation project. This project framework embraces two 
key notions; first there is the notion of a ‘system context’; that is, there is a 
system that has been identified for investigation, and second, there is a 
problem relating to the identified system that needs to be solved. Obtaining 
an acceptable solution to this problem is the goal of the modelling and 
simulation project. We use the term ‘system’ in its broadest possible sense; 
it could, for example, include the notions of a process or a phenomenon. 
Furthermore, physical existence of the system is not a prerequisite; the 
system in question may simply be a concept, idea, or proposal. What is a 
prerequisite, however, is the requirement that the system in question 
exhibit ‘behaviour over time,’ in other words, that it be a dynamic system. 

Systems, or more specifically dynamic systems, are one of the most 
pervasive notions of our contemporary world. Broadly speaking, a 
dynamic system is a collection of interacting entities that produces some 
form of behaviour that can be observed over an interval of time. There are, 
for example, physical systems such as transportation systems, power 
generating systems, or manufacturing systems. On the other hand, in less 
tangible form, we have healthcare systems, social systems, and economic 
systems. Systems are inherently complex and tools such as modelling and 
simulation are needed to provide the means for gaining insight into 
features of their behaviour. Such insight may simply serve to provide the 
intellectual satisfaction of deeper understanding or, on the other hand, may 
be motivated by a variety of more practical and specific reasons such as 
providing a basis for decisions relating to the control, management, 
acquisition, or transformation of the system under investigation (the SUI). 

The defining feature of the modelling and simulation approach is that it 
is founded on a computer-based experimental investigation that utilises an 
appropriate model for the SUI. The model is a representation or abstraction 
of the system. The use of models (in particular, mathematical models) as a 
basis for analysis and reasoning is well established in such disciplines as 
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engineering and science. It is the emergence and widespread availability of 
computing power that has made possible the new dimension of 
experimentation with complex models and hence, the emergence of the 
modelling and simulation discipline. 

It must be emphasised, furthermore, that there is an intimate connection 
between the model that is ‘appropriate’ for the study and the nature of the 
problem that is to be solved. The important corollary here is that there 
rarely exists a ‘universal’ model that will support all modelling and 
simulation projects that have a common system context. This is especially 
true when the system has some reasonable level of complexity. Consider, 
for example, the difference in the nature of a model for an airliner, first in 
the case where the model is intended for use in evaluating aerodynamic 
properties versus the case where it is simply a revenue-generating object 
within a business model. Identification of the most appropriate model for 
the project is possibly the most challenging aspect of the modelling and 
simulation approach to problem solving. 

Although the word ‘modelling’ has a meaning that is reasonably 
confined in its general usage, the same cannot be said for the word 
‘simulation’. Nevertheless, the phrase ‘modelling and simulation’ does 
have a generally accepted meaning and implies two distinct activities. The 
modelling activity creates an object (i.e., a model) that is subsequently 
used as a vehicle for experimentation. This experimentation with the 
model is the simulation activity. 

The word ‘simulation’ is frequently used alone in a variety of contexts. 
For example, it is sometimes used as a noun to imply a specialised 
computer program (as in, ‘A simulation has been developed for the 
proposed system.’). It is also used frequently as an adjective (as in, ‘The 
simulation results indicate that the risk of failure is minimal,’ or ‘Several 
extensions have been introduced into the language to increase its 
effectiveness for simulation programming’). These wide-ranging and 
essentially inconsistent usages of the word ‘simulation’ can cause 
regrettable confusion for neophytes to the discipline. As a rule, we avoid 
such multiplicity of uses of this word but, as will become apparent, we do 
use the word as an adjective in two specific contexts where the implication 
is particularly suggestive and natural. 

1.2 Role of Modelling and Simulation 

There is a wide range of possible reasons for undertaking a modelling and 
simulation study. Some of the most common are listed below (the order is 
alphabetical and hence should not be interpreted as a reflection of 
importance):
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1. Education and training 
2. Engineering design 
3. Evaluation of decision or action alternatives 
4. Evaluation strategies for transformation or change 
5. Forecasting
6. Performance evaluation
7. Prototyping and concept evaluation 
8. Risk/safety assessment 
9. Sensitivity analysis
10. Support for acquisition/procurement decisions 

It was noted earlier that the goals of a simulation project have a major 
impact on the nature of the model that evolves. However it’s also 
important to observe that the goals themselves may be bounded by 
constraints. These typically are a consequence of limitations on the level of 
knowledge that is available about the SUI. The unavoidable reality is that 
the available knowledge about the underlying dynamics of systems varies 
considerably from system to system. There are systems whose dynamics 
can be confidently characterised in considerable detail and, in contrast, 
there are systems whose dynamics are known only in an extremely 
tentative fashion. An integrated circuit developed for some 
telecommunications application would fall into the first category whereas 
the operation of the stock market would reasonably fall into the second. 
This inherent range of knowledge level is sometimes reflected in the 
terminology used to describe the associated models. For example, an 
integrated circuit model might be referred to as a ‘deep’ model and a 
model of the stock market would be a ‘shallow’ model. The goals of a 
modelling and simulation project are necessarily restricted to being 
relatively qualitative when only a shallow model is feasible. Quantitative 
goals are feasible only for those situations where deep knowledge is 
available. In other words, the available knowledge level significantly 
influences the nature of the goals that can be realistically formulated for a 
modelling and simulation study. 

The centrality of the goals of a modelling and simulation project has 
been recognised in terms of a notion called the ‘experimental frame’ (see 
References [1.7] and [1.13]). This notion is rather broadly based and 
implies a mechanism to ensure an appropriate compatibility among the 
SUI, the model, and the project goals. This usually includes such 
fundamental issues as the proper identification of the data the model must 

environment in which the model functions, its parameters, and its 
granularity.

deliver, identification and representation of pertinent features of the 
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A model plays the role of a surrogate for the system it represents and its 
purpose (at least from the perspective of this textbook) is to replace the 
system in experimental studies. When the underlying system (i.e., SUI) 
does not exist (e.g., it may merely be an idea, concept, or proposal) then 
the model is the only option for experimentation. But even when the SUI 
does exist there is a variety of reasons why experimentation directly with it 
could be inappropriate. For example, such experimentation might be: 

   Too costly (determining the performance benefit likely to be achieved 
by upgrading the hardware at all the switch nodes of a large data 
communications network) 

   Too dangerous (exploring alternate strategies for controlling a nuclear 
reactor)

   Too time consuming (determining the ecological impact of an extended 
deer hunting season, implemented over several consecutive years, on 
the excessive deer population in a particular geographical region) 

   Too disruptive (evaluating the effectiveness of a proposed grid of one-
way streets within the downtown core of an urban area) 

 Morally/ethically unacceptable (assessing the extent of radiation 
dispersion following a particular catastrophic failure at some nuclear 
generation facility) 

   Irreversible (investigating the impact of a fiscal policy change on the 
economy of a country) 

Behavioural data is almost always easier to acquire from a model than 

experimentation with a model. Consider, for example, the challenges 
inherent in monitoring the force exerted on the blades of a rotating turbine 
by escaping combustion gases. Furthermore, the fact that the platform for 
the experimentation is a computer (or more correctly, a computer program) 

generally only be approximated when experiments are carried out directly 
with an existing system. 

1.3 The Nature of a Model 

A model is a specification for behaviour generation and the modelling 
process is concerned with the development of this specification. It is often 
suggested that the task is to ensure that the behaviour of the model is as 
indistinguishable as possible from the behaviour of the SUI. This assertion 
is only partially correct. A more appropriate statement of the task at hand 
is to develop the specification so that it captures the behaviour properties 

ensures reproducibility of results which is an essential requirement for 

from the system itself and this is another important reason for favouring 

establishing credibility of experimental investigations. Such reproducibility can 
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at a level of granularity that is appropriate to the goals of the study. The 
challenge is to capture all relevant detail and to avoid superfluous features. 
(One might recall here the quotation from Albert Einstein, ‘Everything 
should be made as simple as possible, but not simpler.’) For example, 
consider a project concerned with evaluating strategies for improving the 
operating efficiency of a fast-food restaurant. Within this context it would 
likely be meaningless (and indeed, nonsensical) to incorporate into the 
model information about the sequence in which a server prepares the hot 
and cold drinks when both are included in a customer’s order. 

The notion of ‘behaviour’ is clearly one that is fundamental to these 
discussions and in particular, we have suggested that there is usually a 
need to evaluate behaviour. But what does this mean and how is it done? 
At this point we have to defer addressing these important questions until a 
more detailed exploration of the features of models has been completed. 

Modelling is a constructive activity and this raises the natural question 
of whether the product (i.e., the model) is ‘good enough.’ This question 
can be answered only if there is an identified context and as we show in 
the discussions to follow, there are many facets to this key issue. One 

other words, a key question is always whether the model is good enough 
from the point of view of the project goals. The corollary of this assertion 
is that it is not meaningful to undertake any modelling study without a 
clear understanding of the purpose for which the model will be used. 
Perhaps the most fundamental implication of the above discussion is that it 
is never meaningful to undertake a study whose goal is simply ‘to develop 
a model of  . . . .’ 

There is a variety of ways in which the specification of behaviour can be 
formulated. Included here are: natural language, mathematical formalisms, 
rule-based formalisms, symbolic/graphical descriptions, and combinations 
of these. It is typical for several distinct formulations of the model (or 
perhaps only portions of it) to evolve over the course of the study. These 
alternatives are generally created in formats that are best suited to 
capturing subtleties or providing clarification.

A particular format that plays a very special role is a specification 
formulated as a computer program. The importance of such a specification 
arises because that computer program provides the means for actually 
carrying out the experiments that are central to the modelling and 
simulation approach. This illustrates, furthermore, the important fact that 
some realisations of the specification (which, after all, is the model) are 
actually executable and produce the behaviour we seek to observe. This 
legitimises the implications in our frequent use of the phrase ‘the model’s 
behaviour.’

facet that is most certainly fundamental is the goal(s) of the project. In 
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1.4 An Example (Full-Service Gas Station) 

To illustrate some facets of the discussion above, we consider a modelling 
and simulation project whose system context (SUI) is a ‘full-service’ gas 
station with two islands and four service lanes (see Figure 1.1). A 
significant portion of the customers at this station drive small trucks and 
vans which typically have gas tank capacities that are larger than those of 
most passenger vehicles. Often the drivers of passenger cars find 
themselves queued behind these large-tank vehicles which introduce 
substantially longer wait times when they arrive at the gas pumps. This can 
cause aggravation and complaints. The station management is considering 
restricting these large-tank vehicles to two designated lanes. The goal of 
the modelling and simulation project could be to obtain performance data 
that would assist in determining whether such a policy would improve the 
flow of vehicles through the station. 

Vehicles are obliged (via appropriate signage) to access the pumps from 
the east side and after their respective gas purchases they exit on the west 
side. Upon arrival, drivers always choose the shortest queue. In the case 
where two or more queues have the same shortest length, a random choice 
is made. An exception is when it is observed that a customer in one of the 
‘shortest queues’ is in the payment phase of the transaction in which case 
that queue is selected by the arriving driver. 

FIGURE 1.1.  Gas station project.

Depending on the time of day, one or two attendants are available to 
serve the customers. The service activity has three phases. During the first, 
the attendant determines the customer’s requirement and begins the 
pumping of gas (the pumps have a preset delivery amount and 
automatically shut off when the preset amount has been delivered). In 



1.4   An Example (Full-Service Gas Station)    9 

addition, any peripheral service such as cleaning of windshields and 
checking oil levels are carried out during this first phase. Phase two is the 
delivery phase during which the gas is pumped into the customer’s gas 
tank. Phase three is the payment phase; the attendant accepts payment 
either in the form of cash or credit card. The duration of phase two is 
reasonably long and an attendant typically has sufficient time either to 
begin serving a newly arrived customer or to return to handle the phase 
three (payment) activity for a customer whose gas delivery is complete. 
The protocol is to give priority to a payment function before serving a 
newly arrived customer. It is standard practice for the payment function to 
be carried out by the same attendant who initiated the transaction. 

The above text can be regarded as an initial phase in the model building 
process for this particular modelling and simulation project. It corresponds 
to the notion of a project description which we examine more carefully in 
Chapter 2. Notice, however, that much detail remains to be added; for 
example, the specification of the arrival rate of vehicles, the proportion of 
vehicles that fall into the small truck/van category, service times for each 
of the three service phases, and so on (these correspond to data 
requirements). Nor should it be assumed that it is entirely complete and 
adequately comprehensive.

Refinements to this description are almost certain to be necessary; these 
may simply provide clarification (what are the conditions that govern the 
attendant’s options during phase two) or may introduce additional detail; 
such as what happens when a pump becomes defective or, under what 
conditions does an arriving customer ‘balk,’ that is, decide the queues are 
too long and leave. Or, in fact, is balking even a relevant occurrence? 
What about accommodating the possibility that drivers (or passengers) 
may need to use the washroom facilities and thereby ‘hold’ the pump 
position longer than is otherwise necessary? The merits of introducing 
such refinements must always be weighed against their relevance in terms 
of achieving the goals of the modelling and simulation project. (It may be 
useful for the reader to dwell on other possible refinements.) In fact, some 
refinement of the goals is most certainly necessary. (What exactly are the 
performance data that would enable a meaningful decision to be made?) 

It is also important to observe that the model’s features as outlined 
above have an orientation that is specific to the stated goal of the project. 
There is very little in the presentation that would allow a model formulated 
from the given description to be useful in, for example, an environmental 
assessment of the gas station’s operation or indeed in an analysis of its 
financial viability.
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1.5 Is There a Downside to the Modelling and Simulation 
Paradigm?

The implicit thrust of the presentation in this textbook is that of promoting 
the strengths of the modelling and simulation paradigm as a problem-
solving methodology. However, one might reasonably wonder whether 
there exist inherent dangers or pitfalls. And the simple answer is that these 
do indeed exist! As with most tools (both technological and otherwise) 
modelling and simulation must be used with a good measure of care and 
wisdom. An appreciation for the limitations and dangers of any tool is a 
fundamental prerequisite for its proper use. We examine this issue within 
the modelling and simulation context somewhat indirectly by examining 
some reasons why modelling and simulation projects can fail. 

(a) Inappropriate Statement of Goals 
No project can ever be successful unless its objectives are clearly 
articulated and fully understood by all the stakeholders. This most 
certainly applies to any modelling and simulation project. The goals 
effectively drive all stages of the development process. Ambiguity in the 
statement of goals can lead to much wasted effort or yield conclusions that 
are unrelated to the expectations of the ‘client’ responsible for the 
initiation of the project.

A second, but no less important goal-related issue relates to the 
feasibility of achieving the stated goals. As suggested earlier, the project 
goals have to be consistent with the realities of the depth of knowledge that 
characterises the SUI. Any attempt to extract precise knowledge from a 
shallow model will most certainly fail. There are other feasibility issues as 
well. For example, the available level of resources may simply not be 
adequate to achieve the goals. Here resources include time (to complete 
the project), talent (skill set; see (d) below), and funding. 

(b) Inappropriate Granularity of the Model 
The granularity of the model refers to the level of detail with which it 
attempts to replicate the SUI. The level of granularity is necessarily 
bounded by the goals of the project and care must always be taken to 
ensure that the correct level has been achieved. Excessive detail increases 
complexity and this can lead to cost overruns and/or completion delays 
that usually translate into project failure. Too little detail, on the other 
hand, can mask the very effects that have substantial relevance to the 
behaviour that is of critical interest. This is particularly serious because the 
failure of the project only becomes apparent when undesired consequences 
begin to flow from the implementation of incorrect decisions based on the 
study.
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(c) Ignoring Unexpected Behaviour 
Although a validation process is recognised to be an essential stage in any 
modelling and simulation project, its main thrust generally is to confirm 
that expected behaviour does occur. On the other hand, testing for 
unexpected behaviour is never possible. Nevertheless such behaviour can 
occur and when it is observed there often is a tendency to dismiss it, 
particularly when validation tests have provided satisfactory results. 
Ignoring such counterintuitive, or unexpected observations can lay the 
foundation for failure. 

(d) Inappropriate Mix of Essential Skills 
A modelling and simulation project of even modest size can have 
substantial requirements in terms of both the range of skills and the effort 
needed for its completion. A team environment is therefore common; team 
members contribute complementary expertise to the intrinsically multi-
faceted requirements of the project. The range of skills that needs to be 
represented among the team members can include: project management, 
documentation, transforming domain knowledge into the format of a 
credible dynamic model, development of data modules as identified in the 
data requirements, experiment design, software development, and analysis 
of results. The intensity of coverage of these various areas is very much 
dependent on the specific nature of the project. Nevertheless, an 
inappropriate mix of skills can seriously impede progress and can 
ultimately result in project failure. 

(e) Inadequate Flow of Information to the Client 
The team that carries out a modelling and simulation project often does so 
on behalf of a ‘client’ who is not a member of the team. In such cases, care 
must be taken to ensure that the client is fully aware of how the project is 
unfolding in order to avoid the occurrence of a ‘disconnect’ that results in 
the delivery of a product that falls short of expectations. For example, a 
minor misinterpretation of requirements, if left uncorrected, can have 
consequences that escalate to the point of jeopardising the project’s 
success. 

1.6  Monte Carlo Simulation 

References to Monte Carlo simulation are often encountered in the 
modelling and simulation literature. This somewhat fanciful label refers to 
a problem-solving methodology that is loosely related to, but is very 
different from, the topic that we explore in this textbook. The term refers 
to a family of techniques that are used to find solutions to numerical 
problems. The distinctive feature of these techniques is that they proceed 
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contain the solution of the underlying problem. The origins of the 
approach can be traced back to Lord Rayleigh who used it to develop 
approximate solutions to simple partial differential equations. The power 
of the methodology was exploited by von Neumann and colleagues in 
solving complex problems relating to their work in developing a nuclear 
arsenal in the latter years of the Second World War. The Monte Carlo label 
for the methodology is, in fact, attributed to this group. 

Perhaps the simplest example of the method is its application to the 
evaluation of the definite integral: 

I  =
b

a
f(x) dx (1.1)

for the special case where f(x)  0. The value of I is the area under f(x)
between x = a and x = b. Consider now a horizontal line drawn at y = K
such that f(x) K for a  x  b (see Figure 1.2). The rectangle R, enclosed 
by x = a, x = b, y = 0, and y = K has the area K( b– a) and furthermore I
K(b – a). Suppose a sequence of points (xi,yi) is chosen at random within 
the rectangle R such that all points within R are equally likely to be chosen 
(e.g., by choosing from two uniform distributions oriented along the length 
and width of R). It can then be easily appreciated that the ratio of the 
number of points that fall either on the curve or under it (say, n) to the total 
number of points chosen (say, N) is an approximation of the ratio of I to
the area of the rectangle R. In other words,

n/N   I/[K(b – a)] (1.2)

or

I   nK(b – a)/N (1.3)

In the procedure, a point (xi,yi) is included in the count n, if yi  f(xi). The 
accuracy of the approximation improves as N increases. 

by constructing an artificial stochastic (probabilistic) system whose properties 

The interesting feature in this example is that the original problem is 
entirely deterministic and yet the introduction of probabilistic notions can 
yield an approximation to its solution. 
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FIGURE 1.2. Example of Monte Carlo simulation.

The class of problems that can be effectively investigated by Monte 
Carlo simulation generally falls within the domain of numerical analysis. 
The approach provides an alternate, and often very effective, solution 
option for these problems. However, these problems do not fall within the 
scope of the modelling and simulation methodology because they lack the 
prerequisite of ‘behaviour,’ that is, an evolution over time. The reference 
to ‘simulation’ in the label for the approach could be regarded as a 
reflection of the dissimilarity between the solution mechanism and the 
inherent nature of the problem. 

1.7 Simulators 

There is frequent reference in the modelling and simulation literature to the 
notion of simulators. Most commonly the notion is a reference to a training 
device or platform and it is from that perspective that we explore the topic 
in the discussion that follows. Within the training context a simulator can 
be viewed as a device that replicates those operational features of some 
particular system that are deemed to be important for the training of 
operators of that system. A characteristic feature of any simulator is the 
incorporation of some physical parts of the system itself as a means of 
enhancing the realism of the training environment, for example, an actual 
control panel layout. Beginning with the development of flight simulators 
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for training pilots (see Historical Overview which follows), the use of 
simulators has spread into a wide range of domains; for example, there 
exist power plant simulators (both nuclear and fossil), battlefield 
simulators, air traffic control simulators, and (human) patient simulators. 
An interesting presentation of contemporary applications of simulators in 
the training of health science professionals can be found in the various 
papers of the special journal issue of Reference [1.2]. 

The fundamental requirement of any simulator is the replication of 
system behaviour within a physical environment that is as realistic as 
possible from the perspective of an operator. Although the simulator 
incorporates some physical features of the system, substantial components 
of the system necessarily exist only in the form of models. In early 
simulators these models were themselves physical in nature but with the 
emergence of computing technology the modelled portions of the system 
have increasingly exploited the modelling power of this technology. 

The development of a simulator can be viewed as a modelling and 
simulation project whose goal is to achieve an effective training 
environment. This, in particular, implies that the device must operate in 
realtime; that is, behaviour, as experienced by the operator, must evolve at 
a rate that corresponds exactly to that of the real system. This introduces 
additional important constraints on the models for those portions of the 
system that are being emulated, such as synchronisation of ‘virtual’ time 
within the model with ‘real’ (i.e., clock) time. 

Simulators can also contribute in a variety of ways to enhancing the 
educational experience of students especially in circumstances where 
alternatives are precluded (e.g., by budgetary constraints) or alternately 
when the devices being examined are either hypothetical or are no longer 
available in the marketplace. The areas of computer organisation and 
operating systems are particularly well suited to this application and 
relevant discussions can be found in References [1.11] and [1.12]. 

Apart from their importance as training platforms and educational tools, 
it is interesting to observe that simulators also have a lighter side in their 
role within the entertainment industry. This is clearly apparent in the 
various versions of vehicular-oriented games that populate the 
entertainment arcades that have become commonplace in the shopping 
malls throughout North America. Less comprehensive versions of these 
games are available as well for home computers. 

Simulators represent an application area of the modelling and simulation 
paradigm. Inasmuch as our intent in this textbook is to avoid a focus on 
any particular application area, the topic of simulators is not explicitly 
addressed in the sequel apart from one exception. This is a brief 
examination of their important role in the history of modelling and 
simulation as discussed in the following section. 
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1.8 Historical Overview 

The birth of the modelling and simulation discipline can reasonably be 
associated with the development of the Link Trainer by Edward Link in 
the late 1920s. The Link Trainer is generally regarded as the first 
successful device designed specifically for the training of pilots and 
represents the beginning of an extensive array of training tools called flight 
simulators. The initial Link Trainer clearly predates the arrival of the 
modern computer and its behaviour-generating features were produced 
instead using pneumatic/hydraulic technology. As might be expected, 
flight simulators quickly embraced computer technology as it developed in 
the 1950s. The sophistication of flight simulators has continuously 
expanded and they have become indispensable platforms for training not 
only aircraft pilots (both commercial and military) but also the members of 
the Apollo Missions and, as well, the various space shuttle teams. In fact, 
the technology and methodology demands made by the developers of 
flight simulators have had a great impact upon the evolution of the 
modelling and simulation discipline itself. 

Although the development and evolution of simulators in general 
represent the initial (and probably pivotal) application area for modelling 
and simulation, it is the analogue computer that represents the initial 
computing platform for the discipline. The commercial availability of 
these computers began in the early 1950s. The principles upon which this 
computing machine was based were originally formulated by Lord Kelvin 
in the latter part of the nineteenth century. The electronic realisation of the 
concept was developed by Vannevar Bush in the 1930s. 

The analogue computer was primarily a tool for the solution of 
differential equations. The solution of such equations was obtained by 
direct manipulation of voltage signals using active elements called 
operational amplifiers. The computing environment was highly interactive 
and provided convenient graphical output. Although primarily electronic in 
nature, the early machines nevertheless relied on electromechanical 
devices to carry out basic nonlinear operations such as multiplication and 
division. This often introduced serious constraints in terms of both solution 
speed and accuracy. 

Programming the analogue computer was a relatively complex and 
highly error-prone process inasmuch as it involved physically 
interconnecting the collection of processing elements that were required 
for solving the problem at hand. The range of processing element types 
was relatively narrow but did include one that directly carried out an 
integration operation. It was this device that provided the basis for the 
straightforward solution of differential equations. As a result the problems 
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that were best suited for solution emerged from the realm of engineering 
(e.g., aerospace flight dynamics and control system design). 

By the mid-1960s the speed of general-purpose digital computers and 
the software support for their use had improved to a point where it was 
apparent that they were going to have important consequences upon the 
modelling and simulation discipline. For example, their capabilities 
showed promise in providing an alternate solution tool for the same 
problem class that had previously fallen exclusively into the domain of the 
analogue computer (thereby setting the stage for the demise of the ‘worthy 
predecessor’). But perhaps even more significantly it was clear that 
computing power was now becoming available to support a class of 
modelling and simulation projects that had been beyond the capabilities of 
the analogue computer, namely, the class of discrete event problems that 
incorporate stochastic phenomena. 

Over the next two decades of the 1970s and the 1980s a wide variety of 
software support for modelling and simulation applications was developed. 
This made possible the initiation of increasingly more ambitious projects 
which, by and large, fall into two distinct realms: namely, the continuous 
(typically engineering design problems formulated around differential 
equation models) and the discrete event (typically process design problems 
incorporating stochastic phenomenon and queueing models). 

Some interesting perspectives on the development of the modelling and 
simulation paradigm can be found in Nance and Sargent [1.4]. The 
evolution of specialised programming languages for modelling and 
simulation is an integral part of the history of the discipline and a 
comprehensive examination of such developments within the discrete 
event context (up to the year 1986) can be found in Nance [1.5, 1.6]. The 
overview given by Bowden [1.1] and the survey results presented by 

available software products in this domain. A comprehensive collection of 
contemporary simulation software is listed and summarised in the 
document [1.3] prepared by the Society for Modeling and Simulation 

In spite of the relatively short time span of its history, the modelling and 
simulation discipline has given birth to a remarkably large number of 
professional organisations and associations that are committed to its 
advancement (see: www.site.uottawa.ca/~oren/links-MS-AG.htm where a 
comprehensive listing is maintained). These span a broad range of specific 
areas of application which is not unexpected because the concepts 
involved are not constrained by discipline boundaries. 

The impact of decisions that are made on the basis of results that flow 
from a modelling and simulation study are often very significant and far 

work of Nikoukaran et al. [1.9] can provide 
useful guidance in this regard.

Swain [1.10] provide some insight into the wide spectrum of commercially 

International. Making correct choices from among the available alternatives 
can be a challenging task and the 
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reaching. In such circumstances it is critical that a high degree of 
confidence can be placed on the credibility of the results and this, in turn, 
depends on the expertise of the team that carries out the study. This has 
given rise to an accreditation process for those individuals who wish to 
participate in the discipline at a professional level. The accreditation option 
has obvious benefits for both the providers and the consumers of 
professional modelling and simulation services which are now widely 
available in the marketplace. This accreditation process has been 
developed under the auspices of the Modeling and Simulation Professional 
Certification Commission (see: www.simprofessional.org).

An integral part of professionalism is ethical behaviour and this has 
been addressed by Oren et al. [1.8] who have proposed a code of ethics for 
modelling and simulation professionals (see: www.scs.org/ethics/). This 
proposed code of ethics has already been adopted by numerous modelling 
and simulation professional organisations.

1.9 Exercises and Projects 

A new apartment building is being designed. It will have ten floors 

be two underground parking levels. The developer needs to make a 
decision about the elevator system that is to be installed in the 
building. The choice has been reduced to two alternatives: either 
two elevators each with a capacity of 15 or three smaller elevators 
each with a capacity of 10. A modelling and simulation study is to 
be undertaken to provide a basis for making the choice between 
the two alternatives. 

a) Develop a list of possible performance criteria that could be 

(e.g., when does an elevator change its direction of motion,
which of the elevators responds to a particular call for service, 
where does an idle elevator ‘park,’ etc.?) 

c) 
data. Develop a list of input data requirements that would 
necessarily become an integral part of a study of the elevator 
system, for example, arrival rates of tenants at each of the floors, 
velocity of the elevators, and so on. 

used to evaluate the relative merits of the two alternative 

and will have six apartments on each floor. There will, in addition 

designs. 
b) Develop a list of behavioural rules that would be incorporated

in the formulation of the model of the elevator system 

A model’s behaviour can ‘unfold’ only as a consequence of input 

1.1. 
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suburban area. Both of these roads have two traffic lanes. Because 
of the development of the area, the volume of traffic flow in each direction
at this intersection has dramatically increased and so has the number of 
accidents. A large proportion of the accidents involve vehicles 
making a left turn which suggests that the ‘simple’ traffic lights at 
the intersection are no longer adequate because they do not 
provide a left-turn priority interval. The city’s traffic department is 
evaluating alternatives for upgrading these traffic signals so that 
such priority intervals are provided to assist left-turning drivers. 
The need is especially urgent for traffic that is flowing in the north 
and south directions. If the upgrade is implemented then a 
particular parameter value that will need to be determined is the 

department has decided to explore solution alternatives for the 
problem by undertaking a modelling and simulation study. 

a) 

b) 
of the dynamic model (e.g., how do the queues of cars begin 
to empty when the light turns from red of green, how will  
right-turning cars be handled, and so on). 

c) 
process for the model. 
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Chapter 2 The Modelling and Simulation Process 

2.1 Some Reflections on Models 

The use of models as a means of obtaining insight or understanding is by 
no means novel. One could reasonably claim, for example, that the pivotal 
studies in geometry carried out by Euclid were motivated by the desire to 
construct models that would assist in better understanding important 
aspects of his physical environment. It could also be observed that it is rare 
indeed for the construction of even the most modest of structures to be 
undertaken without some documented perspective (i.e., an architectural 
plan or drawing) of the intended form. Such a document represents a 
legitimate model for the structure and serves the important purpose of 
providing guidance for its construction. Many definitions of a model can 
be found in the literature. One that we feel is especially noteworthy was 
suggested by Shannon [2.16]: ‘A model is a representation of an object, 
system or idea in some form other than itself.’ 

Although outside the scope of our considerations, it is important to 
recognise a particular and distinctive class of models called physical 
models. These provide the basis for experimentation activity within an 
environment that mimics the physical environment in which the problem 
originates. An example here is the use of scale models of aircraft or ships 
within a wind tunnel to evaluate aerodynamic properties; another is the use 
of ‘crash-test dummies’ in the evaluation of automobile safety 
characteristics. A noteworthy feature of physical models is that they can, at 
least in principle, provide the means for direct acquisition of relevant 
experimental data. However, the necessary instrumentation may be 
exceedingly difficult to implement. 

A fundamental dichotomy among models can be formulated on the basis 
of the role of time; more specifically, we note that some models are 
dynamic whereas others are static. A linear programming model for 
establishing the best operating point for some enterprise under a prescribed 
set of conditions is a static model because there is no notion of time 
dependence embedded in such a model formulation. Likewise, the use of 
tax software to establish the amount of income tax payable by an 
individual to the government can be regarded as the process of developing 
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a (static) model of one aspect of that individual’s financial affairs for the 
particular taxation year in question. The essential extension in the case of a 
dynamic model is the fact that it incorporates the notion of ‘evolution over 
time’. The difference between static and dynamic models can be likened to 
the difference between viewing a photograph and viewing a video clip. 
Our considerations throughout this book are concerned exclusively with 
dynamic models. 

Another important attribute of any model is the collection of 
assumptions that are incorporated into its formulation. These assumptions 
usually relate to simplifications and their purpose is to provide a means for 
managing the complexity of the model. Assumptions are invariably present 
but often they are not explicitly acknowledged and this can have very 
serious consequences. The assumptions embedded in a model place 
boundaries around its domain of applicability and hence upon its relevance 
not only to the project for which it is being developed but also to any other 
project for which its reuse is being considered. 

Making the most appropriate choices from among possible assumptions 
can be one of the most difficult aspects of model development. The 
underlying issue here is identifying the correct balance between 
complexity and credibility where credibility must always be interpreted in 
terms of the goals of the project. It’s worth observing that an extreme, but 
not unreasonable, view in this regard is that the development of any model 
is simply a matter of making the correct selection of assumptions from 
among the available options (often a collection of substantial size). 

The assumptions embedded in a model are rarely transparent. It is 
therefore of paramount importance to ensure, via the documentation for the 
project, that all users of the model are cognisant of its limitations as 
reflected in the assumptions that underlie its development. 

As might be expected, the inherent restricted applicability of any 
particular model as suggested above has direct and significant 
consequences upon the simulation activity. The implication is simply that 
restrictions necessarily emerge upon the scope of the experiments that can 
be meaningfully carried out with the model. This is not to suggest that 
certain experiments are impossible to carry out but rather that the value of 
the results that are generated is questionable. The phenomenon at play here 
parallels the extrapolation of a linear approximation of a complex function 
beyond its region of validity. The need to incorporate in simulation 
software environments a means for ensuring that experimentation remains 
within the model’s range of credibility has been observed. Realisation of 
this desirable objective, however, has proved to be elusive. 
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2.2   Exploring the Foundations 

The discussion in this section provides some essential background for the 
development of the modelling and simulation process that is explored in 
Section 2.3. 

2.2.1 The Observation Interval 

In Chapter 1 we indicated that a modelling and simulation project has two 
main constituents. The most fundamental is the underlying ‘system 
context’, namely, the dynamic system whose behaviour is to be 
investigated (i.e., the SUI or system under investigation). The second 
essential constituent is the goals for the project which generally correspond 
to means for obtaining the solution to a problem that has been formulated 
around the SUI. A subordinate, but nonetheless important, third constituent 
is the observation interval which is the interval of time over which the 
behaviour of the SUI is of interest. Often the specification of this interval, 
which we denote IO, is clearly apparent in the statement of the project 
goals. There are, however, many important circumstances where this does 
not occur simply because of the nature of the output data requirements. 
Nevertheless it is essential that information about the observation interval 
be properly documented in the project description. 

The starting point of this interval (its left boundary) almost always has 
an explicitly specified value. The endpoint (the right boundary) may 
likewise be explicitly specified, but it is not uncommon for the right 
boundary to be only implicitly specified. The case where a service facility 
(e.g., a grocery store) closes at a prescribed time (say 9:00 PM) provides an 
example of an explicitly specified right boundary. Similarly a study of the 
morning peak-period traffic in an urban area may be required, by 
definition, to terminate at 10:00 AM. Consider, on the other hand a study of 
a manufacturing facility that ends when 5000 widgets have been produced. 
Here the right-hand boundary of the observation interval is known only 
implicitly. Likewise consider a study of the performance of a dragster that 
necessarily ends when the vehicle crosses the finish line of the racing 
track. In these examples the right boundary is implicitly determined by 
conditions defined on the state variables of the model; that is, it is not 
known when the experiment begins. 

Another case of implicit determination occurs when the right-hand 
boundary is dependent on some integrity condition on the data that is being 
generated by the model’s execution. The most typical such situation occurs 
when there is a need to wait for the dissipation of undesired transient 
effects. Data collection cannot begin until this occurs. As a result, what 
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might be called the ‘data collection interval’ has an uncertain beginning. 
The situation is further complicated by the fact that the duration of the data 
collection interval (once it begins) is likewise uncertain because of the 
difficulty in predicting when sufficient data of suitable ‘quality’ have been 
accumulated. Both these effects contribute to an uncertain right boundary 
for IO. For example, consider a requirement for the steady-state average 
throughput for a communications network model following the upgrade of 
several key nodes with faster technology. The initial transient period 
following the upgrade needs to be excluded from the acquired data because 
of the distortion which the transient data would introduce. These are 
important issues that relate to the design of simulation experiments and 
they are examined in detail in Chapter 6. 

Nevertheless a basic point here is simply that only portions of the data 
that are available over the course of the observation interval may have 
relevance to the project goals. Consider, for example, a requirement for the 
final velocity achieved by a dragster when it crosses the finish line. The 
velocity values prior to the final value are not of any particular 
significance. The point illustrated here is that the observation interval and 
data collection interval are not necessarily the same. It is not uncommon 
for IO to be substantially larger than the data collection interval. 

Figure 2.1 illustrates some of the various possibilities relating to the 
observation interval that have been discussed above.

Start Time

(explicit)

End Time

(Explicit or implicit)

Grocery Store:      9:00 am 9:00 pm (explicit)

Traffic Study:        7:00 am         10 :00 am (explicit)

Widget Manufacturing:       t=0 5000 widgets 

          completed (implicit) 

Dragster:        t=0                   Cross finish line (implicit)

Observation Interval

Communications Network:        t=0 Accumulation of adequate data

  with required integrity (implicit)

FIGURE 2.1. The observation interval. 

2.2.2 Entities and Their Interactions 

We have emphasised that a model is a specification of dynamic behaviour. 
This is a very general assertion and certainly provides no particular insight 
into the model building process itself. A useful beginning is an 
examination of some components that can be used as building blocks for 
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the specification that we seek to develop. It is a dialogue about these 
components that begins the synthesis of a model. 

Within the modelling and simulation context, dynamic behaviour is 
described in terms of the interactions (over time) among some collection of 
entities that populates the space that the SUI embraces. The feature about 
these interactions that is of particular interest is the fact that they produce 
change. The entities in question typically fall into two broad categories, 
one endogenous (intrinsic to the SUI itself) and the other exogenous. 

With respect to the latter, it needs to be recognised that the SUI, like all 
systems, is a piece of a larger ‘universe’; in other words, it functions 
within an environment. However, not every aspect of this environment has 
an impact upon the behaviour that is of interest. Those aspects that do have 
an influence need to be identified and these become the exogenous entities. 
Examples here are the ships that arrive at a maritime port within the 
context of a port model developed to evaluate strategies for improving the 
port’s operating efficiency or alternately, the features of a roadway 
(curves, bumps) within the context of an automobile model being used to 
evaluate high-speed handling and stability properties. Note that any 
particular ship that arrives at the port usually exists as an integral part of 
the model only over some portion of the observation interval. When the 
service which it seeks has been provided the ship moves outside the realm 
of the model’s behaviour. 

More generally (and without regard to category) the entities within the 
specification fall into classes; for example, sets of customers, messages, 
orders, machines, vehicles, manufactured widgets, shipments, predators, 
bacteria, pollutants, forces, and so on. Interaction among entities can occur 
in many ways. Frequently this interaction occurs because the entities 
compete for some set of limited resources (a type of entity) such as servers 
(in banks, gas stations, restaurants, call-centres), transport services (cranes, 
trucks, tugboats), or health services (ambulances, operating rooms, 
doctors/nurses). This competition can give rise to yet another class of 
entity (called queues) in which some entities are obliged to wait for their 
respective turns to access the resources (sometimes there are priorities that 
need to be accommodated). On the other hand, entities may exert influence 
upon other entities in a manner that alters such things as acceleration, 
direction of motion, energy loss, and so on. Some examples of this breadth 
of possible entity types are provided in Table 2.1. 
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TABLE 2.1. Examples of entities. 

Special Entities System Under 
Investigation
(SUI)

General Entities Resource Entities Queue Entities 

Gas station Cars 
Trucks

Pumps
Attendants

Queue of cars at each pump 

Widget
manufacturing

Parts
Broken
machines

Machines
Repair technicians 

List of component parts 
List of broken machines 

Restaurant Customers Tables 
Servers
Kitchen
Cooks

Queue of customers waiting
for tables 
Customers at tables waiting
for service 

Hospital
emergency room 

Patients
Ambulances

Doctors
Nurses
Examination rooms

Waiting room queue 
Critical patient queue 
List of patients in 
examination rooms waiting 
for doctor 

Ecological
system

Predator
population
Prey population

We have indicated above that the specification of dynamic behaviour 
that we seek to develop begins with a description of the change-producing 
interactions among some set of entities within the SUI. The nature of these 
interactions is unrestricted and this ‘inclusiveness’ is one of the 
outstanding features of the modelling and simulation approach to problem 
solving. In fact, because of the complexity of the interactions that often 
need to be accommodated, alternate solution procedures (e.g., analytic) are 
usually infeasible. 

Some entities within the formulation are distinctive inasmuch as they 
give rise to data requirements. Although these naturally enter into the 
dialogue about the interactions that need to be identified in model 
formulation, this occurs only at a relatively generic level. This abstract 
view is adequate up to a point, but actual behaviour generation cannot take 
place until the data requirements are accommodated. In effect the data 
serve to ‘energise’ the overall model specification. 

Such data requirements can exist in a variety of forms. Consider, for 
example, a customer entity. Typically the data requirement here is the 
characterisation of the customer arrival rate or equivalently, the time 
between successive arrivals. This commonly is a random phenomenon and 
consequently gives rise to the need to identify an appropriate probability 
distribution function. A similar example can be found in a manufacturing 
process where a machine entity is subject to failure. The characterisation 
of such failure is typically in terms of rate of occurrence and repair 
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duration which are again random phenomena and hence require 
appropriate specification in terms of statistical distributions. Or, 
alternately, consider the characterisation of the flow through an entity 
called ‘pipe’ in a chemical process. A data requirement here could be a 
single scalar value representing the coefficient of friction associated with 
the flow. As yet another alternative, consider the two-dimensional array of 
intercity flight times that would likely be necessary in a study of an 
airline’s operational efficiency. In this case this data object would probably 
be shared by all ‘flight‘ entities. These examples demonstrate that data 
requirements can be associated with both exogenous entities (e.g., the 
customers) and endogenous entities (e.g., the machines).

The detailed specifications for each such data requirement can be 
viewed as a data model. Each of these plays the role of a specialised 
submodel that has localised relevance. Their elaboration can be separately 
undertaken and even temporarily deferred without compromising the main 
thread of model development. In this sense, their development can be 
associated with the software engineering notion of ‘encapsulation’. Each 
data model is an accessory to the bigger picture of characterising the 
relevant interactions that exist within the SUI. 

The correct formulation of a data model can be a challenging task and 
its correctness is essential to the quality of the results flowing from the 
modelling and simulation project. The task is of particular relevance in the 
context of DEDS (discrete event dynamic system) models because of the 
central role that is played by the random phenomena that are always 
present in such models. We explore the topic in Chapter 3. 

To illustrate the various notions introduced above, let’s return to the gas 
station example introduced in Chapter 1. The endogenous entities include 
the attendants and the queue in front of each of the four pumps. There is 
only one exogenous entity, namely, the vehicles that enter the gas station. 
Notice that a customer entity is redundant because its role would be 
indistinguishable from the vehicle entity. Notice also that the pumps 
themselves are likely of no consequence. They would have to be included 
among the entities only if it were deemed that the possibility of failure was 
sufficiently high to have relevance to the credibility of the model. Data 
models would have to be developed to deal with the characterisation of the 
arrival rate of the vehicles and their separation into vehicle types and also 
the service times for each of the three phases of the service function. 

The vehicles that enter (and subsequently leave) the gas station, as 
discussed above, provide an example of a distinctive and important feature 
of most models that emerge from the DEDS domain. Associated with 
almost all such models is at least one set of exogenous entities whose 
members have a transient existence within the scope of the model’s 
behaviour, for example, the vehicles in the gas station model or the ships 
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entering the port in an earlier example. Such entities introduce a variety of 
specialised requirements upon the way the model is formulated as will become 
apparent in the discussions that follow. We refer to any such set of 
exogenous entities which flow through the model as an ‘input entity 
stream’.

2.2.3 Constants and Parameters 

particular, constants and parameters both serve simply as names for the 
values of features or properties within a model which remain invariant 
over the course of any particular experiment with the model; for example, 
g could represent the force of gravity or NCkOut could represent the 
number of checkout counters in a supermarket. In the case of a constant, 
the assigned value remains invariant over all experiments associated with 
the modelling and simulation project. On the other hand, in the case of a 
parameter, there normally is an intent (usually embedded in the project 
goals) to explore the effect upon behaviour of a range of different values 
for the parameter, for example, the parameter Cf that represents the friction 
coefficient associated with a tire rolling over a road surface. 

Often a parameter serves to characterise some ‘size attribute’ of the SUI, 
such as the number of berths at a seaport or the number of (identical) 
generators at a hydroelectric power generating station. In many cases such 
a size parameter might be associated with a facet of a design goal and the 
determination of the most appropriate value for it may be one of the 
reasons for the modelling and simulation project. Consider, for example, a 
parameter denoted C

project could be to determine a ‘best’ value for LC that is consistent with 
specified requirements on the performance of the elevator system. 

2.2.4 Time and Other Variables 

The endpoint of the modelling process is a computer program that 
embraces the specification of the dynamic behaviour that we seek to 
study, that is, the simulation program. A prerequisite for the correct 
development of any computer program is a high degree of precision in the 
statement of the requirements that the program must meet. Generally 
speaking, this corresponds to raising the level of abstraction of the 
presentation of these requirements. A variety of means is available but 
perhaps the most fundamental is the incorporation of carefully defined 

by L

The constants and parameters of a model have much in common. In 

      which represents the passenger load capacity of  
each elevator in a proposed elevator system for an office tower. A goal of the 
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variables that enable the formulation of the requirements in a precise and 
unambiguous way. 

Within the modelling and simulation context, the particular purpose of 
these variables is to facilitate the formulation of those facets of the SUI’s 
behaviour that are relevant to the goals of the project. In fact, meaningful 
dialogue about most aspects of a modelling and simulation project is 

behaviour that is of interest but, as well, the goals of the project. 
Variables provide an abstraction for features of the model whose values 

typically change as the model evolves over the course of the observation 
interval. Variables fall into a number of broad categories and each of these 

2.2.4.1 Time 

Because our interest is exclusively with dynamic systems, there is one 
variable that is common to all models that we consider, namely, time 
(which we generally denote with the symbol t). Apart from its 
pervasiveness, time is a special variable for two additional reasons. First of 
all, it is a ‘primitive’ variable in the sense that its value is never dependent 
upon any other variable. Secondly, and in direct contrast, most other 
variables are dependent on time; that is, they are functions of time. 

It needs to be emphasised here that the variable t represents ‘virtual 
time’ as it evolves within the model. This (except for certain special cases) 
has no relation to ‘wall clock’ (i.e., real) time 

2.2.4.2 Time Variables 

As indicated above many of the variables within the context of our 
discussion of dynamic models are functions of time; that is, they are time-
dependent variables or simply time variables. If V  is designated as a time 
variable then this is usually made explicit by writing V (t) rather than 
simply V . Within the context of our modelling and simulation 
discussions, time variables are frequently regarded as representing ‘time 
trajectories’. Standard mathematical convention associates with V (t) a 
statement about the set of values of t for which there is a defined value for 
V . This set is called the domain of V and we denote it [V ]. In our case, 
the most comprehensive domain for any time variable is the observation 
interval IO, and often the time variables that we discuss have this domain. 

However, because of the underlying nature of the computational 
process, a time variable V (t), which is the outgrowth of behaviour 
generation, will have defined values at only a finite subset of IO; that is, the 
domain set [V ] has finite size. The underlying implication here is that 

is examined in the discussion below. Time itself is a very special  

means for elaborating, clarifying, and abstracting not only the dynamic 

variable that is common to all dynamic models. 

severely hampered without the introduction of variables. They provide the 
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from the perspective of observed behaviour, the value of a time variable 
V (t) can be associated with a finite set of ordered pairs; that is,

[V ] = {( t̂ , v̂ ): t̂ [V ] } (2.1)

where v̂  = V ( t̂ ). We call the set [V ] the trajectory set for V . The 
reader is cautioned not to attempt an incorrect generalisation of the above. 
The assertion is simply that time variables reflected in the observed 
behaviour of a dynamic model have a finite domain set or can be 
represented with a finite domain set. We do not claim that all time 
variables have a finite domain set. 

2.2.4.3 Input, State, and Output Variables 

There are three important categories of variables normally associated with 
any model. We examine each in turn. 

Input Variables: Earlier we introduced the notion of exogenous entities 
being associated with the model to reflect the impact of the SUI’s 
environment upon its behaviour. This environmental impact can be viewed 
as the input to the model. The representation of the input is provided by 
some suitably defined set of input variables. It follows therefore that a 
model’s behaviour cannot be generated without a specification for the 
values of its input variables. 

It is important to appreciate that there can be a relatively subtle but 
nevertheless fundamental difference between the generic notion of an 
‘input’ to a model and the variable chosen to characterise it. Consider, for 
example, an input variable fa = fa(t), which represents the force of air 
friction upon the motion of a high-performance aircraft. The magnitude of 
this force necessarily depends on the aircraft’s altitude because the origin 
of the force is air density, which in turn varies with altitude. This example 
illustrates that it is possible for an aspect of the model’s behaviour (in this 
case, the aircraft’s altitude) to directly influence the value of an input 
variable (the air friction). Such a mutual interrelationship is, in fact, not 
uncommon. On the other hand, we need to recognise that in this example 
the input (i.e., environmental influence itself) is the force that air density 
exerts on any object that moves through it. This property is fundamental to 
the environment in which the aircraft is operating and certainly cannot be 
altered by the aircraft’s behaviour. The fact that its value varies with 
altitude (as reflected in the value acquired by fa(t)) is an essential aspect of 
this fundamental physical property. 

The notion of an ‘input entity stream’ was introduced earlier. Such a 
collection of exogenous entities flowing into a DEDS model most certainly 
corresponds to an input and consequently needs to have a characterisation 
in terms of an input variable. The two key features of any input entity 
stream are the time of the first arrival and the interarrival times, or more 
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simply, the arrival times of the entities within the stream. The formulation 
of a suitable input variable that captures these features is explored in 
Chapter 4. 

State Variables: The set of state variables for a dynamic model is very 
special for three reasons. One of these relates to a ‘constructive property’ 
which is intrinsic to the state variables. This property simply means that 
the model’s dynamic behaviour can be entirely defined in terms of the 
state variables together with (not surprisingly) the model’s input variables 
and parameters. We note also that the ‘state of the model’ at time t is a 
reference to the value of its state variables at time t.

The state variables for a model are not unique; that is, many alternate 
sets of variables that have this constructive property can usually be 
identified. Strictly speaking, the selection of any set of state variables 
includes the condition that it is a minimal set in the sense that no variable 
can be removed without destroying the constructive property. In our 
discussions we are generally very flexible with this requirement and this 
may result in acceptance of a degree of redundancy among the variables 
designated as the set of state variables. In such situations, it is possible to 
infer the values of one or more variables within this set from the values of 
other variables. Achievement of enhanced clarity is usually the motivation 
for allowing such redundancy. 

A second reason why the set of state variables of a dynamic model is 
very special is that this collection of variables completely captures the 
effects of ‘past’ behaviour insofar as it affects future behaviour (both 
observed and unobserved, that is, from the perspective of model output). A 
characterisation of this important property can be developed in the 
following way: suppose X(t), U(t), and P,1 respectively, denote the state 
variables, the input variables, and the parameters of a model , whose 
behaviour is to be observed over the observation interval IO = [TA, TB]. Let 
T be a point in time between TA and TB and suppose the behaviour of the 
model has evolved up to t = T and is stopped. Restarting the model with 
knowledge of only X(T), U(t), for t T, and P would produce the same 
observed behaviour over [T, TB] as if the behaviour generating process had 

t T. In fact this property, which we call Property ,
has very special relevance because it provides the basis for identifying a 

X(t) qualifies as a set of state variables for a model if and only if it has
 Property

                                                     
1 A collection of variables organized as a linear array is called a vector variable.

We use bold font to indicate vector variables. The number of variables 
represented is called the dimension of the vector. Sometimes the actual size of 
the vector is not germane to the discussion and is omitted.

set of state variables; in particular, the set of variables represented by the vector

not been stopped at  = 

.



32     2. The Modelling and Simulation Process 

In the highly structured models that typically arise from the realm of 
continuous-time dynamic systems (CTDS), the state variables can usually 
be readily identified. In general however, identification of the state 
variables is not always an easy task. It is therefore useful to observe here 
that Property , provides a useful means for testing whether a particular set 
of variables qualifies as a set of state variables. The fact that values must 
be specified for all state variables before a unique experiment with the 
model can be initiated provides a key identification criterion. Viewed from 
an inverse perspective, if an experiment can be duplicated without any 
need to record the initial value of some variable, then that variable is not a 
state variable. 

Typically there is some collection of entities that flows within the scope 
of the behaviour of those models that have their origin within the DEDS 
domain. Consider, in particular, the ‘transient entities’ associated with an 
input entity stream. Linked to these entities are attributes and some of 
these condition the way in which interaction with other components of the 
model takes place. At any point in time both the existence of these flowing 
entities as well as their attribute values must be captured within the state 
variables of the model in order that the requirements of Property  be duly 
respected. Particular care must therefore be taken in identifying the 
model’s state variables in these situations. 

Note also that these transient entities typically contribute to data that are 
relevant to output requirements, and hence to observed behaviour. 
Assurance of the integrity of this particular category of data is clearly 
essential and this task is usually reflected in the formulation of state 
variables for the model. More specifically, this task must be duly 
recognised when any candidate set of state variables is assessed with 
respect to the requirements of Property .

Our discussion here of the essential features of state variables has been 
carried out with the tacit assumption that state variables are simply time 
functions. In many circumstances this is indeed the case. However, as 
becomes apparent in the discussions of Chapter 3, the requirements of 
Property  can give rise to the need to formulate state variables as more 
complex data structures, for example, lists whose entries are themselves 
lists.

The third reason why the set of state variables of a dynamic model is 
special relates to the output variables of the model and we defer the 
examination of that relationship to the discussion of output variables that 
follows.

Output Variables: The requirements that are embedded within the 
project goals give rise to the model’s output variables. The output 
variables of a model typically reflect those features of the SUI’s behaviour 
that originally motivated the modelling and simulation project. Because of 
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this, it is not unreasonable to even regard a model as simply an outgrowth 
of its output variables. 

In effect therefore, an output variable serves as a conduit for transferring 
information about the model’s behaviour that is of interest from the 
perspective of the project goals. The output variable Y could, for example, 
represent the velocity of a missile over the course of its trajectory from the 
moment of firing to the moment of impact with its target or Y might 
represent the number of messages waiting to be processed at a node of a 
communications network viewed over the duration of the observation 
interval.

Output variables fall into various categories that have relevance at 
different stages of the discussion. The initial separation is into two groups 
called point-set output variables (PSOVs) and derived scalar output 
variables (DSOVs), respectively. PSOVs, in turn, can be separated into 
two subcategories called time variables and sample variables. An output 
variable Y that is a time variable is, in fact, simply a function of time; that 
is, Y = Y(t). The need to recognise output variables of this type should not 
be surprising inasmuch as any dynamic model evolves over time and 
consequently it is reasonable to expect behaviours of interest that are 
functions of time. Any output variable that is a time variable is always 
expressible in terms of the model’s state variables. This represents the 
third reason why the state variables of a model are special. 

An important issue that needs to be examined relates to the manner in 
which the values of a time variable are recorded. In this regard we make 
the simple assumption that these are recorded as they become available (at 
least from the conceptual perspective of our present discussion). We refer 
to this assumption in the sequel as Assumption R. It is important because it 
eliminates the need for concern about the data recovery issue that is the 
focus of Property . It is interesting nevertheless to observe that 
Assumption R imposes no particular constraint because there really is no 
other option available except to record relevant data as they become 
available over the course of the behaviour-generating process. 

that Y(t) is an output variable. As was pointed out earlier, because Y
is a time variable, an essential aspect of its specification is its domain set 

[Y]. Furthermore, the ‘value of Y’ can be regarded as a set of ordered 
pairs given by the trajectory set: 

[Y] = {( t̂ , ŷ ): t̂ [Y] }, (2.2)

where ŷ  = Y( t̂ ). The behaviour-generating process ensures that as the 
time variable t traverses the observation interval the successive pairs 
( t̂ , ŷ ) are generated. The consequence of Assumption R is that these pairs 
are immediately deposited into [Y].

,By way of illustrating the implications of Assumption R, let s suppose 
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The second subcategory of PSOVs is called sample variables. These are 

conceptual modelling framework for such models that includes the notion 

which are inherited by each instance of the class. A sample variable 
corresponds to such an attribute, that is, to an attribute of a consumer entity 
class. The entity instances that flow within the model typically leave a 
‘data trail’ that is comprised of the acquired values for one or more 
designated attributes. The value of a sample variable is associated with 
those data.

Consider, for example, the messages that flow through a communica-
tions network. Suppose mk is a particular message (an instance of a class 
that might be called Message). At each of the switching nodes through 
which mk passes, it generally encounters a delay and the total delay dk,
encountered by mk during its existence within the realm of the model 
would likely be stored in an attribute for this entity class, possibly called 
D. We regard the ‘value of D’ at the end of the experiment to be the 
collection of values {d1, d2, . . . , dN} (where N is the total number of 
messages passing through the network over the course of the observation 
interval). The attribute D is an example of a sample variable and its value 
is a sample set which we denote [D]; that is,

[D] = {d1, d2, . . . , dN}.

In general, then, a sample set is a set of data values that are ‘deposited’ 
by a particular collection of entity instances flowing in a DEDS model. 
Each such deposited value is the value of a specific attribute (the sample 
variable) that is common to each instance of the class. 

We need to acknowledge here an inherent ambiguity in our presentation 
of a sample variable. Although we have referred to its ‘value’ as a 
collection of values (as contained in a sample set) it is, in general, a 
random variable and the sample set is simply a collection of samples 
(observations) of that random variable.2 The specific observations 
contained in a sample set [ ] are rarely of interest. Generally they serve 
only as a means for acquiring information for determining the parameters of the 
probability distribution of the sample variable in question. This small 
anomaly in terminology provides the benefit of permitting a parallel 
treatment of trajectory sets and sample sets in our discussions. However, in 
some circumstances, this irregularity is relevant and needs to be 
recognised.

                                                     
2 In the terminology of stochastic processes (see Section A1.8 of Annex 1) a 

sample set can be viewed as an observation of a stochastic process. 

restricted to the family of DEDS models. In Chapter 4 we introduce a 

are instances of a class and the class has an assigned collection of attributes 
of consumer entities flowing within (and often, through) the model. These entities 
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The anomaly in question is readily apparent in our communications 
example. The sample variable D is, in fact, a random variable that 
represents the waiting time of messages. The specific observations of D as 
contained in the sample set [D] are rarely of interest. Generally they 
serve only as a means for acquiring information needed for the estimation 
of probability distribution parameters relating to D. It is these parameters 
that are typically relevant to resolving the project goals.

It is not always the case that the values in an output set (i.e., a trajectory 
set [ ] or a sample set [ ]) are of direct relevance to the resolution of the 
project goals. Often it is some feature of the data in such an output set that 
is of primary interest. This gives rise to another category of output variable 
that we call a derived scalar output variable (DSOV) that is derived from 
the data in an output set (either [ ] or [ ]). For example we could have ya

= AVG( [ ]) or ymx = MAX( [ ]) where AVG and MAX are set operators 
that yield the average and maximum values, respectively, of the data 
within the referenced set. Many such operators can be identified, for 
example, MIN, NUMBER, AREA, and so on. Notice that the values of 
DSOVs such as ya and ymx may be established either by a postprocessing 
step at the end of a simulation experiment or possibly concurrently with 
the execution of the simulation experiment. 

DSOVs play an especially significant role in modelling and simulation 
projects in the discrete event dynamic system domain. In that context they 
are often referred to as performance measures and they are always random 
variables. This, in particular, means that a specific trajectory set or a 
sample set has no particular significance except to the extent that it serves 
to help determine the properties of the random phenomenon that underlies 
the behaviour that is being observed. It is those parameters that are usually 
important to the project goals. This important topic is explored in detail in 
the discussions of Chapters 3 and 6. 

Our perspective is that data are deposited into a sample set as they 
become available. This perspective is consistent with Assumption R and 
also parallels the manner in which time variable data are accumulated. The 
value of the DSOV that is linked to a particular sample set can be obtained 
as a separate step at the completion of the model execution or concurrently 
during the model’s execution.

Various DSOVs can be associated any particular sample set. For 
example, in our communications network there may be a requirement for 
the value of the scalar variable Ad which represents the average delay taken 
over all the messages processed over the course of the observation interval. 
More specifically: 

Ad = AVG( [D]) = [
N

k 1

dk ] / N  . (2.3)
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Or consider the scalar variable maxd that represents the maximum delay 
encountered by the set of messages mk.,k = 1, 2, . . . , N. Then: 

maxd = MAX(  [D]) , (2.4)

where MAX is an operator that provides the largest value contained in a 
set of numerical values. Clearly the both scalar variables Ad and maxd are 
derived from the same sample set. Note also that both Ad and maxd are in 

We conclude this section by including Figure 2.2 that illustrates how the 
parameters and the various types of variables interact to generate 
behaviour and how the observation of behaviour is provided via the output 
variables of the model. 

Parameters

State Variables

F()

Output 

Variables 

and Values

Input 

Variables

Behaviour 

Generation 

Rules

Behaviour

Observation

Model M

Inputs

FIGURE  2.2. Interaction among the various types of variables.

fact random variables and any experiment with the model simply yields  
a single observation of those random variables.
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2.2.5 An Example – The Bouncing Ball 

The example we consider in the discussion that follows illustrates how the 
notions of parameters and variables play a crucial role in enabling a clear 
and succinct formulation of a model for dynamic system. 

A boy is standing on the ice surface of a frozen pond and (at t = 0) 
throws a ball into the air with an initial velocity of V0. When the ball leaves 
the boy’s hand it is a distance of y0 above the ice surface. The initial 
velocity vector makes an angle of 0 with the horizontal. The boy’s 
objective is to have the ball bounce at least once and then fall through a 
hole that has been cut in the ice. The hole is located at a distance H from 
the point where the boy is standing. There is a wind blowing horizontally. 
The general configuration is shown in Figure 2.3. 

V0

w(t)
mg

x = 0 x = H

y0

x

y

0

FIGURE 2.3. The bouncing ball. 

The goal of our modelling and simulation project is to determine a value 
for the release angle 0 which will result in a trajectory for the ball that 
satisfies the boy’s objective.

A model for the underlying dynamic system can be formulated by a 
straightforward application of Newton’s second law (the familiar F = ma).
We begin by introducing four state variables to characterise the ball’s 
flight trajectory; namely: 
x1(t): The ball’s horizontal position at time t
x2(t): The ball’s horizontal velocity at time t
y1(t): The ball’s vertical position at time t
y2(t): The ball’s vertical velocity at time t
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There are two forces acting on the ball. The first is gravity and the 
second is the force resulting from the wind. In order to proceed to a next 
level of refinement, two assumptions are in order: 

   We assume that when the ball is released from the boy’s hand, the 
velocity  vector V0  lies  in  a  vertical  plane  that  passes  through  the 
boy’s position and the location of the hole in the ice (this ensures 
that the ball is heading, at least initially, in the direction of the 
hole).

  We assume that the horizontal wind velocity is parallel to the 
plane specified above (this ensures that the wind will not alter the 
‘correct’ direction of the ball’s initial motion, i.e., towards the 
hole).

With these two assumptions the ball’s initial motion can be described by 
the following set of differential equations: 

g
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(2.5)

where W(t) represents the force of the wind acting on the ball’s horizontal 
motion and g represents the gravity force acting on the ball. Each of these 
four first order differential equations needs to have a specified initial 
condition. These are: x1(0) = 0, x2(0) = V0 * cos( 0), y1(0) = y0, y2(0) = V0 *
sin( 0) where y0 is the height above the ice surface of the boy’s hand when 
he releases the ball. (The value assigned to x1(0) is arbitrary and zero is a 
convenient choice.) 

In view of the boy’s objective, it is reasonable to assume that the ball 
leaves the boy’s hand with an upward trajectory (in other words, 0 > 0). 
Sooner or later, however, gravity will cause the ball to arc downwards and 
strike the ice surface (hence y1 = 0). At this moment (let’s denote it TC) the 
ball ‘bounces’ and this represents a significant discontinuity in the ball’s 
trajectory. A number of additional assumptions must now be introduced to 
deal with the subsidiary modelling requirement that characterises this 
bounce. These are as follows. 

   We assume that the bounce takes place in a symmetric way in the 
sense that if the angle of the velocity vector (with respect to the
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C

 of – C.

in a reduction in the magnitude of the velocity vector (loss in 
kinetic  energy).  More  specifically,  if  |VC|  is  the  magnitude  of  the 
velocity vector immediately prior to the collision, then we assume 
that  |VC | is the magnitude after the collision, where 0 <  < 1. 

In effect, the two above assumptions provide a specification for the 
behaviour that characterises the dynamics of the ball at the point of 
collision with the ice surface. More specifically, we have formulated a 

C

+  = – C

| CV
+ | =  |VC| . 

(2.6)

Here +
C is the angle of the velocity vector at time 

+

CT  which is the moment 

of time that is incrementally beyond the moment of contact, TC. Similarly 

| CV
+ | is the magnitude of the velocity vector at time +

CT .

Although the underlying equations of motion remain unchanged 
following the bounce, there is a requirement to initiate a new trajectory 
segment that reflects the changes that occur due to the collision. This new 
segment of the ball’s trajectory begins with ‘initial’ conditions that 
incorporate the assumptions outlined above; namely, 

x1(
+

CT ) = x1(TC)

x2(
+

CT ) = x2(TC)

y1(
+

CT ) = 0

y2(
+

CT ) = - y2(TC) .

(2.7)

input variable and  could be regarded as a parameter if, for example, a 
secondary project goal were to explore the relationship between  and the 
problem solution 0

*. The state variables are x1, x2, y1, and y2. This is clearly 
reflected in their essential role in reinitialising the ball’s trajectory 
following each collision with the ice surface. 

Before leaving this example, it is of some interest to revisit the stated 

fundamental issue of whether the underlying problem has a solution. It is 
important to recognise here that the existence of an initial release angle of 
the ball ( 0) that will cause the ball to fall through the hole in the ice is not 

(2.7). In this model, W(t) (the force exerted by the wind) represents an 
Our model for the trajectory of the ball is given by Equations (2.5) and 

goal of this modelling and simulation project. In particular, consider the 

, then 

Energy is lost during the collision and we take this to be reflected 

model of the bounce dynamics which is: 

horizontal) at the moment prior to the collision is 
immediately after the collision the velocity vector has an orientation 
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guaranteed. This is not a deficiency in the model but is simply a 
consequence of the underlying physics. The boy’s throwing action gives 
the ball kinetic energy which is dependent on the release velocity (V0).
This energy may simply be insufficient to accommodate the energy losses 
encountered by the ball over the course of its trajectory and the ball may 
not even be able to travel the distance H where the hole is located. 

2.3  The Modelling and Simulation Process 

An outline of the essential steps involved in carrying out a modelling and 
simulation study is provided in the discussion that follows. Although the 
initial steps can be effectively presented using various notions that have 
been previously introduced, there are several aspects of the latter stages 
that require extensive elaboration. This is provided in the discussions that 
follow. An overview of the process is provided in Figure 2.4. 

The overview of Figure 2.4 does not include a preliminary phase during 
which solution alternatives for the problem are explored and a decision is 
made to adopt a modelling and simulation approach. We note that the 

entirely reasonable and is often prudent for some portions of the problem. 
Although this preliminary phase is not explicitly represented in Figure 2.4 
its existence and importance must nevertheless be recognised. 

It should be emphasised that a modelling and simulation project of even 
modest size is often carried out by a team of professionals where each 
member of the team typically contributes some special expertise. There is, 
therefore, a need for communication among team members. Some facets of 
the discussion have their basis in this communication requirement. 

2.3.1 The Project Description 

The process begins with the preparation of a document called the project
description. This document includes a statement of the project goal(s) and 
a description of those behavioural features of the SUI that have relevance 
to the goals. These behaviour features are typically formulated in terms of 
the various entities that populate the space that the SUI embraces with 
particular focus on the interactions among these entities. It is, more or less, 
an informal description inasmuch as it relies mainly on the descriptive 
power of natural language. The language is, furthermore, often heavily 
coloured with jargon associated with the SUI. This jargon may not be fully 
transparent to all members of the project team and this can contribute to 
both an inherent lack of precision and, as well, to communication 
problems.

option of also carrying out other complementary approaches is 
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FIGURE 2.4. The modelling and simulation process. 

With few exceptions, the SUI also has structural features that provide 
the context for the interactions among the entities (e.g., the layout of the 
pumps at a gas station or the topology of the network of streets being 
serviced by a taxi company). Informal sketches are often the best means of 
representing these structural features (see, e.g., Figure 2.3). These are an 
important part of the presentation because they provide a contextual 
elaboration that can both facilitate a more precise statement of the project 
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goals and as well, help to clarify the nature of the interaction among the 
entities. Because of these contributions to understanding, such sketches are 

2.3.2 The Conceptual Model 

The information provided by the project description is, for the most part, 
unstructured and relatively informal. Because of this informality it is 
generally inadequate to support the high degree of precision that is 
required in achieving the objective of a credible model embedded within a 
computer program. A refinement phase must be carried out in order to add 
detail where necessary, incorporate formalisms wherever helpful, and 
generally enhance the precision and completeness of the accumulated 
information. Enhanced precision is achieved by moving to a higher level 
of abstraction than that provided by the project description. The 
reformulation of the information within the project description in terms of 
parameters and variables is an initial step because these notions provide a 
fundamental means for removing ambiguity and enhancing precision. They 
provide the basis for the development of the simulation model that is 
required for the experimentation phase. 

There is a variety of formalisms that can be effectively used in the 
refinement process. Included here are mathematical equations and 
relationships (e.g., algebraic and/or differential equations), 
symbolic/graphical formalisms (e.g., Petri nets, finite state machines), rule-
based formalisms, structured pseudocode, and combinations of these. The 
choice depends on suitability for providing clarification and/or precision. 

The result of this refinement process is called the conceptual model for 
the modelling and simulation project. The conceptual model may, in 
reality, be a collection of partial models each capturing some specific 
aspect of the SUI’s behaviour. The representations used in these various 
partial models need not be uniform.

The conceptual model is a consolidation of all relevant structural and 
behavioural features of the SUI in a format that is as concise and precise as 
possible. It provides the common focal point for discussion among the 
various participants in the modelling and simulation project. In addition, it 
serves as a bridge between the project description and the simulation 
model that is essential for the experimentation activity (i.e., the simulation 
phase). As we point out below, the simulation model is a software product 
and its development relies on considerable precision in the statement of 
requirements. One of the important purposes of the conceptual model is to 
provide the prerequisite guidance for the software development task. 

often a valuable component of the project description. 
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interrupted because it becomes apparent that the information flowing from 
the project description is inadequate. Missing or ambiguous information 

corrected only by returning to the project description and incorporating the 
necessary clarification. This possible ‘clarification loop’ is indicated with a 
dashed line in Figure 2.4. 

In Figure 2.4, a verification activity is associated with the transition 
from the project description to the conceptual model. Both verification and 

transition under consideration because it involves a reformulation of the key 
elements of the model from one form to another and the integrity of this 
transformation needs to be confirmed. 

In the modelling and simulation literature, the phrase ‘conceptual 
model’ is frequently reduced simply to ‘model’. Our usage of the word 
‘model’ without a modifier generally implies a composite notion that 

program successors where the latter two notions are described in the 
discussion that follows.

As a concluding observation in this discussion, it is worth pointing out 
that there is by no means a common understanding in the modelling and 
simulation literature of the nature and role of a conceptual model. The 
overview presented by Robinson [2.15] gives considerable insight into the 
various perspectives that prevail. 

Section) that generates the ‘behaviour’ that emulates pertinent aspects of 

Typically the simulation model is written using the specialised facilities 
of a programming language that has been designed specifically to support 
the special requirements of simulation studies. Many such languages have 

It can frequently happen that the formulation of the conceptual model is 

are the two most common origins of this difficulty. The situation can be 

become apparent from that discussion, verification is included as part of the 

conceptual model into a representation that is consistent with the syntax 
and semantic constraints of some programming language. This program is 

(or more correctly, an 

The essential requirement for the experimentation phase of a modelling 

2.3.3 The Simulation Model 

enhanced version of i t; see following 

and simulation project is an executable computer program that embodies 

the system under investigation. The solution to the underlying problem 

the simulation model for the project. It is the execution of this program 

that is embedded in the project goal(s) is obtained from the data reflected 
in this behaviour.

the related notion of validation are examined in detail in Section 2.4. As will 

the conceptual model. It evolves from a transformation of the 

includes a conceptual model and its simulation model and simulation 
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appeared in recent years; some examples are: SIMSCRIPT II.5, MODSIM, 
GPSS, SIMAN, ACSL, Modelica, Arena, CSIM, and SIMPLE ++. Such 

collection of data, and presentation of required output information. In the 

of random variates, management of queues, and the statistical analysis of 
data are also provided. 

The simulation model is the penultimate stage of a development process 

model is a software product and as such, the process for its development 
shares many of the general features that characterise the development of 
any software product. 

Note that in Figure 2.4 the transition from the conceptual model to the 
simulation model is associated with two activities: namely, transformation 
and verification. As in the earlier transition from project description to 
conceptual model, verification is required here to confirm that the 
transformation has been correctly carried out. 

2.3.4 The Simulation Program 

The outline of the simulation model provided above is idealised inasmuch 
as it suggests that the simulation model is directly capable of providing the 
behaviour-generating mechanism for the simulation activity. In reality this 
program code segment is never self-sufficient and a variety of auxiliary 
services must be superimposed. The result of augmenting the simulation 
model with complementary program infrastructure that provides these 
essential functional services is the simulation program. 

The services in question fall into two categories: one relates to 
fundamental implementation issues whereas the other is very much 
dependent on the nature of the experiments that are associated with the 
realisation of the project goals. Included within the first category are such 
basic tasks as initialisation, control of the observation interval, 
management of stochastic features (when present), solution of equations 
(e.g., the differential equations of a continuous system model), data 
collection, and so on. Convenient programming constructs to deal with 
these various tasks are normally provided in software environments 
specifically designed to support the simulation activity. But this is 
certainly not the case in general-purpose programming environments 
where considerable additional effort is often required to provide these 
functional requirements. 

decision to formulate a modelling and
 simulation project to resolve an identified problem. The simulation 

case of projects in the DEDS domain, additional features for the generation 

languages generally provide features to support the management of time, 

that began with the  
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The second category of functional services can include such features as 
data presentation (e.g., visualisation and animation), data analysis, 
database support, optimisation procedures, and the like. The extent to 
which any particular modelling and simulation project requires services 
from this second category can vary widely. Furthermore, modelling and 
simulation software environments provide these services only to varying 
degrees and consequently, when they are needed, care must be taken in 
choosing an environment that is able to deliver the required services at an 
adequate level. 

The manner in which the support services to augment the simulation 
model are invoked varies significantly among software environments. 
Almost always there is at least some set of parameters that need to be 
assigned values in order to choose from available options. Often some 
explicit programming steps are needed. Considerable care must be taken 
when developing the simulation program to maintain a clear  
demarkation between the code of the simulation model and 
the code required to invoke the ancillary services. Blurring this separation 
can be detrimental because the resulting simulation program may become 
difficult to verify, understand, and/or maintain. It has, in fact, been 
frequently noted (e.g., Oren [2.10]) that an important quality attribute of a 
simulation software platform is the extent to which it facilitates a clear 
separation of the code for the simulation model from the infrastructure 
code required for the experimentation that is required for the achievement 
of the project goal(s). 

Figure 2.4 indicates that a verification activity needs to be carried out in 
the transition from the simulation model to the simulation program. This 
need arises because this transition typically involves a variety of decisions 
relating to the execution of the simulation model and the correctness of 
these decisions must be confirmed. Consider, for example, a simulation 
model that incorporates a set of ordinary differential equations. Most 
modelling and simulation programming environments offer a variety of 
solution methods for such equations and each has particular strengths and 
possibly weaknesses as well. If the equations in question have distinctive 
properties, then there exists a possibility of an improper choice of solution 
method. The verification process applied at this stage would uncover the 
existence of such a flaw when it exists. 

2.3.5 The Operational Phases 

Thus far our outline of the modelling and simulation process has focused 
on the evolution of a series of interdependent representations of SUI. 
However, with the existence of the simulation program, the stage is set for 
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two operational phases of the process that we now examine. The first of 
these is the validation phase whose purpose is to establish the credibility of 
each of the model realisations, from the perspective of the project goals. 
The notion of validation is examined in some detail in Section 2.4 which 
follows below, and hence we defer our discussion of this phase. 

The second phase, which can begin only after the model’s credibility 
has been established, is the experimentation phase, or more specifically, 
the simulation phase. This activity is presented in Figure 2.4 as the task of 
‘goal resolution’. This is achieved via a sequence of experiments with the 
simulation program during which an ever-increasing body of data is 
collected and analysed until it is apparent that a ‘goal resolution database’ 
is sufficiently complete and comprehensive to permit conclusions relating 
to the goal(s) to be confidently formulated. 

2.4 Verification and Validation 

A simulation model is a software product and like any properly 
constructed artefact its development must adhere to design specifications. 
Assuring that it does is a verification task. All software products furthermore
have a well-defined purpose (e.g., manage a communications network, or ensure 
that an optimal air/fuel mixture enters the combustion chamber of an 
internal combustion engine). In the case of a simulation model the purpose 
is to provide an adequate emulation of the behavioural features of some 
SUI, where ‘adequate’ is assessed from the perspective of the project 
goals. Assuring that this is achieved is a validation task. 

Both verification and validation are concerned with ensuring the credibility 
of the conclusions that are reached as a consequence of the experiments 
carried out with the simulation program. They can be reasonably regarded 
as part of the general thrust of quality assurance (the topic of the following 
section). However the central role of these notions within the modelling 
and simulation process, as presented in Figure 2.4, suggests that they merit 
special treatment. The range of perspectives relating to the processes 
associated with these notions further justifies an examination that extends 
beyond their obvious contribution to quality assurance. 

The terms verification and validation are used in a variety of disciplines, 
notably software engineering. By and large, the distinction in the meaning 
of these two notions is often poorly understood. In the software 
engineering context, however, a remarkably concise and revealing 
presentation of the essential difference can be expressed in terms of two 
closely related questions. These (originally formulated by Boehm [2.4]) 
are:
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Verification: Are we building the product right?
Validation: Are we building the right product?

The product referred to here is the software product being developed. 
Reinterpretation within a modelling and simulation context is 
straightforward. The ‘product’ is the model and the notion of ‘building the 
right product’ corresponds to developing a model that has credibility from 
the perspective of the project goals. On the other hand, ‘building the 
product right’ corresponds to ensuring that the artefact that begins as a 
meaningful and correct problem description and then undergoes various 
transformations that culminate in a simulation program is never 
compromised during these various transformations. 

Verification is concerned with ensuring that features that should (by 
design) be clearly apparent in each manifestation of the model are indeed 
present. Whether these features properly reflect required or expected 
model behaviour (always from the perspective of the project goals) is an 
issue that falls in the realm of validation.

By way of illustration, consider a modeling and simulation project 
whose primary purpose is to provide support for the design of the various 
control systems that are to be incorporated into a new, highly automated, 
thermoplastics manufacturing plant. Certain thermodynamics principles 
have been identified as being best suited as the basis for formulating the 
model of one particular aspect of the chemical kinetics that is involved in 
the process. The approach will, in all likelihood, give rise to a conceptual 
model that incorporates a set of partial differential equations. The task of 
ensuring that these differential equations are correctly formulated on the 
basis of the principles involved and ensuring that they are correctly 
transformed into the format required by the simulation software environment 
to be used, falls in the realm of verification. Confirmation that the selected 
principles are indeed an adequate means of representing the relevant behaviour 
of the chemical process is a validation task.

Consider an alternate but similar example where a modeling and 
simulation project is concerned with exploring alternatives for enhancing 
the operating efficiency of a large metropolitan hospital. The model is to 
be organised as a number of interacting components. One of these will 
focus on the operation of the elevator system which has frequently been 
observed to be a point of congestion. The behaviour of any elevator system 
is described by a relatively complex set of rules. Ensuring that these rules 
are correctly represented in each of several realisations (e.g., natural 
language in the initial statement, then an intermediate and more formal 
representation such as a flow chart and finally in the program code of the 
simulation model) is part of the verification activity. Confirmation of the 
correctness of the rules themselves is a validation task.
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A simulation model always functions in some software environment and 
assumptions about the integrity of the environment are often made without 
any particular basis. Confirmation of this integrity is a verification task. 
Consider, for example, the adequacy of the numerical software for the 
solution of the differential equations in a continuous-time dynamic system 
model or the adequacy of the mechanism used for generating a random 
number stream required in a DEDS model. Confirmation that such 
essential tools are not only available but are sufficiently robust for the 
project requirements is part of the verification activity. 

It has been rightly observed (e.g., Neelamkavil [2.12] that ‘complete 
validation’ of a model is an objective that is beyond the realm of 
attainability; the best that can be hoped for is ‘failure to invalidate’. A 
related idea is contained in one of a collection of verification and 
validation principles suggested by Balci [2.1], namely, that the outcome of 
the validation activity is not binary valued. Degrees of success must be 
recognised and accepted and the credibility of the conclusions derived 
from the experiments with the model treated accordingly. The practical 
reality for accepting less than total success in the validation endeavour 
originates in the significant overhead involved. Carrying out validation to a 
level that totally satisfies all concerned parties can be both expensive and 
time consuming. A point of diminishing returns is invariably reached and 
compromises, together with acceptance of the attendant risk, often become 
unavoidable.

Validation must necessarily begin at the earliest possible stage of the 
modelling and simulation project, namely, at the stage of problem 
definition. Here the task is simply to ensure that the statement of the 
problem is consistent with the problem that the project originator wants to 
have solved. This is of fundamental importance because, for the members 
of the project team that will carry out the project, the problem statement is 
the problem. The documented problem statement is the only reference 
available for guidance. All relevant facets must therefore be included and 
confirmation of this is a validation task. 

The problem definition has many facets and most have direct relevance 
to the validation task. One which is especially relevant is the statement of 
the project goals. These have a profound impact that ranges from the 
required level of granularity for the model to the nature of the output data 
that need to be generated. Consider, for example, the model of an airliner. 
A model that has been validated within the context of a project that is 
evaluating a business plan for a commercial airline will most likely not 
qualify as an adequate model within the context of a project that seeks to 
determine the aircraft’s aerodynamic characteristics. In effect then, one of 
the most fundamental guiding principles of any validation activity is that it 
must be guided by the goals of the study. 
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One (essentially naïve) perspective that might be adopted for validating 
a model is simply to ensure that its observed behaviour ‘appears correct’, 
as reflected by animation, graphical displays, or simply the values of some 
set of designated variables. The assessment here is clearly entirely 
qualitative rather than quantitative and hence is very subjective. A far 
more serious shortcoming of this approach is that it makes no reference to 
the goals of the modelling and simulation study. As noted above, this is a 
very serious flaw. The absence of this context carries the naïve (and most 
certainly incorrect) implication that the model has ‘universal applicability’. 
However, it is rare indeed that a model of ‘anything’ is appropriate for all 
possible modelling and simulation projects to which it might be linked. 

Nevertheless, the relatively superficial approach given above does have 
a recognised status in the validation toolkit when it is refined by including 
the understanding that the observers are ‘domain experts’ and that their 
judgement is being given with full understanding of the model’s purpose. 
With these qualifiers, the approach is referred to as face validation.

It is reasonable to assume that within the framework of the project 
goals, a collection of (more or less) quantifiable anticipated behaviours for 
the model can be identified. These will usually be expressed in terms of 
input–output relationships or more generally in terms of cause/effect 
relations. Consider, for example, a model developed to investigate the 
aerodynamic characteristics of an aircraft. The occurrence of an engine 
failure during a simulation experiment should (after a short time interval)  
lead to a decrease in the aircraft’s altitude. If this causal event does not 
take place, then there is a basis for suspicion about the model’s adequacy.

Or consider introducing the occurrence of disruptive storms in a harbour 
model. It is reasonable to expect that this would result in a decrease in the 
operating efficiency of the harbour as measured by the average number of 
ships per day passing through the loading/unloading facilities.

As a final example, consider doubling the arrival rate of 
tourists/convention attendees in an economic model of an urban area. This 
should result in an approximate doubling in the occupancy rate of the 
hotels in the area. Furthermore, an occupancy rate increase of more than a 
factor of two should be cause for some reflection about possible flaws in 
the model’s specification. 

The general approach outlined above is often called behaviour
validation. An implicit assumption in the approach is that a verified 
simulation program is available for experimentation. The approach has 
been examined in some detail by Birta and Ozmizrak [2.3] who 
incorporate the notion of a validation knowledge base that holds the 
collection of behavioural features that need to be confirmed. The 
investigation includes a discussion of a procedure for formulating a set of 
experiments that efficiently covers the tests that are implied in the 
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knowledge base. An accessory question that does need resolution prior to 
the implementation of the process relates to the level of ‘accuracy’ that 
will be expected in achieving the designated responses. Behaviour 
validation has several noteworthy aspects; for example, the knowledge 
base can conveniently accommodate insights provided by a domain expert 
and as well, it can accommodate data acquired from an observable system 
when such an option exists.

In fact this latter feature is closely related to a notion called replicative
validation, that is, confirming that the simulation program is capable of 
reproducing all available instances of the SUI’s input–output behaviour. 
This notion is clearly restricted to the case where the SUI actually exists 
and behavioural data have been collected. But even in such circumstances 

data available and if so, how can they be organised into meaningful 
(nonredundant classes), and how is the impact of project goals 
accommodated?

Validation in the modelling and simulation context must also embrace 
the data modelling task. For example, suppose that once ordered, the 
arrival time for a replacement part for a machine in a manufacturing 
process is random. There are at least two possible choices here for 
representing this situation. One is simply to use the mean delay time 
(assumed to be known) and an alternative is to use successive samples 
drawn from a correctly specified stochastic distribution. Ensuring that a 
satisfactory choice is made (with due regard to project goals) can be 
regarded as a validation task. 

Accreditation is a notion that is closely related to validation. 
Accreditation refers to the acceptance, by a designated accreditation 
authority, of some particular simulation model for use within the context 
of a particular modelling and simulation project. Several important issues 
are associated with this notion: for example, what guidelines are followed 
in the designation of the accreditation authority and how is the decision-
making procedure with respect to acceptance carried out. These are clearly 
matters of critical importance but they are, for the most part, very 
situation-dependent and for this reason we regard the topic of accreditation 
as being beyond the scope of our discussions. Certification is an equivalent 
issue which is explored in some detail by Balci [2.2]. 

We conclude this section by observing that the importance of model 
credibility has been recognised even at legislative levels of government 
because of the substantial government funding that is often provided in 
support of large-scale modelling and simulation projects. In 1976 the 
American government’s General Accounting Office presented to the U.S. 
Congress the first of three reports that explored serious concerns about the 
management, evaluation, and credibility of government-sponsored 

there remain open questions; for example, could there not be ‘too much’ 
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simulation models (see [2.7] through [2.9]). For the most part these 
concerns were related to verification and validation issues in the context of 
modelling and simulation projects carried out by, or on behalf of, the U.S. 
Department of Defense. This latter organisation is possibly the world’s 
largest modelling and simulation user community and a comprehensive 
presentation of its perspective about verification and validation can be 
found in [2.6]. An overview of some of the material contained in [2.6] 
together with a discussion of verification and validation issues in some 
specialised circumstances (e.g., hardware-in-the-loop, human-in-the-loop, 
distributed environments) can be found in Pace [2.13]. 

2.5 Quality Assurance 

reference to a broad array of activities and methodologies that share the 
common objective of ensuring that the goals of the simulation project are 
not only achieved but are achieved in a timely, efficient, and cost-effective 

Documentation

A modelling and simulation project of even modest complexity can require 
many months to complete and will likely be carried out by a team having 
several members. Information about the project (e.g., assumptions, data 
sources, credibility assessment) is typically distributed among several 
individuals. Personnel changes can occur and in the absence of 
documentation, there is a possibility that important fragments of 
information may vanish. Likewise the reasons for any particular decision 
made during the course of the project may be completely obvious when it 
is made, but may not be so obvious several months later. Only with proper 
documentation can the emergence of this unsettling uncertainty be 
avoided. Comprehensive documentation also facilitates the process of 
‘coming-up-to-speed’ for new members joining the team. 

Project documentation must not only be comprehensive but must

manner. An interesting overview of these can be found in Ören [2.10].  
As we have previously noted, a significant thrust of the quality assurance 
effort necessarily deals with ensuring the credibility of the simulation model 
(where credibility here must always be interpreted from the perspective of the
goals of the project.) Nevertheless, there is a variety of other important issues 

Quality assurance within the framework of modelling and simulation is a 

in the discussion below.
that fall within the realm of quality assurance. We examine some of these

also be current. Deferring updates that reflect recent changes is a 
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prescription for rapid deterioration in the value of the documentation 
because prospective users will become wary of its accuracy and hence will 
avoid reliance on it. In the extreme, documentation that is deferred until 
the end of the project essentially belies the intent of the effort. 

Program Development Standards 

Premature initiation of the program development phase must be avoided. 
Often there is an urge to begin the coding task before it is entirely clear 
what problem needs to be solved. This can result a simulation program that 
is poorly organised because it is continually being ‘retrofitted’ to 
accommodate newly emerging requirements. Any computer program 
developed in this manner is highly prone to error.

Testing

Testing is the activity of carrying out focused experiments with the 
simulation program with a view towards uncovering specific properties. 
For the most part, testing is concerned with establishing credibility and 
consequently considerable care needs to be taken in developing, and 
documenting, the test cases. Testing activity that is flawed or inadequate 
can have the unfortunate consequence of undermining confidence in the 
results flowing from the simulation project. 

Testing can have a variety of objectives. For example, regression testing 
is undertaken when changes have taken place in the simulation program. In 
such circumstances it is necessary to confirm not only that any anticipated 
behavioural properties of the simulation model do actually occur but also 
that improper side-effects have not been introduced. This implies carrying 
out some suite of carefully designed experiments before and after the 
modifications.

Another testing perspective is concerned with trying to acquire some 
insight into the boundaries of usefulness of the simulation program relative 
to the goals of the project. This can be undertaken using a process called 
stress testing whereby the model is subjected to extreme conditions. For 
example, in the context of a manufacturing process the effect of extremely 
high machine failure rates could be explored or alternately, in a 
communication system context the impact of data rates that cause severe 
congestion could be explored. The intent of such testing is to create 
circumstances that provide insight into the limits of the model’s 
plausibility in terms of an adequate representation of the SUI’s behaviour. 
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Experiment Design 

We use the phrase ‘experiment design’ to refer to a whole range of 
planning activities that focus on the manner in which the simulation 
program will be used to achieve the project goals. The success of the 
project is very much dependent on the care taken in this planning stage. 
Poor experiment design can seriously compromise the conclusions of the 
study and in the extreme case may even cast suspicion on the reliability of 
the conclusions. 

Some examples of typical matters of concern are: 

  What data need to be collected (with due regard to the analysis 
requirements and tools)? 
How will initialisation and transient effects be handled? 

  Are there particular operational scenarios that are especially well 
suited to providing the desired insight when the relative merits of a 
number of specified system design alternatives need to be 
examined?

  Is there a useful role for special graphics and/or animation and if 
so, what should be displayed? 

Frequently the project goals include an optimisation requirement and the 
difficulty of this task is often underestimated. Care is required both in the 
formulation of the optimisation problem itself and in the formulation of a 
procedure for its solution. Problem formulation usually corresponds to the 
specification of a scalar-valued criterion function whose value needs to be 
either minimised or maximised. The nature of this function is often clearly 
apparent from the goals of the project. Care must be taken to avoid 
attempting to embed in the project goals several such functions whose 
simultaneous optimisation is in conflict. The parameters available for 
adjustment in the search for an extreme value for the criterion function 
need to be identified. Frequently there are constraints in the admissible 
values for these parameters and such constraints must be clearly identified. 
Alternately there may be prescribed requirements on certain features of the 
model’s behaviour that have to be incorporated. 

The identification of an appropriate procedure for solving the problem 
then has to be carefully considered. Numerous techniques can be found in 
the classical optimisation literature and these are generally directly applicable 
within the modelling and simulation context provided stochastic effects are 
not present. Their applicability is, however, seriously undermined when 
stochastic behaviour is an integral part of the criterion function as is often 
the case in the modelling and simulation context. Although true optimality 
may be infeasible, sometimes a suboptimal solution can be a reasonable 
expectation. In such circumstances it is highly desirable to have available a 
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means for estimating the likely deviation from optimality of the accepted 
solution. In practice, when stochastic effects are present, the search for 
optimality may simply have to be abandoned and replaced with the 
relatively straightforward task of selecting the best alternative from among 
a finite collection of options.

Presentation/Interpretation of Results 

explicitly requested, great detail about the simulation model’s features 

obtained from the simulation experiments that relate directly to the goals 

relevance should be clearly pointed out. Wide availability of increasingly 
more sophisticated computer graphics and animation tools can be 
creatively incorporated but the visual effects they provide should serve 
only to complement, but not replace, comprehensive quantitative analysis. 

2.6 The Dynamic Model Landscape

Models of dynamic systems can be characterised by a number of 
features. For the most part these are inherited from the underlying system 
(i.e., the SUI) that the model represents. We examine some of these 
characterising features in the discussion that follows. 

Deterministic and Stochastic 

The system context for a large class of modelling and simulation projects 
includes random elements. Models that emerge from such contexts are 
called stochastic models which are very distinct from deterministic models 
that have no random aspects. Values taken from any particular experiment 
with a stochastic model must be regarded as observations of some 
collection of random variables. The need to deal with random aspects of 
stochastic models (and the underlying SUI) has a very substantial impact 
on essentially all facets of both the modelling and the simulation phases of 
a project. A whole range of related considerations must be carefully 
handled in order to ensure that correct conclusions are drawn from the 
study. A few of these are listed below. 

of the project. This is not to suggest that additional information that 

Often the person/organisation that has commissioned the modelling 

appears pertinent should not be presented but its possibly tangential 

stage and periodic presentations are normally necessary. Unless 

should not dominate these presentations. The focus must be on results 

and simulation project remains remote from the development
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  Only aggregated results are meaningful, hence many simulation 
experiments need to be carried out. 

  The need to formulate a collection of data models that capture the 
various random phenomena that are embedded in the model.

Discrete and Continuous 

In models for discrete event dynamic systems (i.e., DEDS models) state 
changes occur at particular points in time whose values are not known a 
priori. As a direct consequence, (simulated) time advances in discrete 
‘jumps’ that have unequal length. 

In contrast, with models that emerge from the domain of continuous 
time dynamic systems (i.e., CTDS models), state changes occur 
continuously (at least in principle) as time advances in a continuous 
fashion over the length of the observation interval. It must, however, be 

realities introduced by the computational process. It is simply infeasible 
for any practical procedure to actually yield data at every value of time 
within the continuum of the observation interval. Thus, from the 
perspective of the observer, state changes do apparently occur with 
discrete ‘jumps’ as the solution unfolds over the observation interval.

Our presentation in this textbook may give the erroneous impression 
that models neatly separate into the two broad categories that we refer to as 
DEDS models and CTDS models. This is an oversimplification. There is, 
in fact a third category of models that are usually called combined models 
where the name reflects the combination of elements from both the 
discrete and continuous domains. As an illustration consider the parts in a 
manufacturing plant that move from one workstation to another on the way 
to assembly into a final product. At these workstations, queues form and 
the service function provided by the workstation may have random aspects 
(or may become inoperative at random points in time). Thus the basic 
elements of a DEDS model are present. At some workstations the 
operation may involve heating the part to a high temperature in a furnace. 
This heating operation and the control of it would best fall in the realm of a 
CTDS model. Hence the overall model that is needed has components 
from the two basic domains. 

Work on the development of modelling formalisms and tools for 
handling this third category of combined models has a long history. The 
interested reader wishing to explore this topic in more detail will find 
relevant discussions in Cellier [2.5], Ören [2.11], and Praehofer [2.14]. 

the initial portion of a simulation experiment. 
  Dealing with the start-up  issue may require ignoring data from

stressed that this is an idealised perspective that ignores the 
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The properties of linearity and nonlinearity of systems are basic 

the inherent simplifications to the analysis process that are introduced by the 
linearity property have no particular consequence in the modelling and 

and nonlinear systems and models is most certainly one of the noteworthy 
features of the modelling and simulation approach to problem solving. 

2.7 Exercises and Projects 

2.1 Technical papers in the modelling and simulation applications 
literature are sometimes lacking in the clarity with which they deal 
with such fundamentals as 

a) 
b) Outline of the conceptual model 
c) Identification of input and output variables 
d) Model validation efforts 

and simulation and compare the effectiveness with which the authors 
have addressed the items listed above. Some application areas that 
could be considered are: 

a) Network management and control 
b) Ecological and environmental systems 
c) Biomedicine and biomechanics 
d) Power generation and distribution 
e) Automated manufacturing 
f) Robotics and autonomous systems 
g) Transportation and traffic 
h) New product development 

simulation realm. This absence of any need to distinguish between linear 

Linear and Nonlinear 

However, because the experiments that are inherent. within the modelling and   
considerations in many areas of analysis, e.g., mathematics and system theory. 

mation that is ‘delivered’ evolves entirely from numerical computation. Hence 
simulation context are always assumed to be carried out by a computer the infor-  

Choose two papers in some particular application area of modelling 

The goals of the modelling and simulation study 

that motivated the study 
e)  Evaluation of success in achieving a solution to the problem
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Technical papers and/or pointers to technical papers in these areas can 
be found at Web sites such as www.scs.org and www.informs-
cs.org/wscpapers.html.
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PART 2 
DEDS Modelling and Simulation 

In the second part of this book we examine the modelling and simulation 
process within the discrete event dynamic systems (DEDS) domain. The 
presentation is, for the most part, guided by the general process presented 
in Figure 2.4. 

We have previously emphasised (Section 2.3.1), that the project 

system under investigation (SUI) that have relevance to the model develop-
ment process. One behavioural feature that is specific to DEDS is the central 
role played by random phenomena. The interarrival times between 
messages entering a communication network and the time to service 
customers at the checkout counter of a grocery store are examples of such 
phenomena.

Data modelling is an essential subtask of conceptual modelling phase in 
the DEDS domain. It is concerned, in part, with correctly representing the 
features of the SUI’s environment that have an impact on its behaviour and 
this can be a demanding and time-consuming task. The project goals guide 
the identification of the data models that are required. The data modelling 
task is considerably facilitated when the SUI currently exists and is 
accessible because then data collection is possible. When the SUI does not 
yet exist (or indeed, may never actually ‘exist’) data modelling becomes a 
very uncertain undertaking and essentially depends on insight and 
intuition.

There are three main world views or frameworks for building a DEDS 
simulation model: the activity scanning world view, the event scheduling 
world view, and the process-oriented world view. With the superposition 
of a variety of operational features (e.g., generation and management of 
random variates for handling random phenomena, management of a 
predefined time-advance mechanism) the simulation model evolves into a 
simulation program.

Chapters 3 and 4 deal with conceptual modelling. Chapter 3 provides an 
overview of some key aspects of random behaviour and discusses data 
modelling. These data models are then integrated into a conceptual 
modelling framework that captures the relevant structural and behavioural 
features of the SUI; this is presented in Chapter 4. The framework 
presented in Chapter 4 is based on the activity scanning world view. 
Chapter 5 shows how a conceptual model that has been formulated in the 
framework described in Chapter 4 can be transformed into either an event 
scheduling simulation model or a process-oriented simulation model. The 

description should provide a clear statement of the project goals. From 
these it should be possible to identify those behavioural features of the 
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programming environments used in these two cases are Java and GPSS, 
respectively.

The project goals have a direct impact on the way in which 
experimentation is carried out with the simulation program. A basic 
objective of experimentation is to produce values for the performance 
measures stipulated in the project goals. In Chapter 6, we examine how the 
experimentation activity has to be organised in order to acquire meaningful 
values for these performance measures. 



Chapter 3 DEDS Stochastic Behaviour and Data 
Modelling

3.1  The Stochastic Nature of DEDS 

This section explores some fundamental aspects of the random (stochastic) 
nature of DEDS and introduces several assumptions that are typically 
made about it. 

Consider a simple view of the operation of a delicatessen counter which 
has one server. Customers arrive at the counter, wait in a queue until the 
server is available, and then select and purchase items at the counter.

Two important random phenomena drive this SUI. The first is the 
arrival of customers which is usually expressed in terms of interarrival 
times, that is, the time between successive customer arrivals. The second is 
the time it takes to select and purchase items at the counter which is 
referred to as the service time. Both of these phenomena can be 
represented by discrete stochastic processes (an overview of stochastic 
processes is provided in Section A1.8 of Annex 1). The arrival process, for 
example, can be represented by X = (X1, X2, X3, . . . , Xn), where Xj is the 
time between the arrival of the (j – 1)th customer and the jth customer, j =
1, 2, . . . , n (X1 is measured with respect to the left boundary of the 
observation interval). A convenient assumption here is that the observation 
interval corresponds to the boundaries of a business day and that n
customers are processed over the course of a day. The service time of each 
of the n customers can likewise be represented by a stochastic process; that 
is, Y = (Y1, Y2, Y3, . . . , Yn). In our simple model, both of these random 
phenomena are entirely independent of any other phenomena or 
interactions in the system. Throughout our discussions we refer to 
stochastic processes with this independent attribute as autonomous
stochastic processes.

As an alternate example, consider the status of a machine in a 
manufacturing system which we can represent with the continuous 
stochastic process Status(t). A simple approach is to assign Status a value 
of 1 when the machine is operational and a value of 0 when it is not; for 
example, it has malfunctioned and is being repaired (see Figure 3.1). 
Continuous stochastic processes in a DEDS model are piecewise-constant 
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time functions because their values change only at discrete points in time, 
as is the case with Status(t). Notice that the stochastic process, Status(t),
could be viewed as having two independent component parts; namely        
a discrete stochastic processes for the ‘uptime’ durations, U = (U1, U2,
U3, . . . , Un) and another for ‘downtime’ durations, D = (D1, D2, D3, . . . , 
Dn). Status(t) could in fact, be constructed from these two component data 
models.

0

1

t

Status(t)

FIGURE  3.1. Continuous stochastic process representing machine status. 

In our delicatessen example, the autonomous stochastic processes X and 
Y give rise to dependent stochastic processes via the inherent behaviour 
properties of the model. Consider, for example, the waiting times of 
customers in the deli queue and the length of the queue. The waiting times 
can be represented as a discrete stochastic process: W = (W1, W2, W3, . . . ,
Wn), where Wj is the waiting time of the jth customer. The length of the 
queue, L(t), is likewise a dependent random phenomenon which is, 
furthermore, piecewise constant.

Properties of the dependent random phenomena are typically of interest 
in resolving the project goals and these properties are usually called 
performance measures. Often interest focuses on the change in value of 
performance measures that results from some predetermined change in 
system operation or system structure. For example, the service time could 
be reduced by restricting customer choices to some collection of 
prepackaged items. A change in the structure of the system would result if 
an additional person were hired to serve behind the counter and a two-
queue service protocol was established. The goal of a modelling and 
simulation project could then be to evaluate the effect of such changes on 
customer waiting time. 

When stochastic processes are used to represent autonomous random 
phenomena simplifying assumptions are typically incorporated. For 
example, a common assumption is that customer interarrival times can be 
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represented with a homogeneous stochastic process, that is, the sequence 
of random variables that constitute the stochastic process are independent 
and identically distributed (IID). 

Unfortunately there are many cases where such assumptions are simply 
not realistic. Consider our deli counter example. There are ‘busy periods’ 
over the course of a business day, during which customer arrivals occur 
more frequently. This implies that the mean of the customer interarrival 
time distribution will be shorter during these busy periods. It is reasonable 
to assume that dependent stochastic processes such as waiting times will 
be affected and will also be nonstationary. When appropriate, this issue 
can be circumvented by redefining the observation interval so that the 
study is restricted, for example, to the busy period. Then the validity of a 
homogeneous stochastic process assumption for the customer interarrival 
time can be reasonably assured. 

Even in cases where the autonomous stochastic processes within a 
DEDS model are stationary over the observation interval, dependent 
stochastic processes can still exhibit transient behaviour. These transient 
effects are a consequence of initial conditions whose impact needs to 
dissipate before stationary behaviour evolves. Consider, for example, 
waiting times when the deli of our example first opens in the morning. The 
first customer will experience no waiting time and receive service 
immediately. Subsequent customers will likewise experience short waiting 
times. As time progresses, more customers will enter the queue and 
waiting times could start to lengthen but in any event, the exceptional 
circumstances immediately following the opening will disappear.

This behaviour will occur even when we assume that the customer 
interarrival times are represented by a homogeneous stochastic process. If 
the mean of the interarrival times changes to a new value at the start of the 
busy period, the waiting times will again go through a transient period 
prior to eventually reaching steady-state behaviour. Note that it can be 
reasonably assumed that the waiting time stochastic process is positively 
correlated.

With very few exceptions, the variables in a DEDS model can be 
regarded as stochastic processes: some as autonomous stochastic processes 
and others as dependent stochastic processes. The values acquired by a 
variable that is regarded as a dependent stochastic process are an 
outgrowth of the autonomous stochastic processes coupled with the 
model’s behaviour specifications; hence consideration of data models in 
this circumstance is not meaningful. Such values, however, are generally 
of considerable importance because they provide the sample set and/or 
trajectory set output that is required for the achievement of the project 
goals. These issues are examined in Section 3.2 below. 
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A data model is required for each autonomous stochastic process that is 
identified in a conceptual model. Such models provide the basis for 
generating the values that are associated with these processes. Such a 
process might, for example, represent the interarrival times of an input 
entity stream as introduced in Chapter 2.

Creating a data model consists of determining appropriate probability 
distributions for the constituent random variables of the stochastic process. 
Data models can be very complex. Such models could be required to 
represent nonstationary stochastic processes or even multivariate stochastic 
processes where one stochastic process is correlated to another. However, 
our treatment of data modelling in this textbook is restricted in scope. In 
particular, we limit our considerations to autonomous stochastic processes 
that are piecewise homogeneous (see Section A1.8 of Annex 1).

The key feature of a homogeneous stochastic process is that the data 
modelling task reduces to the identification of a single underlying 
distribution function (because all constituent random variables have the 
same distribution). The situation is somewhat more demanding in the 
general piecewise homogeneous case (with m segments) inasmuch as there 
is a distribution required for each of the m segments. 

A useful overview of data modelling is provided by Biller and Nelson 
[3.3]. More comprehensive discussions can be found in a variety of 
references such as: Banks et al. [3.2], Law and Kelton [3.13], and Leemis 
and Park [3.14]. 

3.2 DEDS Modelling and Simulation Studies 

The goals of a modelling and simulation project implicitly define one of 
two possible types of study. The differences between them are easy to 
appreciate. However, as becomes apparent in later discussions (in 
particular, in Chapter 6) these differences have a significant impact on the 
nature of the experimentation procedure that needs to be carried out and in 
one case it requires considerably more effort. The main differences arise 
from two interdependent features; one relates to specifications on 
the right-hand boundary of the observation interval and the other relates to 
possible constraints imposed on the acquired data. We refer to the two 
alternatives as bounded horizon studies and steady-state studies. They1 are 
summarised below:

                                                     
1 These two types of study are often referred to as ‘terminating simulations’ and 

‘nonterminating simulations’, respectively 
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Bounded Horizon Study: 

   The right-hand boundary of the observation interval is specified in the 
problem statement either explicitly by a given value of time or 
implicitly by some combination of values acquired by the model’s 
state variables. 
There are no restrictions on the properties of the dependent stochastic 
processes that are of interest. Often transient behaviour dominates. 

Steady-State Study: 

The right-hand boundary of the observation interval is not provided in 
the problem statement. Its value emerges in an indirect fashion 
because the observation interval extends to a point where the times 
series of acquired data is long enough to reflect steady-state behaviour.
Steady-state behaviour of the dependent stochastic processes that are of 
interest is essential. In other words, the focus is on behaviour patterns 
in the absence of transient effects. 

3.3 Data Modelling 

Data models (expressed in terms of theoretical probability distributions) 
are provided for the various autonomous stochastic processes that appear 
in the DEDS examples presented in this textbook. This might give the 
erroneous impression that defining such data models is simple and 
straightforward. In reality much time and effort is required for carrying out 
the data modelling task that gives rise to these data models. Furthermore, it 
must be strongly emphasised that improper data models can destroy the 
value of the results that flow from a simulation study. Data models play 
the role of input data to a computer program and a long established 
principle in software engineering is that ‘garbage in equals garbage out’! 

When the SUI exists it may be possible to obtain insights about its 
various autonomous stochastic processes by observing the existing system. 
Data can be gathered and analysed to obtain information necessary for the 
formulation of suitable data models. In other cases, when such data are not 
available (e.g., the SUI does not exist or the collection of data is 
impossible or too costly), data models may have to be constructed on the 
basis of the insight provided by domain specialists, that is, ‘educated 
guesses’.

In this section we first consider the case when data can be obtained from 
the SUI and we provide an overview of steps required to develop, from the 
collected data, the underlying distributions that serve as data models. Some 
general guidelines are given for formulating data models when no data 
exist.
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Data models are integrated, in a modular fashion, into the conceptual 
modelling framework that is presented in Chapter 4. Data modelling is 
usually carried out in parallel with the conceptual modelling task. Both of 

3.3.1 Defining Data Models Using Collected Data 

Our introduction to data modelling is restricted to modelling autonomous 
stochastic processes that are (piecewise) homogeneous. The objective is to 
formulate either an appropriate theoretical or empirical distribution derived 
from the collected data. 

Collected data can be used to formulate a data model that is specified in 
terms of a cumulative distribution function that is called an empirical CDF. 
Section 3.3.4 discusses this approach. When the empirical distribution is 
continuous, an inherent disadvantage of the approach is that it will not 
generate values outside the limits of the observed values. It can 
nevertheless yield values other than those that have been observed. An 
alternate (and generally preferred) approach is to use statistical techniques 
to fit a theoretical distribution to the collected data. A theoretical 
distribution provides a number of advantages; for example, it smooths out 
irregularities that could arise with the empirical alternative and it can yield 
values outside the boundaries of the observed values. Theoretical 
distributions always have embedded parameters (see Sections A1.3.6 and 
A1.4.4 of Annex 1) which provide a simple means for adjusting the 
distribution to best fit the collected data.

Our first task is to determine if the collected data do indeed belong to a 
homogeneous stochastic process. This requires two tests: one to determine 
if the stochastic process is identically distributed and a second to determine 
if the constituent random variables are independent. A number of analysis 
techniques exist for testing for these properties and a few are presented in 
Section 3.3.2. The final task is to fit a theoretical distribution to the 
collected data. Software is available for analysing collected data and fitting 
theoretical distributions. Such software is available in standalone form, for 
example, ExpertFit [3.12] and Stat::Fit [3.7]. This functionality is often 
integrated directly into simulation packages; e.g., Arena [3.9] or ProModel 
[3.7] (which includes Stat::Fit). 

to the problem description and/or project goals. 
these modelling exercises can give rise to the need for refinements 
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3.3.2 Do the Collected Data Belong to a Homogeneous 
Stochastic Process? 

This section presents two techniques for evaluating independence of 
collected data and a technique for evaluating stationarity. 

3.3.2.1 Testing for Independence 

Two graphical methods for evaluating independence are presented here: 
scatter plots and autocorrelation plots. In both cases the objective is to 
investigate possible dependencies among the values in a times series 
obtained as an observation of a stochastic process (see Section A1.8 of 
Annex 1). More specifically, we assume that our collected data are the 
time series x = (x1, x2, x3, . . . , xn ) which is an observation of a stochastic 
process, X = (X1, X2 , . . . , Xn).

A scatter plot is a display of the points Pi = (xi, xi+1), = 1, 2, . . . ,          
(n – 1) . If little or no dependence exists, the points should be scattered in a 
random fashion. If, on the other hand, a trend line becomes apparent then 
dependence does exist. For positively correlated data, the line will have a 
positive slope; that is, both coordinates of the points Pi will be either large 
or small. If data are negatively correlated the trend line will have a 
negative slope; that is, a small value of xi will be associated with a large 
value of xi+1 and vice versa. 

We illustrate the method with two separate time series. The first consists 
of 300 data values generated from a gamma distribution (with  = 2, =
1/3)2. The second has 365 values representing the daily maximum 
temperatures in Ottawa, Ontario, Canada3 between May 20, 2005 and May 
20, 2006. 

Figure 3.2 shows the scatter plot for the first case. Clearly there is no 
apparent trend and consequently independence can be assumed. The 
scatter plot shown in Figure 3.3 for the temperature data shows a trend line 
with a positive slope. The implied positive correlation is to be expected 
inasmuch as there is a great likelihood that the temperature on successive 
days will be similar. 

                                                     
2 Generated using the Microsoft ® Office Excel 2003 Application. 
3 Source: http://ottawa.weatherstats.ca. 

i
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FIGURE  3.2. Scatter plot showing uncorrelated data.
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FIGURE 3.3. Scatter plot showing correlated data. 

A scatter plot is a presentation of data values that are immediately 
adjacent, that is, that have a lag of 1. An autocorrelation plot on the other 
hand is more comprehensive because it evaluates possible dependence for 
a range of lag values. An autocorrelation plot is a graph of the sample 
autocorrelation )(ˆ k for a range of lag values k, where: 



3.3 Data Modelling    69 

)()(

))())(((

)(ˆ
2

1

nskn

nxxnxx

k

kn

i
kii

 . 

Here )(nx  and s2(n) are estimates of the sample mean and sample variance 
respectively for the time series (some elaboration can be found in Section 
A1.8 of Annex 1). 
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FIGURE 3.4. Autocorrelation plot showing uncorrelated data. 

Figure 3.4 shows the autocorrelation plots for the time series obtained 
from the gamma distribution. The graph shows that the sample 
autocorrelation is low for all lag values which reinforces the earlier 
conclusion that the data are independent. For the temperature time series 
the autocorrelation plot in Figure 3.5 shows high values for the sample 
autocorrelation for all lag values between 1 and 30, indicating a high level 
of correlation between temperatures over the first month. 
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FIGURE 3.5.  Autocorrelation plot showing correlated data. 

3.3.2.2 Testing for Stationarity 

. , m} has been acquired for the stochastic process X. Each i is an n(i)-
tuple of values obtained for the constituent random variables within X; that 
is, = (xi,1, xi,2, . . . , xi,n(i)). The process X could, for example, represent the 
interarrival times of customers at the deli counter introduced earlier. The 
n(i)-tuple (or time series) , could be interpreted as an observation of X on 
the ith day of an m-day collection period. Testing for stationarity can be a 
relatively elaborate process but as a minimum it requires the assessment of 
the degree to which average values within the collected data remain 
invariant over time. 

We outline below a graphical method that provides insight into the 
variation over time of the average value of the collected data hence an 
approach for carrying out a fundamental test for stationarity. Assume that 
the collected data extend over a time interval of length T. The procedure 

T into a set of L time cells of length t. Recall that each 
data value (say xi,j) is necessarily time indexed (either explicitly or 
implicitly) and consequently falls into one of the L time cells. The n(i)
values in the time series xi can then be separated into disjoint subsets 
according to the time cell to which each value belongs. The average value 
of the data in each cell is computed for each of the m time series and then a 
composite average over the m time series is determined and plotted on a  

We begin with the  assumption  that a collection of values    { : i = 1, 2, . . 

begins by dividing 

^xi

^xi

^xi

^x
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FIGURE  3.6. Nonstationary interarrival times.

time axis that is similarly divided into L cells. The resulting graph 
therefore displays the time behaviour of average values within the cells. 

Within the context of our deli example, the recorded data could 
represent observations of the customer interarrival times. For day i, we 
denote by cia the average interarrival time in cell c. Then, for each time 

cell c, we compute an overall average interarrival time ca  using data from 
all m days; that is, 

m

i
cic a

m
a

1

1
.

The value ca  provides an estimate for the mean of the underlying 
distribution of those interarrival time random variables whose time index 
falls in the time cell c.

A plot of ca versus time cell c provides a visual aid for evaluating how 
the mean of the distributions vary over time. Figure 3.6 shows such a plot 
computed from three days of observed interarrival times in the deli 
between 9 AM and 6 PM. An interval t of 30 minutes was used. The plot 
clearly shows that the mean does vary because smaller averages occur 
around noon and at the end of the day, that is, during rush-hour periods. 
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3.3.3 Fitting a Distribution to Data 

Fitting a theoretical distribution that matches time series data obtained 
from a homogeneous stochastic process is a trial-and-error procedure. The 
procedure usually begins with a histogram developed from the collection 
of N values belonging to some particular time series. If the objective is a 
continuous distribution then the histogram provides a representation whose 
shape approximates the underlying probability density function. On the 
other hand, if the objective is a discrete distribution, then the histogram 
provides a representation whose shape approximates the underlying 
probability mass function. A plot of the associated cumulative distribution 
function can also be helpful for specifying empirical distributions. 

The general shape of the histogram serves to suggest possible theoretical 
distribution candidates. Parameters that are associated with theoretical 
distributions then need to be estimated. Goodness-of-fit tests are generally 
used to determine how well the parameterised distribution candidates fit 
the data. A selection is made based on the results from this analysis. 

As an example, consider a time series obtained by observing the ‘group 
sizes’ that enter a restaurant over the course of a particular business day. 
The distribution of interest here is discrete and the histogram shows the 
number of occurrences of each of the group sizes as contained in the 
available time series data. The histogram shown in Figure 3.7 illustrates a 
possible outcome. A group size of 4 clearly occurs most frequently. The 
associated cumulative distribution is also provided in Figure 3.7; and it 
shows, for example, that just over 70% of the group sizes are equal to or 
less than 4. 
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FIGURE  3.7. Histogram for discrete valued data.
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An approximation process is required to handle the continuous case, that 
is, the case where observed data values can assume any value in a 
prescribed interval of the real line. In this circumstance, a histogram is 
constructed by dividing the interval into subintervals called bins. The 
number of values that fall into each bin is counted and plotted as the 
frequency for that bin. The ‘smoothness’ of the graph that results is very 
much dependent on the bin size. If the bin size is too small, the resulting 
plot can be ragged. If the bin size is too large, the graph’s value for 
inferring a candidate distribution can be compromised. Banks et al. [3.2] 
suggest choosing the number of bins to be n , where n is the number of 
values in the time series observation. On the other hand, Stat::fit [3.7] 
recommends 3 2n  for the number of bins.

Figure 3.8 shows a histogram created using 100 data values (n = 100) 
generated from an exponential distribution using 22 bins. It illustrates how 
a ragged plot can occur when the bin size is too small. Figure 3.9 shows 
the histogram using 10 bins (value recommended by Banks et al.).     
Figure 3.10 shows the histogram using 6 bins (recommended value used in 
Stat::Fit).
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FIGURE  3.8. Histogram of interarrival times with 22 bins. 
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FIGURE  3.9. Histogram of interarrival times with 10 bins.
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FIGURE  3.10. Histogram of interarrival times with 6 bins. 

Once the histogram has been created, the shape of the histogram is used 
to select one or more theoretical distributions as possible candidates for the 
data model. Estimated values for the parameters of each of these 
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candidates must be obtained and a number of estimation methods 
developed for this purpose are available. In the discussion that follows we 
briefly examine the category of estimators called maximum likelihood 
estimators (further details can be found in [3.13]). 

The sample mean )(nx and the sample variance s2(n) of the time series 
observation play a key role in the maximum likelihood parameter 
estimation procedure. Table 3.1 shows how maximum likelihood 
estimators for the parameters of several distributions are computed. Estimators 
for other distributions can be found in [3.2] and [3.13]. 

Once parameters for a candidate distribution have been estimated, a 
goodness-of-fit test needs to be used to determine how well the selected 
theoretical distribution (with assigned parameters) fits the collected data. 
Various such tests are available and an overview can be found in Law and 
Kelton [3.13] or Banks et al. [3.2]. Among the options is the chi-square test4  
which we summarise below. 

TABLE 3.1. Maximum likelihood estimators.

Distribution Parameters Estimators
Exponential

)(

1ˆ
nx

Normal µ, 2

)(ˆ

)(ˆ

22 ns

nx

Gamma , Compute
1

1

)ln(
1

))(ln(
n

i
ix

n
nxT and find ˆ

)(

ˆ
ˆ

nx

Suppose Dc is the parameterised candidate distribution to be tested. The 
objective is to determine if there is a basis for rejecting Dc because it 
provides an inadequate match to the collected data. The first step in the test 
is to determine a value for an adequacy measure Am that essentially 
compares the frequencies in the histogram formulated from the collected 
data to expected frequency values provided by Dc.The definition of Am is: 
                                                     
4 The test is shown for the continuous distribution. For discrete distributions, each 

value in the distribution corresponds to a class interval and pi = P(X = xi). Class 
intervals are combined when necessary to meet the minimum-expected-interval-
frequency requirement (Ei is less than 5). 

from Table 3.4 using linear interpolation. 
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where:

of bins in the data histogram. In other words, a class interval is initially 
associated with each bin. 
Ei is the expected frequency for the ith class interval based on Dc. It is 
defined as Ei = npi, where pi is the probability that a value falls into the 

i+1] where xi and xi+1 are the  boundaries of 

series data. The probability pi can be computed using the cumulative 
density function F(x) of Dc; that is,

i i+1) – F(xi).

When Ei is less than 5, the interval is combined with an adjacent one 
(thus the new interval contains multiple adjacent bins) and the value of k
is appropriately reduced. The Ei for the new enlarged interval is then re-
evaluated. This step is repeated until all Ei values are greater than 5. 
The value Oi corresponds to the frequency observed in the histogram bin 
that corresponds to the ith class interval. For a class interval that 
contains more than one bin, the frequencies from the corresponding 
histogram bins are summed to provide the value for Oi.

Clearly the intent is to have Am as small as possible. The practical 
question, however, is whether Am is sufficiently small. The decision is 
made by comparing the value of Am with a ‘critical value’ *, obtained from 
the chi-square distribution table as given in Table 3.5. The selection of *

depends on two parameters; the first is the degrees of freedom,  = k – g –
1, where g is the number of parameters embedded in Dc and the second is 

 (the level of significance) for which 0.05 is a commonly used value. If 
Am > *, then Am is not sufficiently small and Dc should be rejected as a 
distribution option.

The procedure outlined above for fitting a theoretical distribution to a 
time series observation is illustrated with the gamma distributed data used 
in Section 3.3.2.1. Seventeen (the approximate square root of 300) bins 
were used to generate the histogram shown in Figure 3.11. Two theoretical 

Values for the sample mean and sample variance of  the data are )300(x

= 5.58 and s2(300) = 14.26 respectively. The estimator of the exponential 

ii x  < x  x

p  = F(x

exponential distribution and then a gamma distribution. 
distributions are selected for consideration as candidates, first an 

k is the number of class intervals which initially is equal to the number 

=interval; that is,  p
the ith class interval and n is the number of values in the available time 

P[
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distribution’s single parameter ˆ  is equal to 1/5.58 = 0.179. Table 3.2 
shows the values for Oi derived from the data histogram and Ei derived 
from the exponential distribution candidate (with mean 5.58). Notice how 
the bins 12 to 17 are collapsed into two class intervals. Using the data in 

m  =  11 (k =
13 and g = 1) and  = 0.05, the critical value (from Table 3.5) is *= 19.68. 
Because Am > * the exponential distribution candidate is rejected by the 
test.

FIGURE  3.11. Histogram for 300 data values (gamma distributed). 

parameters are ˆ  = 2.141 and ˆ  = 0.384 (notice that these do not equal the 
parameters used in generating the data: namely = 2 and = 1/3). Table 
3.3 shows the values for Oi derived from the data histogram and Ei derived 
from the gamma distribution candidate. In this case bins 10 to 17 are 

Am = 
10.96. Now  = 8 (k = 11, g = 2) and with  = 0.05, the critical value * =
15.51. Because Am < *, the gamma distribution candidate is not rejected by 
the chi-square test.

 

From Table 3.1, the estimators for the gamma distribution’s two 

collapsed into two class intervals. From Equation (3.1),  it follows that  

Table 3.2 it follows (from Equation (3.1))  that A  = 37.30.With 
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TABLE 3.2. Observed and expected frequency data for exponential distribution 
candidate.

1 0 - 1.4 22 66.56

2 1.4 - 2.8 57 51.79

3 2.8 - 4.2 54 40.30

4 4.2 - 5.6 47 31.36

5 5.6 - 7 38 24.40

6 7 - 8.4 22 18.99

7 8.4 - 9.8 16 14.78

8 9.8 - 11.2 15 11.50

9 11.2 - 12.6 10 8.95

10 12.6 - 14 14 6.96

11 14 - 15.4 1 5.42

15.4 - 16.8 2 4.22

16.8 - 18.2 0 3.28

18.2 - 19.6 0 2.55

19.6 - 21 0 1.99

21 - 22.4 1 1.55

22.4 - 23.8 1 1.20

12

13

7.50

Class Interval

7.29

2

1

Oi Ei

}}

} }{
{

TABLE

1 0 - 1.4 22 26.11

2 1.4 - 2.8 57 52.17

3 2.8 - 4.2 54 53.96

4 4.2 - 5.6 47 46.17

5 5.6 - 7 38 36.05

6 7 - 8.4 22 26.66

7 8.4 - 9.8 16 19.02

8 9.8 - 11.2 15 13.23

9 11.2 - 12.6 10 9.028

12.6 - 14 14 6.07

14 - 15.4 1 4.034

15.4 - 16.8 2 2.655

16.8 - 18.2 0 1.733

18.2 - 19.6 0 1.124

19.6 - 21 0 0.725

21 - 22.4 1 0.465

22.4 - 23.8 1 0.297

4

15 10.1010

11.0311

Class Interval Oi Ei

{ } }

 3.3. Observed and expected frequency data for gamma distribution candidate. 
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TABLE 3.4. Estimating the 

T ˆ T ˆ T ˆ

0.0 0.0187 2.7 1.4940 10.3 5.3110 
0.0 0.0275 2.8 1.5450 10.6 5.4610 
0.0 0.0360 2.9 1.5960 10.9 5.6110 
0.1 0.0442 3.0 1.6460 11.2 5.7610 
0.1 0.0523 3.2 1.7480 11.5 5.9110 
0.1 0.0602 3.4 1.8490 11.8 6.0610 
0.1 0.0679 3.6 1.9500 12.1 6.2110 
0.1 0.0756 3.8 2.0510 12.4 6.3620 
0.1 0.0831 4.0 2.1510 12.7 6.5120 
0.2 0.1532 4.2 2.2520 13.0 6.6620 
0.3 0.2178 4.4 2.3530 13.3 6.8120 
0.4 0.2790 4.6 2.4530 13.6 6.9620 
0.5 0.3381 4.8 2.5540 13.9 7.1120 
0.6 0.3955 5.0 2.6540 14.2 7.2620 
0.7 0.4517 5.2 2.7550 14.5 7.4120 
0.8 0.5070 5.4 2.8550 14.8 7.5620 
0.9 0.5615 5.6 2.9560 15.1 7.7120 
1.0 0.6155 5.8 3.0560 15.4 7.8620 
1.1 0.6690 6.0 3.1560 15.7 8.0130 
1.2 0.7220 6.2 3.2570 16.0 8.1630 
1.3 0.7748 6.4 3.3570 16.3 8.3130 
1.4 0.8272 6.6 3.4570 16.6 8.4630 
1.5 0.8794 6.8 3.5580 16.9 8.6130 
1.6 0.9314 7.0 3.6580 17.2 8.7630 
1.7 0.9832 7.3 3.8080 17.5 8.9130 
1.8 1.0340 7.6 3.9580 17.8 9.0630 
1.9 1.0860 7.9 4.1090 18.1 9.2130 
2.0 1.1370 8.2 4.2590 18.4 9.3630 
2.1 1.1880 8.5 4.4090 18.7 9.5130 
2.2 1.2400 8.8 4.5600 19.0 9.6630 
2.3 1.2910 9.1 4.7100 19.3 9.8130 
2.4 1.3420 9.4 4.8600 19.6 9.9630 
2.5 1.3930 9.7 5.0100 20.0 10.1600
2.6 1.4440 10.0 5.1600   

Derived from table provided by Choi and Wette [3.4]. 

   parameter for the gamma distribution.
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TABLE 3.5.  Chi-square distribution.

Degrees of 
freedom 

0.005 0.01 0.025 0.05 0.1
1 7.88 6.63 5.02 3.84 2.71
2 10.60 9.21 7.38 5.99 4.61
3 12.84 11.34 9.35 7.81 6.25
4 14.86 13.28 11.14 9.49 7.78
5 16.75 15.09 12.83 11.07 9.24
6 18.55 16.81 14.45 12.59 10.64
7 20.28 18.48 16.01 14.07 12.02
8 21.95 20.09 17.53 15.51 13.36
9 23.59 21.67 19.02 16.92 14.68

10 25.19 23.21 20.48 18.31 15.99
11 26.76 24.72 21.92 19.68 17.28
12 28.30 26.22 23.34 21.03 18.55
13 29.82 27.69 24.74 22.36 19.81
14 31.32 29.14 26.12 23.68 21.06
15 32.80 30.58 27.49 25.00 22.31
16 34.27 32.00 28.85 26.30 23.54
17 35.72 33.41 30.19 27.59 24.77
18 37.16 34.81 31.53 28.87 25.99
19 38.58 36.19 32.85 30.14 27.20
20 40.00 37.57 34.17 31.41 28.41
21 41.40 38.93 35.48 32.67 29.62
22 42.80 40.29 36.78 33.92 30.81
23 44.18 41.64 38.08 35.17 32.01
24 45.56 42.98 39.36 36.42 33.20
25 46.93 44.31 40.65 37.65 34.38
26 48.29 45.64 41.92 38.89 35.56
27 49.64 46.96 43.19 40.11 36.74
28 50.99 48.28 44.46 41.34 37.92
29 52.34 49.59 45.72 42.56 39.09
30 53.67 50.89 46.98 43.77 40.26
40 66.77 63.69 59.34 55.76 51.81
50 79.49 76.15 71.42 67.50 63.17
60 91.95 88.38 83.30 79.08 74.40
70 104.21 100.43 95.02 90.53 85.53
80 116.32 112.33 106.63 101.88 96.58
90 128.30 124.12 118.14 113.15 107.57

100 140.17 135.81 129.56 124.34 118.50

Level of Significance ( )

Generated using Microsoft Excel function CHIINV
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3.3.4 Empirical Distributions 

When it is difficult to fit a theoretical distribution to the collected data, an 
empirical distribution can usually be formulated to serve as a data model. 
The procedure requires a cumulative distribution function (CDF) and this 
can be easily developed from the histogram of the collected data.5 Observe, 
for example, that in Figure 3.11 the CDF is already present and defined by 
a series of points. Values between these points can be obtained by 

We use the Java Class Empirical6 as a data module. It first creates an 
empirical distribution and then uses the resulting data model to generate 
samples. The main steps involved are as follows. An array of histogram 

the distribution using the CDF and the inverse transform method discussed 
later in Section 3.4.2.

Figure 3.12 shows a short Java method that instantiates an Empirical
object called empDM (empirical data module), extracts the CDF 

random numbers. The object empDM is instantiated with the Class 

distribution is continuous and linear interpolation
 is to be used to 

i i

where:
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5 It is also possible to derive the CDF directly from the collected data. 
6 The Empirical Class is provided as part of the cern.colt Java package provided by 

details on using this package. 

frequencies is first provided to an Empirical object. When instantiated,  
the object creates an internal representation of the CDF from these 

interpolation (e.g., linear interpolation). 

frequencies. The Empircal object generates random variates from 

data 
histogram provided by the user. (Figure 3.12 provides 17 values taken 

 indicates that the 

The array histogram contains the frequency values from  a

constructor that has the following three arguments. 

the second argument a discrete CDF is created and used. 

generate radom samples from the constructed CDF. 

The third argument is a uniform random number generator object. 

 is used). 

 following way: 

CERN (European Organization for Nuclear Research). See Section 5.4.3 for more 

representation from empDM, and then invokes empDM to generate ten 

from Figure 3.11.)

L and scaleFactor is the bin width.i * scaleFactor

    The value Empirical. LINEAR_INTERPOLATION for the second argument

Otherwise when the value Empirical. NO_INTERPOLATION is used for 

(in Figure 3.12, the MersenneTwister uniform random number generator

The object first defines L points (y ,F(y )) on the CDF, F(y), in the
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i

by the program).

FIGURE 3.12 Implementing a data module using an empirical distribution.

   public static void main(String[] args) 
   { 
 double randomValue; 
 double[] histogram = {  
                22, 57, 54, 47, 38, 22, 16,
                15, 10, 14, 1, 2, 0, 0, 0, 1, 1
                      }; 
 double scaleFactor=1.4; // Width of the histogram bin 
 

 // Create Empirical Object 
 Empirical empDM=new Empirical(histogram, 
                 Empirical.LINEAR_INTERPOLATION, 
                           new MersenneTwister()); 

 // Lets get defining points on the CDF from empDM 
 
 { 
    System.out.println(i+", "+(i*scaleFactor)+", "+empDM.cdf(i)); 
 } 

 // Get empDM to generate 10 random numbers 
 for(int i=0 ; i<20 ; i++) 
 { 
 
    System.out.println(randomValue); 
 } 
   } 

The method  cdf(i)  returns  the  value F(y ).  Table 3.6 shows the points defined 
on the CDF by empDM  in the program of Figure 3.12 (the table is generated 

double yMax = histogram.length*scaleFactor;     // maximum data value 

for(int i = 0 ; i<=histogram.length ; i++) 

   randomValue = yMax*empDM.nextDouble(); 

The random numbers generated by the Empirical object empDM  in Figure 
3.12 vary between 0 and 1. Thus random values returned by empDM must 
be multiplied by yMax (23.8) to obtain values that fall into the domain of  
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TABLE 3.6. The CDF used by the empirical object empDM.

i F( ) 
0 0 0 
1 1.4 0.073333
2 2.8 0.263333
3 4.2 0.443333
4 5.6 0.6 
5 7 0.726667
6 8.4 0.8 

8 11.2 0.903333
9 12.6 0.936667
10 14 0.983333
11 15.4 0.986667
12 0.993333
13 18.2 0.993333
14 19.6 0.993333
15 21 0.993333
16 22.4 0.996667
17 23.8 1 

9.3559343, 1.4540021, 8.0323057, 5.3995883, 6.0610477, 3.8339216, 
6.385926, 1.9355035, 9.2322093, 1.5383085, 4.5596041, 3.2674369, 
7.8097124, 4.0771284, 5.7625121, 4.9623389, 2.9529618, 3.1037785, 
10.877524. These correctly fall in the domain of the CDF, that is, between 

3.3.5 Data Modelling with No Data 

When data cannot be collected or are not available (e.g., the SUI does not 
exist), then educated guesses provide the means of last resort for 
formulating data models for the autonomous stochastic processes. These 

iy
iy

7 9.8 0.853333

16.8

the CDF. The code shown in Figure 3.12 produces the following values: 6.3445029,

0 and yMax. 
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guesses can be based on research material and/or on information obtained 
from individuals who are particularly familiar with the SUI.

When the only features that can be confidently assumed about a random 
phenomenon that needs to be modelled are its minimum and maximum 
values then a reasonable distribution candidate is the uniform distribution 
(see Section A1.4.4.1). Because of this ‘minimum knowledge’ feature the 
uniform distribution is sometimes referred to as the distribution of 
maximum ignorance. 

If the minimum, maximum, and modal values of a distribution can be 
specified, then the triangular distribution provides a convenient choice (see 
Section A1.4.4.2). The Beta distribution (see Section A1.4.4.8) can 
provide a variety of forms over the unit interval [0, 1] and can be easily 
shifted to accommodate other intervals. 

Hundreds of distributions have been created to model many different 
types of phenomena. The type of phenomena under consideration often 
suggest a particular group of candidate distributions that are especially 

comprehensive discussion can be found in Banks et al. [3.2]. 

3.4 Simulating Random Behaviour 

techniques for generating samples from a specified distribution, in other 
words, techniques for generating random variates. The presentation is not 
intended to be complete and comprehensive. Its purpose is primarily to 
provide some insights into the techniques that are widely implemented in 
simulation software environments and consequently are conveniently 
accessible. Nevertheless, some appreciation for the nature of the 
procedures being invoked can provide a basis for ensuring correct usage, 
understanding potential shortcomings, and dealing with unanticipated 
results.

3.4.1 Random Number Generation 

As will become apparent in the following subsection, the common methods 
for generating random variates depend on the availability of a stream of 
random numbers that are uniformly distributed on the unit interval. 
Although a procedure for generating uniformly distributed random 
numbers has its own intrinsic importance, this alternate role considerably 
amplifies this importance. On first glance, the development of such a 
procedure might seem straightforward but this is far from being so. The 

relevant. Several examples of this relationship are presented in Annex 1. A 

In this section we provide an overview of some of the most common 



3.4 Simulating Random Behaviour    85 

subtle complexities that need to be addressed have given rise to a 
considerable body of research literature. The special journal issue of 
Reference [3.5] is recommended for readers wishing to explore the topic in 
more detail within a modeling and simulation context. 

From a theoretical point of view the basic requirement is that any value 
in the [0, 1] interval be equally likely and that there be no interdependence 
among the values that are generated (e.g., values to the right of the mean 
and to the left of the mean should not occur in batches or values should not 
tend to have a pattern of successively diminishing or successively 
increasing). From a practical point of view, there are implicit requirements 
for:

Computational efficiency because many thousands of variates may be 
needed for any particular simulation experiment.
Reproducibility because it should be possible to replicate any particular 
random number stream in order to repeat experiments.
Hardware independence; that is, the procedure should not be intimately 
locked into the hardware architecture of any particular computer in 
order to ensure portability. 

The reproducibility requirement might correctly suggest a fundamental 
contradiction to the reader. The important implication here is that we are 
obliged to abandon our original quest and be satisfied with the generation 
of pseudorandom numbers which provide reproducibility at the expense of 
genuine ‘randomness.’ We note furthermore that any implementation via 
an algorithmic process will intrinsically provide reproducibility. Thus the 
challenge reduces to the search for a ‘good’ algorithm, that is, one that 
yields a random number stream that has satisfactory statistical properties 
and also provides the efficiency and hardware independence that we seek. 

The most widely used technique for generating streams of 
pseudorandom numbers is an approach called the linear congruential
method. It is the remarkably simple iterative formula:7

Ki = ( a Ki-1 + c) mod m; with i = 1, 2, . . . ,   

where a and m are positive integers and c is a nonnegative integer. The 
initial value K0 (likewise a positive integer) is called the seed. It was first 
proposed by Lehmer [3.15] with c = 0 in which case the method is called 
the multiplicative congruential method. The case where c  0 (which is 
called the mixed congruential method) was suggested by Rotenberg [3.17] 
and Coveyou [3.6]. As might be expected, the values chosen for the 
parameters a, c, and m have a significant impact on the statistical quality of 
the sequence of numbers that are generated.  

                                                     
7 Mod is the modulo operator; p mod q yields the remainder when p is divided by 

q where both p and q are positive integers. 
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Several basic features of the formula should be noted: 

The integer values that are generated fall in the [0, m – 1] interval. They 
can be shifted into the [0, 1) interval simply by dividing by m. In other 
words, the values ui = Ki/m fall in the range [0, 1). 
Suppose that the qth value Kq in the sequence K1, K2, . . . , Kp, . . . , Kq is 
the first occurrence of equality to a previously generated value Kp, then 
the subsequence between Kp and Kq will be continually recycled as the 
sequence continues. Such an occurrence must happen sooner or later 
because there are at most m distinct values that can be generated. In 
other words, the process has a maximum period of m.
Because at most m distinct values can be generated, there is an 
immediate divergence from the properties of a ‘genuine’ continuous 
random variable U that is uniformly distributed on the [0, 1] interval. 
For example, suppose m > 3; then the probability that U falls between 
2.5/m and 2.6/m is 0.1/m. However, there is zero probability that the 
linear congruential method will yield a value in this range. 

These apparent shortcomings of the approach can, to a large extent, be 
overcome by suitable choices for the available parameters, a, c, and m.
Selection of a very large value for m has obvious advantages. In fact, m is 
typically chosen to be of the form 2b where b is the word length of the 
computer being used. That choice has the added advantage of simplifying 
the modulo calculation which can be carried out with a shift or mask 
operation.

As noted earlier, the longest possible period for the linear congruential 
method is m. An obvious question then is whether there exist parameter 
selections that will yield this limiting period. The following result due to 
Hull and Dobell [3.8] answers the question.

The linear  congruential  method  has  full  period (a period of m) if
 and only  if  the following conditions hold (throughout, divides means
 exactly divides; i.e., zero remainder): 

– The only positive integer that divides both m and c is 1. 
– If q is a prime number (divisible only by itself and 1) that divides 
m, then q divides (a – 1). 
– If 4 divides m, then 4 divides (a – 1) (i.e., a = 4k – 1 for some 
positive integer k).

Notice that the first of these conditions precludes the existence of a full 
period multiplicative congruential method. If m is chosen to be a power of 
2, for example, m = 2b (b > 0) then a full period method results if and only 
if c is an odd integer and a = 4k – 1 for some positive integer k.

Although a full period multiplicative congruential generator is not 
possible (because the first condition listed above fails), the statistical 
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properties of this method have generally proved to be superior to those of 
the mixed generators. Consequently it is widely used. It can be shown (see, 
for example, Knuth [3.11]) that if m is chosen to be 2b then the maximum 
period is 2b-2 and this period is achieved if K0 is odd and a = 8k + h, where 
k is a nonnegative integer and h is either 3 or 5. 

A variety of tests has been formulated for assessing the acceptability of 
any random number stream, for example, frequency test, runs test, and 
poker test. These have been designed to detect behaviour that is 
inconsistent with the statistical integrity of the stream. Some details of 
these tests can be found in Banks et al. [3.2] and Law and Kelton [3.13]. 

3.4.2 Random Variate Generation 

Our concern in this section is with generating samples from arbitrary, but 
specified, distributions. The techniques we outline depend on the 
availability of random samples that are uniformly distributed. In practice 
these random samples will originate from an algorithmic procedure which 
provides samples whose statistical properties only approximate those of a 
uniform distribution, for example, the techniques outlined in the previous 
section. Consequently we are obliged to acknowledge that the results 
generated will likewise fall short of being ideal. 

One of the most common techniques for generating variates from a 
specified distribution is the inverse transform method. Its application 
depends on the availability of the CDF, F(x), of the distribution of interest. 
The method is equally applicable for both the case where the distribution is 
continuous or discrete. We consider first the continuous case. 

Application of the method in the continuous case requires the 
assumption that F(x) is strictly increasing; that is, F(x1) < F(x2) if and only 
if x1 < x2. A representative case is shown in Figure 3.13. Because of this 
assumption it follows that P[X  x] = P[F(X)  F(x)]. The procedure is 
illustrated in Figure 3.13 and is as follows (F-1 denotes the inverse of the 
CDF). 

Generate a sample u from the uniform distribution on [0, 1] (recall that 

U

Take y = F-1(u) to be the generated value (note that F-1 (u) is defined 
because u falls in the range 0 and 1, which corresponds to the range of 
F).

the CDF for this distribution is F (u) = P[U   u] = u). 



88   3. DEDS Stochastic Behavious and Data Modelling 

F(x)

x

1

0

U → u

y

Y

FIGURE 3.13. Illustration of the inverse transform method for the case of a 
continuous distribution.

The procedure, in effect, creates a random variable Y = F-1(U). To 
confirm that the procedure is doing what we hope it is doing, we need to 
demonstrate that P[Y y] = F(y), that is, that the CFD for Y is the one of 
interest. This demonstration is straightforward: 

)(
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When the CDF of interest can be explicitly ‘inverted,’ the procedure 
becomes especially straightforward. Consider the case of the exponential 
distribution with mean 1/ ; the CDF is F(x) = 1 – exp(–  x). We begin by 
setting u = F(x) = 1 – exp(–  x) and then obtaining an expression for x in 
terms of u. This can be readily achieved by taking the natural logarithm 
which yields: 

x = – ln(u – 1) / . (3.2)

The implication here is that if we have a sequence of u's that are uniformly 
distributed random values on the interval [0, 1] then the corresponding 
values x given by Equation (3.2) will be a sequence of samples from the 
exponential distribution having mean 1/ .

The inverse transform method is equally applicable when the 
requirement is for random variates from a discrete distribution. Suppose 
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that X is such a random variable whose range of values is x1, x2, . . . , xn.
Recall that in this case the CFD, F(x) is: 

F(x) = P[X  x] = )(
xx

i

i

xp  , 

where p(xi) = P[X = xi]. The procedure (which is illustrated in Figure 3.14) 
is as follows. 

   Generate a sample u from the uniform distribution on [0, 1] (i.e., 
from the distribution whose CDF is FU(u) = P[U  u] = u ) . 
Determine the smallest integer K such that u F(xK) and take xK

F(x)

x

1

U → u

x1 x2 x3 x4 x5

p(x5)

p(x4)

p(x3)

p(x2)

p(x1)

X
~

FIGURE 3.14. Illustration of the inverse transform method for the case of a discrete 
distribution.

Repetition of the procedure generates a stream of values for a random 

variable that we can represent by X
~

. To verify the correctness of the 
procedure, we need to demonstrate that the values xi that are generated 

satisfy the condition P[ X
~

= xi] = p(xi), for i = 1, 2, . . . , n. Observe first 

that X
~

 = x1 if and only if U F(x1). Thus: 

P[ X
~

= x1] = P[U F(x1)] = F(x1) = p(x1) . 

 to  be 
the generated value. 
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Assume now that i > 1. The procedure ensures that: 

X
~

= xi if and only if F(xi-1) < U  F(xi).

Consequently:

P[ X  = xi] = P[F(xi-1) < U  F(xi)]

                    = FU(F(xi)) – FU(F(xi-1))

                    = F(xi) – F(xi-1)

                    = p(xi) , 

which completes the demonstration. Note that the above relies on the fact 
that for any discrete CDF, FY(y), it is true that P[a < Y  b] = FY(b) – FY(a).

form, the inverse transform method is not conveniently applicable for 
generating samples from that distribution. Fortunately there are a number 
of alternative general methods available which can be used. In fact, there is 
one technique that is specifically tailored to the normal distribution. This is 
the polar method

An alternate general technique is the rejection–acceptance method. Its 
implementation depends on the availability of the probability density 
function of the distribution of interest (hence it can be used for generating 
samples from the normal distribution). It is equally applicable for both 
discrete and continuous distributions. In its simplest form, the method 
involves generating samples from a uniform distribution and discarding 
some samples in a manner which ensures that the ones that are retained 
have the desired distribution. The method shares some features with the 
Monte Carlo method for evaluating integrals (see Section 1.6). A more 
comprehensive treatment of the method can be found in Reference [3.16] 
where the presentation includes a more general approach for the 
underlying procedure than we give in the following discussion. 

In the simplest form described here, the implementation depends on the 
assumption that the probability density function f(x) (or probability mass 
function) of interest is bounded on the left (by a) and on the right (by b).
Consequently if a long ‘tail’ exists, it needs to be truncated to create the 
values a and b. We assume also that the maximum value of f(x) on the 
interval [a, b] is c.

The procedure (which is illustrated in Figure 3.15) is as follows. 

Generate two samples u1 and u2 from the uniform distribution on [0,1]. 
(i.e., from the distribution whose CDF is FU(u) = P[U  u] = u).
Compute x~  = a + u1 (b – a).
Compute y~  = c u2.

Because the CDF for the normal distribution cannot be written in closed 

 and a description can be found in Ross [3.16]. 
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If y~ f( x~ ) accept x~  as a valid sample; otherwise repeat the process 
with the generation of two new samples from U.

f(x)

c

a b x

f(x)

c

a b x

U

U

)(~
1 abuax

ycu ~
2

)~(xf )~(xf

y~

x~

FIGURE 3.15. Illustration of the rejection–acceptance method. 

Although by no means a formal proof, the following observations 
provide some intuitive confirmation of the procedure’s correctness. Note 
that the tuple ( x~ , y~ ) is a point in the abc rectangle. Because the values u1

and u2 are independent samples from the uniform distribution each point in 
the rectangle is equally likely to occur. Suppose x1 and x2 are two distinct 
points in the [a, b] interval with f(x1) > f(x2) (see Figure 3.16). Over a large 
number of repetitions of the procedure x~ will coincide with x1 and x2 the 
same number of times. However the occurrence of x1 is far more likely to 
be output by the procedure than x2. More specifically,

Given that x1 has occurred the probability of it being output is: 

P[c U  f(x1)] = P[U f(x1)/c ] = f(x1)/c.

Given that x2 has occurred the probability of it being output is: 

P[c U f(x2)] = P[U  f(x2)/c ] = f(x2)/c

Although the occurrence of x1 and x2 are equally likely, the relative 
proportion of x1 outputs to x2 outputs is proportional to f(x1)/f(x2) which is 
consistent with an intuitive perspective of the distribution of interest. 
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f(x)

c

a b xx1 x2

f(x1)

f(x2)

FIGURE 3.16. Illustration of relative output frequency. 

One shortcoming of the method is the uncertainty that any particular 
execution of the procedure will be successful (i.e., yield an acceptable 
sample). The probability of success is equal to the relative portion of the 
abc rectangle that is filled by the density function of interest. Because the 
area of the rectangle is c(b – a) and the area of the density function is 1, 
the probability of success is the ratio 1/[c(b – a)]. Two representative cases 
are shown in Figure 3.17: the occurrence of rejections will, on average, be 
more frequent in the case of f2(x) than in the case of f1(x).

f1(x)

a b

c

f2(x)

a b

c

x x

FIGURE 3.17. illustration of relationship between rejection probability and shape. 
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Chapter 4 A Conceptual Modelling Framework  
for DEDS

4.1 Need for a Conceptual Modelling Framework 

A key requirement for carrying out a meaningful discussion of any 
complex topic is a collection of clearly defined concepts that map onto the 
various facets of the domain of interest. Within the context of formulating 
models of discrete-event dynamic systems, this requirement translates into 
the need for a framework that provides a consistent and coherent way of 
viewing and describing the mechanisms that give rise to behaviour. In this 
chapter we present such a framework. It serves as an essential aspect of 
our goal of exploring the issues that surround the successful completion of 
any modelling and simulation project in the DEDS domain. 

Because of the diversity and the unbounded complexity that 
characterises the DEDS domain, no standardised and generally accepted 
framework for representing systems in this class has yet emerged. A 
variety of existing formalisms, such as finite state machines or Petri nets 
([4.4] and [4.6]) can be useful in particular cases but these lack sufficient 
‘modelling power’ (i.e., generality) to be universally applicable. The 
DEVS approach (Zeigler [4.7] and Zeigler et al. [4.8]) on the other hand 
certainly has the requisite generality but has restricted accessibility 
because of its underlying mathematical formality.

Various options are possible. The one we present is informal in nature 
and has considerable intuitive appeal. But at the same time, it has a high 
level of both generality and adaptability. Although it is directly applicable 
to a wide range of project descriptions, it can also be easily extended on an 
ad hoc basis when specialised needs arise. 

4.2 Constituents of the Conceptual Modelling Framework 

4.2.1  Overview 

Our conceptual modelling framework for DEDS is formulated from a 
small number of basic components. The first is a collection of entities that 
interact over the course of the observation interval by reacting to, and 
giving rise to, the occurrence of events which are the second important 
constituent of our framework. Entities and events represent basic building 
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blocks. In addition, however, there is a higher-level construct called an 
activity that is fundamental to our conceptual modelling framework. The 
set of activity constructs within the model provides the means for 
capturing relevant dynamic behaviour. Each activity, in fact, represents a 
specific unit of behaviour that needs to be recognised. It can be viewed as 
a relationship among some of the entities within the model. An activity is 
formulated from the basic building blocks of entities and events which are, 
in turn, characterised in terms of some collection of constants, parameters, 
and variables that have been chosen to enable this characterisation in a 
meaningful way (see Section 2.2.4). 

The basic concepts underlying our approach are not new. They can be 
traced back to the activity scanning paradigm that is usually identified as 
one of the modelling and simulation ‘world views’. A comprehensive 
presentation of activity scanning from a programming perspective can 
be found in Kreutzer [4.2]. Examples of the utilisation of this paradigm 
can be found in Martinez [4.3], Shi [4.5], and Gershwin [4.1]. 

 One particular aspect of our activity-based conceptual modelling 

as a programming environment. Its purpose instead is to provide a 
meaningful foundation for program development or, stated alternately, its 
purpose is to serve as a vehicle for making the transition from a project 
description to a simulation program. 

4.2.2  Entities and Model Structure 

We recognise three sets of entities in our conceptual modelling framework. 
These are: 

A set of consumer entity instances (cei’s), , where:

nk

kCC
1

ˆ

The sets Ck are disjoint and n is SUI-dependent. The cei’s in each 
k

k

A set  of resource entities. Each resource entity has relevance to the 
cei’s from some of the consumer entity classes represented in .
A set Â of aggregate entities. These have real-world counterparts that 
include queues and groups where the latter is simply a collection 
without the ordering protocol that is associated with a queue.

The cei’s typically interact directly with the resource and the aggregate 
entities within the model. This interaction gives rise to changes in the state 
of the model and it is these changes that represent the dynamic behaviour 
that is of interest. The sets , , and Â are dependent on the specific nature 

framework needs to be emphasised; namely, that it must not be interpreted 

.
consumer entity set C  are all members of the same consumer entity 
class which we denote by
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of the SUI; however, the conceptual model for even the simplest DEDS 

The resource entities can generally be regarded as providing a service 
that is sought by the cei’s. Consequently the cei’s within a model can often 
be viewed as being ‘in motion’ inasmuch as they disperse throughout the 
space embraced by the model in search of the services that are available 
from the various resource entities. Because the rate at which these services 
can be dispensed is constrained, the service-seeking cei’s are frequently 
obliged to wait until they can be accommodated. Waiting takes place in an 
aggregate that is connected (perhaps only implicitly) to the resource. In 
effect, our conceptual modelling framework generally gives rise to a 
network structure in which the nodes are resources or aggregates and the 
links are paths that the cei’s can traverse. 

Implicit in the description given above is the important feature
that no cei can exist except by virtue of being connected to either 
an aggregate or a resource. In effect then, the resource and 
aggregate entities in a model share the important common feature of 
providing a ‘location’ (possibly virtual) where cei’s can temporarily

ment and termination are associated with the occurrence of 
events. As becomes apparent in the following section, this has important 
consequences on the manner in which we develop a meaningful 
characterisation for the various entity types within any particular model. 
The state variables for the model emerge from this characterisation. 

Note also that any particular cei in  is permitted to have only a 
transient existence within the model over the course of the observation 
interval. In other words the consumer entity sets Ck may be time-
dependent; that is, Ck = Ck(t). Transient existence for members of Â and 
is not precluded but, at the same time, is not typical. 

To illustrate these essential notions of our conceptual modelling 
framework, consider the operation of a department store. Customers arrive 
and generally intend to make one or more purchases at various shopping 
areas of the store. At each chosen area a customer browses, makes a 
selection, and then pays for it at the closest service desk before moving on 
to the next shopping area. Upon completion of the shopping task the 

For this fragment of a project description, the customers  correspond 

store at any particular moment correspond to a consumer entity set. 

will normally include at least one consumer entity class, one resource, and 
one aggregate.

to a consumer entity class and those instances that are in the

reside. This residency typically has finite duration and both its establish-

customer leaves the store.                                                                                   

,      ,
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resource. Because the service function at a service desk has a finite 
duration there is a likelihood that some cei’s may not receive immediate 
attention upon arrival at the service desk. Hence it is reasonable to 
associate a queue entity with each service desk. Note also that the 
browsing phase at each shopping area introduces the special case of an 
aggregate that we call a group. The network structure of the underlying 
dynamics is apparent from the representation given in Figure 4.1. 

The cei’s within a group are not organised in a disciplined way as in the 
case of a queue but rather simply form an identifiable ‘grouping’. Note 
furthermore that the discipline that is inherent in a queue introduces two 

exit mechanism for cei’s within a queue, namely, availability of access to 
the resource that is associated with the queue. As a consequence: 

established.

In contrast, neither the duration of membership nor the subsequent 
destination of a cei within a group is implicit in the membership property 
and both of these therefore need to be explicitly specified. 

Several data models are necessarily associated with the above 
formulation. Included here would be the characterisation of customer 
arrival rates and service times at the service desks, allocation of the 
shopping areas to be visited by the arriving customers and the 
characterisation of the duration of the browsing phase at each area, and so 
on. It is especially important to observe that these various data models will 
provide the basis for generating events that give rise to change. For 
example, the event associated with the end of a particular customer’s 
browsing phase will generally (but not necessarily) result in that 
customer’s relocation into the queue associated with the service desk of 
that service area. 

Many details have yet to be clarified; for example, how is the set of 
shopping areas that a particular customer visits selected? What is the order 
of the visitations? And how many servers are assigned to the service 
desks? Can a particular customer balk, that is, not make any purchase at 
one or more of the assigned shopping areas and if so, then under what 
circumstances? The information for dealing with these questions is not 
provided in the given project description fragment but would most 
certainly be necessary before a meaningful conceptual model could be 
formulated. Indeed one of the important functions of the conceptual 
modelling process is to reveal the absence of such essential details. 

Each of the service desks at the various shopping areas corresponds to a 

the duration of a cei’s membership in a queue is implicitly established.

important features. Both of these arise from the fact that there is a natural 

the destination of a cei that departs from a queue is likewise implicitly 
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FIGURE 4.1. Structural view of the conceptual model for department store 
shoppers.

We refer to the conceptual modelling perspective for discrete event 
ABCmod framework 

be represented as a structure with three components; that is,

ABCmod = < , ,  > , 

where:
 is a set of consumer entity classes.
 is a set of service entities (the union of a set of aggregates and a set of 

resources).
 is a set of activity constructs.

 

dynamic systems that is outlined above as the 
(Activity-Based Conceptual modelling) and we refer to the conceptual 
model that emerges as an ABCmod conceptual model. As becomes 
apparent in the discussion that follows, an ABCmod conceptual model can

--- ---   --- 

 

 
--------
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There are two types of activity constructs, the Activity and the Action. 
An Activity can be viewed as a unit of behaviour which represents an 
abstraction of some purposeful task that takes place within the SUI. 
Generally the specification for an Activity references one of the service 
entities and one or more consumer entity instances. An Activity has a 
duration and results in changes in the value of some state variables within 
the model. An Action resembles an Activity but with the important 
difference that an Action has no duration; that is, it unfolds at one 
particular instant of (simulated) time. 

, and  are derived from the 
information provided in the project description. They are presented as a set 

It needs to be stressed that a flexible interpretation of the sets  and  is 
essential. For example, our suggestion above that the resources provide a 
service to the cei’s should not be rigidly interpreted at the exclusion of 
other possibilities. Consider, for example, a SUI that includes a collection 
of supermarkets (a set of resources) and two particular consumer entity 
classes called ‘shoppers’ and ‘delivery trucks’. Two distinct relationships 
can be identified between these classes and the set of resources: namely, a 
‘shopping’ Activity and a ‘delivery’ Activity, respectively. In the first case 
the resources (the supermarkets) do provide a service for the shoppers 
whereas in the second case, the resources receive a service from the 
delivery trucks. Thus references in the sequel to the notion of resources 
providing a service to cei’s should be loosely interpreted and regarded 
simply as a semantic convenience. 

Likewise note that the distinction between membership of entities in the 
sets  and  can become blurred. Consider, for example, a set of machines 
within a manufacturing environment that are subject to failure. A team of 
maintenance personnel is available to carry out repairs. While the 
machines are operating, they clearly serve as a resource in the 
manufacturing operation but when they fail they become consumer entity 
instances that need the service function of the maintenance team. How the 
model builder chooses to view such situations is not especially critical; the 
choice is typically governed by the perspective that seems most natural to 
the modeller. 

4.2.3  Characterising the Entity Types 

The discussion in Section 4.2.2 is primarily concerned with presenting a 
structural perspective of our conceptual modelling framework. We now 
undertake a more detailed examination of the constituents of this structure. 

of tables. The templates for these tables are included with the discussion of 

The specifications for the sets ,

these various sets which follows in Sections 4.2.3 and 4.2.4. 
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We begin by exploring how members of the sets  and  can be 
characterised in a way that facilitates the specification of dynamic 
behaviour (namely, the specification of the activity constructs in 
the set )
identifying the state variables for the model emerges from this 
characterisation. Our approach is to propose for each entity category a set 
of attributes that provide the basis for a meaningful characterisation. It is 
important to appreciate that the choice of attributes depends very much on 
the nature of the SUI and on the project goals (e.g., its output 
requirements).

As noted earlier, the cei’s that belong to  can be viewed as flowing 
among the aggregates and the resources in Â and , respectively. There is 
therefore an essential requirement here to track both the existence and the 
status of these entities to ensure that they can be processed correctly by the 
rules that govern the model’s behaviour. In addition, there may be a 
particular trail of data produced by the cei’s that is relevant to the output 
requirements that are implicit in the project goals. These various 

way. This can be achieved by associating with each consumer entity class k a 
set of mk attributes that has been chosen in a way that satisfies the 

reflectors. They are described below. 

Property reflectors: The cei’s from any particular class k may have a 
variety of essential properties or features that have direct relevance to 
the manner in which they are treated in the rules of behaviour, for 
example, a ‘size’ which may have one of three values (small, medium, 
or large) or a ‘priority’ which may have one of two values (high or 
low). The value assigned to an attribute that falls in the category of a 

Path reflectors: In view of the inherent network structure of our 

maintain an explicit record of what nodes a cei has already visited or 
alternately, what nodes remain to be visited. Attributes that have this 
function fall in the category of path reflectors. The values of these 

Elapsed-time reflectors: Output requirements arising from the project 
goals often need data that must be collected about the way that cei’s 
have progressed through the model. Frequently this requirement is for 

which we consider in Section 4.2.4. The basis for
 

requirements demonstrate the need to characterise each cei in some meaningful 

that we call property reflectors, path reflectors, and elapsed-time 

property reflector remains invariant over the course of  a  consumer 

conceptual modelling framework, it is sometimes necessary to 

a key role in initiating the transfer of the cei’s to their next destination. 

entity instance's existence within the scope of the model. 

through the model. The values of attributes that are path reflectors play 
attributes naturally change as a particular consumer entity instance flows 

underlying requirements. There are three common categories of attributes 
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some type of elapsed time measurement. The values assigned to 
attributes that fall in the elapsed-time category serve to provide a basis 
for the determining the required output data. For example, it may be 
required to determine the average time spent by cei’s from some 
particular class k waiting for service at a particular resource entity. 
The principal attribute introduced in this context could function as a 
timestamp storing the value of time t when the waiting period begins. 
A data value for the required data set would then be produced as the 
difference between the value of time when the waiting period ends and 
the timestamp. 

k

of attributes associated with k provides the basis for characterising Con 
using a variable that we write as C.Con. Specifically,

)(
k

m----,2,1C.Con ,

where j is the jth attribute for the class k. The value of the variable C.Con
at any moment in time t corresponds to the value of the collection of 
attributes, j, j = 1, 2, . . . , mk as they exist at time t. The notation C.Con. j

is used to reference the value of the jth attribute of consumer entity 
instance Con. The template for a consumer entity class is shown in Table 
4.1.

When a specific cei belonging to k first appears within the scope of the 
model’s behaviour (and hence becomes a member of Ck) values are 
assigned to its attributes (if, in fact, a meaningful value is not yet available, 
we assume for convenience that a temporary value of ‘nil’ is implicitly 
assigned). The result is an mk-tuple of data values that we refer to as an 
attribute-tuple.
that specific cei. 

TABLE 4.1. Template for summarising a consumer entity class.

Consumer Entity Class: EntityClassName
A description of the consumer entity class called EntityClassName.
Attributes Description 
AttributeName1 Description of the attribute called 
AttributeName2 Description of the attribute called 

AtributeNamen. Description of the attribute called AttributeNamen

Suppose Con is a cei belonging to the  consumer   entity class . The collection 

AttributeName1.

In effect, such an attribute-tuple serves as a surrogate for 

.

.
.
.

 AttributeName2.
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accessing the services associated with these resources. At any particular point 
in time, however, access to a particular resource may not be possible because 
the resource is already engaged (busy) or is otherwise not available (e.g., out 
of service because of a temporary failure). Such circumstances are 

associated with the resource where it can wait until access to the resource 
becomes possible. 

The most common aggregate entity is a queue. Connecting a cei to a 
queue corresponds to placing the entity’s attribute-tuple in that queue. 
From this observation it is reasonable to suggest two particular attributes 
for any queue entity within the model, namely, List and N. Here List serves 
to store the attribute-tuples for the cei’s that are enqueued in the queue and 
N is the number of entries in that list. Thus we might associate with a queue

 entity called Q, the variable 

A.Q  =  (List, N) . 

Note that the attribute-tuples in List need not all be of uniform structure 
because cei’s belonging to a variety of consumer classes may be 
interleaved in the queue. Also note that it may be appropriate in some 
circumstances to assume that the attribute-tuples are ordered in List
according to the queuing discipline specified in the project description. In 
any event we do adopt the convention that the first entry in List is the 
attribute-tuple that will next be removed from the queue. This particular 
attribute-tuple is referenced as A.Q.List[0].

It needs to be stressed that the above selection of attributes for 
characterising a queue is not necessarily adequate for all situations. In 
some cases, for example, it may be appropriate to include a reference to 
the specific resource (or even resources) with which the queue is 
associated.

It is interesting to observe that the queue in which a cei awaits service 
may only be virtual inasmuch as it may be the service providing entities 
(resources) that are in motion whereas the service requesting cei’s are 
stationary. The resources may simply cycle through a list of cei’s 
providing the appropriate service function. The queue, although virtual, 
still remains an effective way of viewing the interaction between these two 
categories of entity. As an example, consider a manufacturing plant in 
which there are a large number of machines participating in the 
manufacturing process. These machines are subject to failure and a repair 
crew (the resource) moves around the plant carrying out repairs. 

precisely, their attribute-tuple surrogates) flow from resource to resource             
A perspective that is frequently appropriate is one where cei’s (or more  

normally handled by connecting the cei to an aggregate entity 
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The characterisation of a group entity is similar to that of a queue but 
there are important differences. Consumer entity instances are placed into 
a group as in the case of a queue, however, there is no intrinsic ordering 
discipline. In many cases the duration of the connection of a cei to a group 
is established via  a  data  model.  The  time  TF

is disconnected from a group can be obtained as (TS + D) where TS is 
the value of time when the connection occurred and D is the duration 
provided by the data model. In such circumstances it is natural to assume 
that the value TF is assigned to some attribute (possibly called 
TerminationTime) of each connected cei as part of the connection step. In 
this situation the set of TerminationTime  values could provide a basis 
for imposing an ordering for the cei’s connected to the group. 

On the basis of the observations above, the attributes for a group could 
reasonably include List and N where List is the list of attribute-tuples of the 
cei’s connected to the group and N is the number of entries in this list. In 
this circumstance, the characterising variable associated with a group 
entity called G would be: 

A.G =  (List, N) . 

In some situations it may be useful to extend this characterisation with a 
reference to the destination of consumer entities following their connection 
to a group. This is very much context-dependent and provides a further 
illustration of the need to tailor the characterisation variables of entity 
types to the specific requirements of a project. The template for an 
aggregate entity is shown in Table 4.2. 

Consider now a resource entity. In our perspective, we choose to regard 
the cei being serviced as being incorporated into the resource. In other 
words we assume that each resource entity has an attribute allocated for 
this purpose (possibly called Client) whose value is the attribute-tuple of 
the cei currently being serviced by that resource entity. As in the case of a 
group aggregate, the time TF when a connected cei is disconnected from a 
resource would be determined as (TS + D) where TS is the value of time 
when the connection to the resource occurred and D is the duration 
assigned to that cei (typically obtained from a data model). The value TF

would then be assigned to the attribute TerminationTime  of the connected 
cei. It is also usually relevant to incorporate a status indicator reflecting 
whether the resource entity is ‘busy’. This implies a binary-valued attribute 
whose name might be Busy.

 when a connected  cei 
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TABLE 4.2.  Template for summarising an aggregate entity.

Aggregate Entity: EntityName

Attributes Description 
AttributeName1 Description of the attribute called 
AttributeName2 Description of the attribute called 

.

.
AtributeNamen.

.

.
Description of the attribute called 

Thus, a typical variable associated with a resource entity Res in the 
model, might be: 

R.Res= (Client, Busy) . 

Depending on the context, a possibly useful extension of this 
characterisation could be the addition of another attribute called Broken, 
whose value would reflect whether the resource entity is in working order. 
The template for an aggregate entity is shown in Table 4.3. 

TABLE 4.3. Template for summarising a resource entity.

Resource Entity: EntityName
A description of the resource entity called EntityName.

Attributes Description 
AttributeName1 Description of the attribute called 
AttributeName2 Description of the attribute called 

.

.
AtributeNamen. Description of the attribute called AttributeNamen

References to the state of a model are an important and integral part of 
the discussions surrounding the conceptual model development process. 
Inasmuch as the model’s state at time t is simply the value of its state 
variables at time t, a prerequisite for such discussions is a clear 
understanding of what constitutes the set of state variables for the model. If 
the model’s state variables are incorrectly identified then aspects of the 
model’s development can become muddled and vague and hence 
errorprone.

AttributeName1.

A description of the aggregate entity called EntityName.

AttributeName2.

AttributeName1.
AttributeName2.

 AttributeNamen
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There are, unfortunately, very few rules for dealing with the task of state 
variable identification that have general applicability. The one fundamental 

is a specification of what must hold true if some set of variables is to serve 
as the state variables for a model. The requirements of Property  can 

The tracking information for all instances of consumer entities within 
the model at time t is part of the model’s state at time t and hence this 
information needs to be captured in the state variables defined for the 
model. This has been reflected in our choice of the characterising variables 
for both aggregate entities and resource entities, namely, the variables, 
A.Q, A.G, and R.Res which relate to a queue, a group, and a resource called 
Q, G, and Res, respectively. These variables can, in fact, be taken to be the 
model’s state variables. This follows from the observation that the 
information embedded in these variables is needed in order to satisfy the 
requirements of Property .

4.2.4  Activity Constructs and Model Behaviour 

As we have previously stressed, the only models of interest to us are 
 variable  t  which we use to 

model’s behaviour depends on a key assumption, namely, the existence of 
a mechanism that moves t across the observation interval, beginning at its 
left boundary. How this is carried out is not relevant to the current 

discussions that follow. In concert with the traversal of t across the 
observation interval, state changes occur within the model and these, in 

Our concern now is with developing a framework within which the 
model’s behaviour can be formulated in a consistent and coherent manner. 
Our main constructs for characterising change, or equivalently, behaviour, 

re-examination of the department store example introduced in Section 

(i.e., three instances of the consumer entity class called Shopper) in the 
department store example might interact. The three shoppers (called A, B,  

provide the justification for augmenting a candidate set with additional 

notion we rely on is Property  as outlined in Section 2.2.4.3. Property 

variables and this approach is used below. 

dynamic and hence evolve over time. The 

 

represent time naturally plays a key role in the exploration of this 

assumption relating to the variable t is the assumption that within 

discussion but this traversal assumption is essential and it is implicit in the 

behaviour. Furthermore, the formulation of the specification for the 

all sections of any model, the units associated with t are the same for 
example, seconds, days, years, and the like.

effect, represent the model’s behaviour. Another important but implicit 

is the Activity construct which, in turn, depends on the notion of events. A 

4.2.2 provides useful insight for developing these notions. 
In Figure 4.2 we illustrate a possible manner in which three shoppers 
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FIGURE 4.2. Behaviour of three department store shoppers.

and C) arrive at times A0, B0, and C0, respectively, and leave the store at 
times A5, B7, and C3, respectively. 

There are a number of important observations that can be made about 
Figure 4.2. Notice, in particular, that some type of transition occurs at each 
of the time points A0 through A5, B0 through B7, and C0 through C3. These 
transitions, in fact, correspond to changes in the state of the model. Notice 
also that some of these time points are coincident; for example, A2 = B2, A3

= C2, and A5 = B4, suggesting that several different changes can occur at the 
same moment in time. It is also clear from Figure 4.2 that there are 
intervals of time during which at least some of these three shoppers are 
engaged in the same activity; for example, between B0 and B1 all three 
customers are browsing in Area 1 and between C1 and A2 customers A and 
C are in Queue 1. 

Each of the service desks corresponds to a resource entity and shoppers 
need to acquire (‘seize’) this resource in order to pay for items being 
purchased before moving on to another shopping area. The payment 
activity at a service desk is highly structured and is, in fact, representative 
of a wide class of activities that can take place in DEDS models. Notice 
several key features: 

1. There is a precondition that must be true before the service activity 
can begin (the server must be available and there must be a shopper 
seeking to carry out a payment transaction). 

2. The service activity has a duration; that is, it extends over an interval 
of time. 

3. One or more state variables change value when the service function is 
completed (e.g., at time A3 = C2 the number of shoppers in browsing 
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Area 3 increases by one and the number in the queue in front of 
service desk 1 decreases by one). 

The payment procedure which shoppers carry out in this example maps 
onto one of the basic constructs in our conceptual modelling framework 
called an Activity. An Activity represents a unit of behaviour. Its role is to 
encapsulate some aspect of the interaction among the various entities that 
exist within the model. An essential feature of this interaction is a 
collection of changes in the value of some of the state variables within the 
model. The notion of ‘unit’ here is intended to suggest minimality; in other 
words, an Activity should be viewed as an atomic construct in the sense 
that it captures an aspect of the model’s behaviour that is not amenable to 
subdivision (at least from the perspective taken by the model builder). 

Activity carries the important implication that once it has become 

number of time units. This duration need not map onto a contiguous time 
interval but may instead correspond to a collection of disjoint intervals. 

primitive constituents called events. When an event occurs, a 
construct that we call a status change specification (SCS) captures its 

The event is a primitive construct in the sense that it can only appear as 

An event begins and ends at the same point in (simulated) time and 
consequently all the changes specified in its associated SCS occur 
simultaneously. An event can be either conditional or scheduled. The 
distinction reflects the manner in which the event is ‘activated’. If it is 
conditional, its activation depends on the value of one or more state and/or 
input variables. On the other hand, if it is scheduled, then its activation will 
occur at some predefined value of time t, and independent of the state of 
the model. 

The event that corresponds to the initial phase of an Activity (i.e., its 
starting event) occurs when a prescribed logical expression associated 
with the Activity (its precondition) acquires a TRUE value. Although there 
are some important exceptions, the precondition is generally formulated in 
terms of the various state variables and/or input variables within the 

(i.e., they consume no (simulated) time). The duration aspect of an 

impact on the model. There is an event associated with both the 

aspect of the model’s status. 

In general, an Activity has an initial phase, a duration, and a terminal 

a constituent within an Activity construct. Its associated SCS includes, as 

phase. Both the initial phase and the terminal phase unfold instantaneously 

‘energised’, an Activity cannot end until there has been an elapse of some 

have some affinity in terms of their relevance in characterising some particular 

initial phase and the terminal phase of an Activity construct. 

within the model. The state variables that are referenced generally 

From a structural point of view, an Activity is assembled from more 

a minimum, the designation of changes to some set of state variables  
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model. Hence the starting event of an Activity is a conditional event. 
Furthermore, it always includes a state variable change that inhibits an 
immediate reactivation of the Activity (in other words, a change which 
gives the precondition a FALSE value). Notice that the implication here is 
that when a precondition is present, a starting event is a mandatory 
component for an Activity.

Activation of the event that corresponds to the terminal phase of an 
Activity (i.e., its terminating event) takes place immediately upon the 
completion of the Activity’s duration (hence it can be regarded as a 
scheduled event). Although typically present, a terminating event is not a 
mandatory feature of an Activity. The state changes resulting from the 
activation of a terminating event may cause preconditions of multiple 
activity constructs to become TRUE thereby enabling those constructs. 
This demonstrates that multiple Activities within the model can be 
simultaneously ‘in progress’. 

When an Activity starts it has a tentative duration whose length is either 
already known before the Activity begins, or else is an intrinsic part of the 
Activity’s specification. This length is frequently established via a data 
model which, therefore, implies that a data modelling stage is often embedded 
in the Activity’s formulation. In the most common circumstance, the 
duration  of an Activity does not change once the Activity is initiated. 
Furthermore it typically maps onto a continuous time interval. In these 
circumstances the termination time tend of an Activity is predetermined 
when the Activity begins; that is, 

tend   =  (tstart  + ) , 

where startt
a TRUE value and hence the Activity was initiated. The terminating event 
(if present) occurs at time at t = tend.

The Activity, as described thus far, should be regarded simply as a generic  
concept. In reality, its realisation in our ABCmod conceptual modelling frame-
work maps onto a collection of closely related constructs whose properties 
are outlined in the discussion that follows. Each of these constructs has a 
predetermined format that can be conveniently presented in terms of a 
template. These templates serve to provide a convenient means 
of summarising salient features.

Activity: This is the most fundamental member of the collection of 
constructs. Each occurrence of this construct in the model has a 
name and is organised according to a template whose format is given in 
Table 4.4. Each status change specification (SCS) usually includes (but is not 
restricted to) the identification of changes in value to some 
collection of state variables.

 is the value of time t when the Activity’s precondition acquired 
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TABLE 4.4. Template for an Activity.

Activity: ActivityName 

Event SCS associated with Activity initiation 
Duration

Event

Our convention of regarding an Activity as an atomic unit of behaviour 
precludes embedding within it a secondary behaviour unit even when it 
may be closely related. One such situation occurs when one behaviour unit 
directly follows upon completion of another without the need to ‘seize’ a 

As an example, consider a port where a tugboat is required to move a 

unloading) operation immediately begins. Here the berthing and the 

immediately initiated upon completion of the berthing operation. It is 
because of this absence of a precondition that the loading operation maps 
onto a Triggered Activity in our ABCmod framework. 

Triggered Activity: The distinguishing feature of a Triggered Activity is 
that its initiation is not established by a precondition but rather by an 
explicit reference to it within the terminating event of some Activity, for 
example, TA.TriggeredActivityName. Note that this demonstrates that an 
SCS can be more than simply a collection of specifications for state 
variable changes inasmuch as it can also include a reference to a Triggered 
Activity which, in turn, serves to initiate that Activity. The template for the 
Triggered Activity is given in Table 4.5. 

As we have previously indicated, an Activity is associated with a unit of 
behaviour within the model. The flow of this behaviour may, however, be 
subjected to an intervention which disrupts the manner in which the 
Activity unfolds. Such an intervention can have a variety of possible 
effects; for example,

a) The initial (tentative) duration of the Activity may be altered. 
b) The duration may no longer map onto a continuous time interval 

but may instead map onto two or more disjoint intervals. 
c) A combination of (a) and (b). 
d) The behaviour intrinsic to the Activity may be stopped and may

 never be resumed. 

handling such situations.

because (by assumption) no additional resource is required and hence it can be 

freighter from the harbour entrance to a berth where a loading (or 

further resource. Our notion of a Triggered Activity provides the means for 

loading operations both map onto Activities but the latter Activity is distinctive 

Precondition    Boolean expression that specifies the condi- 
tions which initiate the Activity

The length of the duration (typically acquired 

model) 
from a Data Module that references a data  

SCS associated with Activity completion 



TABLE 4.5. Template for the Triggered Activity.

Triggered Activity: ActivityName
Event 
Duration

Event 

There are two possible types of intervention; namely, pre-emption and 
interruption. We examine each of these in turn. 

Pre-emption: This typically occurs in a situation where two (or more) 
Activities require the same resource which cannot be shared. Such a 
circumstance is commonly resolved by assigning access priorities to the 
various competing Activities. With this approach, an Activity can disrupt 
the duration of some lower-priority Activity that is currently accessing the 
resource. There is, however, an implication here that some consumer entity 
instance that is ‘connected’ to the resource will be displaced. When this 
occurs, the completion of the service function for the displaced cei is 
suspended and consequently the duration of the Activity, from the 
perspective of the displaced cei, becomes distributed over at least two 
disjoint time intervals, or in the extreme case may never even be 
completed.

Interruption: Changes in the value of an input variable are generally 
reflected in one or more of the Activities within the model. For example, in 
response to a change in value of an input variable, an ‘in progress’ Activity 
may undergo a change in the manner in which it completes the task that 
was initially undertaken. Such an intervention is called an interrupt.
Generally an interrupt is characterised by a set of changes as reflected 
in an SCS. An interrupt shares some common features with the notion 
of pre-emption but the range of possible behaviour alterations is broader. 

To accommodate the requirements involved in handling an intervention, 
a more general construct than the Activity is necessary. This construct is 
called an Extended Activity and its template is given in Table 4.6.

Extended Activity: As its name suggests, this construct can 
accommodate more general behaviour and is the most comprehensive of 
the Activity constructs. 

The length of the duration (typically ac- 
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a data model). 
SCS associated with Activity completion  

SCS associated with Activity initiation  

quired from a Data Module that references 
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TABLE 4.6. Template for the Extended Activity.

Extended Activity: ActivityName
Boolean expression that specifies the 
conditions which initiate the Activity

Event 
Duration

Pre-emption
Event

Interrupt
Precondition Boolean expression that specifies the 

Event 
Event 

The notion of intervention is equally relevant to a Triggered Activity. 
This gives rise to a generalisation of the Triggered Activity construct that 
we call an Extended Triggered Activity. 

Extended Triggered Activity: Like its ‘basic’ counterpart, the 
distinguishing feature of an Extended Triggered Activity is that its 
initiation is not established by a precondition but rather by an explicit 
reference to it within the terminating event of some Activity. The template 
for an Extended Triggered Activity is given in Table 4.7.

The final member of the family of activity constructs is called an Action.
An Action resembles other Activity constructs inasmuch as it also is 
initiated when a precondition acquires a TRUE value. The principal 
difference is that an Action does not include a duration, hence it 
unfolds at a single point in time and has a single SCS. Often the 
precondition for an Action is formulated exclusively in terms of the 
variable t (time), that is, without reference to the state variables of the 
model. In such circumstances, the Action can be regarded as being 
autonomous. Such a circumstance rarely occurs in the case of any of the 
other Activity constructs.

The length of the duration (typically ac- 

Precondition

SCS associated with Activity initiation 

SCS associated with Activity pre-emption

conditions under which an interrupt oc-
curs
SCS associated with Activity interruption 
SCS associated with Activity completion 

ences a data model). 
quired from a Data Module that refer- 



TABLE 4.7. Template for the Extended Triggered Activity.

ActivityName
Event 
Duration

Pre-emption
Event

Interrupt
Precondition

Event SCS associated with Activity interruption 
Event 

An Action may be intrinsically repetitive. This can occur as a 

fashion. In the former case, the change is embedded in the 
Action’s SCS. An Action with such a repetitive property is called an 
Action Sequence. As becomes clear in the discussion of Input in Section. 
4.2.5, this particular realisation of an Action (i.e., the Action Sequence) 

Table 4.8. 

TABLE  4.8. Template for the Action/Action Sequence.

Action /Action Sequence: ActionName
Precondition 

conditions which initiate the Action 
Event 

Another common application of the Action construct is the 
accommodation of a circumstance where the current state of the model 

of uncertain length is thus introduced. An Action can be used to provide a 
‘sentinel’ that awaits the development of the conditions that permit the 
state change to occur. 

Table 4.9 summarises the important features of the various Activity 
constructs.

consequence of a recurring change in the value of some variable
within the precondition in either an explicit or an implicit  

inhibits a particular state change that might otherwise take place. In effect, a delay 

The length of the duration (typically acquired 
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Extended Triggered Activity: 

model). 

Boolean expression that specifies the condi- 

SCS associated with Activity pre-emption

tions under which an interrupt occurs.

SCS associated Activity initiation 

SCS associated with Activity completion 

Boolean expression that specifies the 

provides the basis for handling input entity streams within the ABCmod 

The SCS associated with Action initiation

framework. The template for an Action (or Action Sequence) is given in 

from Data Module that references a data 
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TABLE  

Feature Activity Triggered 
Activity

Extended
Activity

Extended
Triggered
Activity

Action/Action
Sequence

Precondition Yes No Yes No Yes 
Starting Event Yes Yes Yes Yes 
Duration Yes Yes Yes Yes No 
Intervention No No Yes Yes No 
Terminating

Event
Optional Optional Optional Optional No 

4.2.5  Inputs 

A model may have many inputs. Each represents a particular aspect of the 
SUI’s environment that affects the behaviour that is of interest. In general 
a variable u, selected to represent any such input within the model is, in 

essential information about an input u(t) is normally available as a 
k k k

value of time and uk = u(tk) and we assume that ti < tj for i < j. Each of the 
tk

For any input u, the specifications that allow the construction of CS[u]

In this regard, however, note that there are two separate sequences that  
can be associated with the characterising sequence CS[u] = [(tk, uk): k = 0, 
1, 2, . . . ]. These are: 

D k

R k

which we call, respectively, the domain sequence for u and the range
sequence for u. It is almost always true that the domain sequence for any 
input u has a stochastic characterisation, that is, a stochastic data model. 
Generally this implies that if tj and tj+1 = tj + j are successive members of 
CSD[u], then the value of j is provided by a stochastic model. The range 
sequence may or may not have a stochastic characterisation. 

From the perspective of the ABCmod conceptual modelling process we assume 
that the data modelling task has been completed. This, in particular, means 
that valid mechanisms for creating the domain sequence and the range 
sequence for each input variable are available.

Yes 

4.9. Features of the family of Activity constructs.

time values  in this sequence identifies a point in time where there is a 

refer to this sequence as the characterising sequence for u and denote it CS[u].
noteworthy occurrence in the input u (typically a change in its value). We 

are part of the data modelling task associated with model development.    

CS [u] = <t : k = 0, 1, 2, . . .> 

CS [u] = <u : k = 0, 1, 2, . . . > , 

fact, a function of time; that is, u = u(t). In the case of a DEDS model the 

sequence of ordered pairs of the form: <(t  ,u ): k  =  0, 1, 2, .  . .>   where  t  is  a  
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Often a variable u that represents an input to a DEDS model falls in the 
class of piecewise-constant (PWC) time functions. A typical member of 
this class is shown in Figure 4.3. 

The input variable u(t) in Figure 4.3 could, for example, represent the 
number of electricians, at time t, included in the maintenance team of a 
large manufacturing plant that operates on a 24 hour basis but with varying 
levels of production (and hence varying requirements for electricians). The 
behaviour of the model over the interval [tj, tj+1) likely depends explicitly 
on the value uk = u(tj) hence the representation of u(t) as a PWC function is 
not only meaningful but is, in fact, essential. The characterising sequence 
for u is: 

CS[u] = (t0,1), (t1,2), (t2,4), (t3,4), (t4,3), (t5,1), (t6,2)  . 

Observe also that with the interpretation given above this particular input 
is quite distinctive inasmuch as neither its domain sequence nor its 
range sequence will likely have a stochastic characterisation. 

0

4

3

2

1

tt1

u(t)

t
3

t2 t4 t5 t6t0

 4.3. A piecewise constant time function.

As another example consider a case where an input variable u represents 
the number of units of a particular product requested on orders received 
(at times t1, t2, . . . , tj, . . . ) by an Internet-based distributing company. The 
characterising sequence would be written as 

CS[u] = (t1, u1), (t2, u2), . . . , (tj, uj) . . .  . 

Note however that only the specific values u1 = u(t1), u2 = u(t2), . . . , uj = 
u(tj) are relevant. In other words, representation of this particular input as a 
PWC time function is, strictly speaking, not appropriate because the value 
of u between order times has no meaning. Note also that the data model for 

< >

< >

FIGURE
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this input would need to provide a specification for both the domain 
sequence CSD[u] = t1, t2, . . . , tj, . . .  and the range sequence of order 
values CSR[u] = u1, u2, . . . , uj, . . .  and both would likely be in terms of 
specific probability distribution functions. 

The notion of an input entity stream was introduced in Chapter 2 as the 
vehicle for describing the arrival of members of the various consumer entity classes 
that typically flow into the domain of a DEDS model. Suppose we 
associate the variable K = K(t) with the input entity stream corresponding 
to consumer entity class K. The characterising sequence for K can be 
written as 

CS[ K] = (t , 1), (t +1, 1), (t +2, 1), . . . , (tj, 1), . . .   . 

Here each value in the domain sequence t , t +1, t +2, . . . , tj, . . .  is the 
arrival time of a cei from class K. Each element of the range sequence has 
a value of 1 (i.e., K(tj) = 1 for all j) because we generally assume that 
arrivals occur one at a time. Also  = 0 if the first arrival occurs at t = t0

(the left boundary of the observation interval) and  = 1 otherwise (i.e., the 
first occurrence is at t1 > t0). The domain sequence is constructed from the 
arrival process associated with consumer entity class K.

Of particular importance to the handling of input variables in our 
ABCmod framework is a time variable M[u](t) which we associate with 
the input u to a DEDS model. This function is called the timing map for 
u(t) and is constructed from the information embedded in the domain 
sequence CSD[u] for u. Suppose tj-1 and tj are two successive times in the 
domain set CSD[u]; then 

M[u](t) = tj    for tj-1 < t tj .

In other words, at time t, M[u](t) provides the value of the entry in CSD[u]
that most closely follows (or is equal to) t. In more formal terms, M[u] is a 
mapping from the segment of the real line that corresponds to the 
observation interval to the set CSD[u]. The timing map for the input 
function shown in Figure 4.3 is shown in Figure 4.4. 

There are generally many inputs to a DEDS model; some correspond to 
input entity streams and some do not. Nevertheless all inputs have a 
characterising sequence and hence an associated timing map. The 

framework by an Action Sequence whose precondition is based on the 
timing map for the input variable. It should be noted that it is only in 
limited circumstances that the domain sequence CSD[u] is explicitly 
known; generally the values in CSD[u] evolve in a stochastic manner. The 

Note also that if the first entry in CSD[u] is t0 (the left-hand boundary of I0)
0 0

< >
< >

< >

< >

behaviour implicit in each such input is captured in the ABCmod 

then, by definition, M[u](t ) = t .

implication here is that the timing map for u can rarely be explicitly drawn. 
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FIGURE 4.4. Timing map for the input function of Figure 4.3.

The salient features of all inputs to a particular DEDS model are 
summarised in an Inputs template whose format is shown in Table 4.10. 
The templates for the Action Sequences referenced in Table 4.10 are given 
in Table 4.11(a) and Table 4.11(b). 

TABLE 4.10. Template for Inputs.

Inputs
Input

Variable 
Description Data Models Action

Sequence
  Domain 

Sequence
Range

Sequence
u(t) Description of the 

input which the 
input variable 
represents

Details for 
CSD [u]

Details for 
CSR[u]

associated
Action
Sequence

K(t) Description of the 
input entity stream 
which the input 
variable represents 

Details for 
CSD [ K]

Details for 
CSR[ K]

associated
Action
Sequence

Name of the  

Name of the  



118     4. A Conceptual Modelling Framework for DEDS 

TABLE 4.11. Templates for Action Sequences. 

(a) Case where the Action Sequence corresponds to the input variable, u(t).

Action Sequence: ActionName(u)
Precondition t = M[u](t)
Event Typically the assignment to u of the value which it 

acquires at time t (this need not be different from the 
value prior to time t). The values for M[u](t) are
derived from the domain sequence D

(b) Case where the Action Sequence corresponds to an input entity stream.

Action Sequence: ActionName(C.EntityClassName)
Precondition t = M[ K](t)
Event Typically a collection of value assignments to the 

attributes of the arriving consumer entity instance 
from the class referenced in the argument together 
with a state variable change that reflects the initial 
positioning (connection) of the arriving consumer 
entity instance. The values for M[ K](t) are derived 
from the domain sequence CSD[ K

4.2.6  Outputs 

In our discussion of output variables in Section 2.2.4 we indicated that 
such variables fall into one of two categories based on the nature of the 
values that they represent. More specifically, the value associated with an 
output variable may be either: 

A set of data values (either a trajectory set associated with a time 
variable or a sample set associated with a consumer entity class)
A scalar value usually obtained via an operation on a data set 

Inasmuch as the output variables provide the information that is either 
explicitly or implicitly required for achieving the goals of the modelling 
and simulation project, it is important that they be documented in a 
meaningful way in our ABCmod framework. This documentation is 
organised in terms of three templates whose general structure is shown in 

Recall that both the time variables and the sample variables listed in the 
Trajectory Set and the Sample Set templates always correspond to 
attributes defined for entities within the model. (In the interest of 

Table 4.12 through Table 4.14.

CS [u].

].
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facilitating transformation to program code, we have replaced  with TRJ 
and  with PHI.) 

Trajectory Sets 
Name  Description 
TRJ[y] Description of the time variable y(t)

Sample Sets 
Name Description 
PHI[y] Description of the sample variable y whose values 

populate the sample set PHI[y]

TABLE  4.14. Template for summarising derived scalar output variables. 

Name Description Output Set Name Operator 
Y The meaning 

of the value 

Y

The value of Y is 
obtained by carrying 

the values in this 
output set 

The operation that is 
carried out on the 

to obtain the value 
assigned to Y

4.2.7  Data Modules 

It is rarely possible to formulate an ABCmod conceptual model without 
the need to access data. The simplest such requirement is the case where 
there is a need for a sample from a prescribed distribution function. 
Alternately, the requirement might be for a sample from one of several 
specified distributions according to some prescribed rule. The convention 
we have adopted in our ABCmod framework is to encapsulate any such 
data delivery requirement within a named data module which serves as a 
‘wrapper’ for the data specification. The rationale here is simply to 
facilitate modification of the actual source of the data if that need arises. 
The collection of such data modules that are referenced within an 
ABCmod conceptual model is summarised in a table whose template is 
shown in Table 4.15. 

TABLE  4.12.  Template for Summarising Trajectory Sets. 

TABLE 4.13. Template for Summarising Sample Sets. 

Derived Scalar Output Variables (DSOV
,
s) 

acquired by out an operation on underlying data set 
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TABLE  4.15. Template for summarising data modules.

Data Modules 
Name  Description Data Model 

4.2.8  Standard Modules and User-Defined Modules 

A variety of ‘standard’ operations reoccur in the formulation of the SCSs 

of any ABCmod conceptual model. We assume the existence of modules to 
carry out these operations and each of these is briefly outlined below. 

InsertQue(QueueName, item) 
This module carries out an insertion into a queue called QueueName. 
The second argument holds the item to be inserted. The insertion takes 
place according to the declared queuing protocol associated with the 
QueueName.
InsertQueHead(QueueName, item) 
This module carries out an insertion into a queue called QueueName.
The second argument holds the item to be inserted. The item is inserted 
at the head of the queue. 
RemoveQue(QueueName, item) 
This module removes the item which is at the head of the queue called 
QueueName. The removed item is placed in the second argument. 
InsertGrp(GroupName, item) 
This module carries out an insertion into a group called GroupName. 
The second argument holds the item to be inserted.
RemoveGrp(GroupName, item) 
This module removes an item from the group called GroupName. The 
item to be removed is identified in the second argument. 
Put(SampleSetName, item) 
This module is used to place items into the Sample Set called

Details of the mecha- 

order to generate the 
nism that is invoked in 

data values provided by 
the data module called 
ModuleName. 

purpose of the  
data module

 Description of the 

called Module-
Name.

ModuleName(parameter list)

within the various activity constructs that emerge during the development 
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Leave(cei)

It frequently occurs that a cei’s existence within the model comes to an 
end. The purpose of this module is to explicitly indicate this occurrence 

of an Activity. The argument serves to provide an explicit reference to 
the cei in question. 

Situations typically arise where modules are needed to carry out 
specialised operations that are not included in the ‘standard set’ above. 
These can be freely defined wherever necessary to augment the ABCmod 
framework and facilitate the conceptual modeling task. They are called 
user-defined modules and a template is given in Table 4.16. 

Note that references to standard modules and user-defined modules in 

TABLE 

User-Defined Modules 
Name Description 

4.2.9  Intervention 

We have previously pointed out (Section 4.2.4) that an Activity may be 
subjected to an intervention which disrupts the manner in which it unfolds. 
This disruption has a direct impact upon the duration of the Activity. In 
our ABCmod framework we recognise two types of intervention which we 
call Pre-emption and Interruption.

Pre-emption is most commonly associated with the circumstance where 
the initiation of one Activity (e.g., called ActP) disrupts the flow of 
another Activity (e.g., called ActQ) because a resource that is required by 
both Activities must be taken from ActQ and reassigned to ActP because 
ActP has higher-priority access to the resource. The ABCmod conceptual model 
presentation of such a circumstance requires that ActQ be formulated as an 
Extended Activity (see Table 4.6) with a Pre-emption subsegment within its 
Duration segment.  A directive of the form: ‘PE.ActQ’ in the starting SCS 
of ActP initiates the pre-emption. This directive links directly to the Pre-
emption subsegment of ActQ where the consequences of the Pre-emption 
are specified.

which is typically invoked as part of the SCS of the terminating event 

ModuleName ()
UM.ModuleName (), respectively. 

ModuleName(parameter list)

the formulation of activity constructs have the form SM.

Description of the purpose of the user- 
defined module called ModuleName.  

4.16. Template for summarising user-defined modules.

SampleSetName. The second argument holds the item to be placed into
the set. 
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In the ABCmod framework we typically use the Interrupt notion as the 
means for handling an intervention that results from a change in the value 
of one of the conceptual model’s input variables. Such a change may have 
an impact on several Activities and the Interruption subsegment of the 
Extended Activity provides the means for formulating the condition that 
defines the occurrence of an Interrupt as well as the consequent reaction to 
it.

An intervention of the Interrupt category is illustrated in Example 3 that 
is presented in the following section. Although no explicit example of the 
Pre-emption category is given, it is convenient mechanism for handling the 
circumstances outlined in Problem 4.4 of Section 4.4 (Exercises and 
Projects). Details are left to the reader. 

4.3 Some Examples of Conceptual Model Development  
in the ABCmod Framework 

We have emphasised the importance of the conceptual modelling phase of 
a modelling and simulation project because of its role in bridging the gap 
between the generalities of the project description and the precision 
required for the development of the simulation program. In Section 4.2 we 
presented a framework for formulating a conceptual model for discrete-
event dynamic systems and in this section we present several examples to 
illustrate its application. These examples have been chosen to illustrate 
how a variety of features that can arise within the DEDS context are 
handled in the ABCmod framework. 

4.3.1  Example 1 

Project Description 
Tankers are loaded with crude oil at a port that currently has berth facilities 
for loading three tankers simultaneously. There is one tugboat available to 
assist the tankers. Tankers of all sizes require the service of the tug to 
move from the harbour into a berth and later to move out of the berth back 
to the harbour, at which point they leave the port. The general 
configuration is shown in Figure 4.5. 
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Berth 1

Berth 2

Berth 3

Harbour

FIGURE 4.5. View of the port’s operation.

Project Goals 
The port authority is concerned about the increasing number of complaints 
arising from excessive turnaround time experienced by some tankers. It is 
therefore considering the construction of a fourth berth. The project goal is 
to acquire some insight into the likely impact of such an expansion. More 
specifically, the goal is to compare, for the two cases (three berths and four 
berths), the average number of berths that are occupied and, as well, the 

Some clarification is in order with respect to the interpretation of 

time intervals during which the tanker is not engaged in some purposeful  
task. Hence it includes the periods when the tanker is waiting to be towed 
to berths or waiting to be towed back to the harbour. In the ideal case, 
these tasks would be initiated immediately and waiting time would be
 zero.

SUI Details 
The interarrival time between tankers can be modelled as a homogeneous 
stochastic process that has an underlying exponential distribution with a 
mean of 8 hours. There are three sizes of tanker: small, medium, and large 
and 25% of the arriving tankers are small, 25% are medium, and 50% are 

uniform distribution. However specific details differ as follows: small tankers
require 9 1 hours to load, medium tankers require 12  2 hours, and large
tankers require 18   3 hours. Additional tanker characteristics are summarised

 in Table 4.17. 
The process followed by each tanker upon arrival in the harbour is as 

follows.

1. It waits in a (virtual) queue for the tugboat to assist it to dock in an 
available berth. The queue functions on a first-in-first-out (FIFO) basis 
and is independent of tanker size. 

‘waiting time’. For any particular tanker, it is the accumulation of those

average waiting time of tankers, based on steady-state conditions.

large. The loading time for tankers of each size is a random variable that has a
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2. The tanker is moved from the harbour into a berth (the berthing 
operation) by the tug; the loading procedure begins immediately and 
the tug is released to carry out its next task. 

3. When the loading is complete, the tanker once again requests the 
service of the tug which effectively places it in a queue with other 
tankers that are waiting for the tug’s assistance to depart from a berth. 

4. The loaded tanker is moved from the berth back to the harbour 
entrance by the tug (the deberthing operation). 

5. The tanker leaves the harbour and the tug proceeds to its next task.

TABLE 4.17. Tanker characteristics.

Tanker Size Proportion of 
Arrivals (%) 

Loading Time (hours) 

Small 25 UNIFORM(8,10) 
Medium 25 UNIFORM(10,14) 
Large 50 UNIFORM(15,21) 

The berthing operation (moving an empty tanker from the harbour to an 
empty berth) takes 2 hours and the deberthing operation (moving a loaded 
tanker from its berth to the harbour) takes 1 hour. Both these operations 
are independent of tanker size. When not towing a tanker, the tug requires 
0.25 hour to travel from the harbour to the berth area and vice versa. When 
the tug finishes a berthing operation, it will deberth the first tanker that has 
completed loading. If no tanker is available for deberthing but tankers are 
waiting in the harbour and a berth is available, then the tug will travel to 
the harbour and begin berthing the tanker that has been waiting the longest 
in the harbour queue. Otherwise, the tug remains idle in the berth area. 

When the tug finishes a deberthing operation and there are tankers 

longest. If there is no tanker waiting to be berthed and the berths are 
empty, then the tug will simply wait at the harbour entrance for the arrival 
of a tanker. If, on the other hand, there are no tankers in the harbour but 
there are tankers in the berths, then the tug will travel back to the berth 
area without any tanker in tow. Then, if there are tankers ready for 
deberthing, it will begin deberthing the one that has waited longest. 
Otherwise the tug will remain idle in the berth area until either a tanker 
finishes loading and needs to be deberthed or a tanker arrives in the 
harbour, in which case it will travel back to the harbour without a tanker in 
tow. The ABCmod conceptual model for example 1 is given in Tables 4.18
through 4.30. For convenience of reference we have assigned the name

waiting in the harbour, the tug will berth the one that has been waiting the 

ABCmod.Port.ver1 to this conceptual model.
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ABCmod.Port.ver1

Structural Components 

A number of constants are introduced to facilitate the formulation of the 
conceptual model and these are summarised in Table 4.18. There is one 
parameter, namely, MaxBerth which has two values of interest, that is, 3 
(the ‘base’ case) and 4. 

TABLE  4.18. Summary of constants and parameters for ABCmod.Port.ver1.

Constants
Name Role Value 
t0 Left boundary of the 

vation Interval 
0 (clock time) 

tf Right boundary of the 
vation Interval 

Cannot be 
predetermined
because a steady-
state study is 
required

tFA Time of first tanker arrival 0 (clock time) 
BerthingTime Time required for the 

thing operation 
2 (hours) 

DeberthingTime Time required for the
 thing operation 

1 (hours) 

EmptyTravTime Harbour to berth (and berth 
to harbour) travel time for 
tug when travelling without 
a tanker in tow 

15 (minutes) 

AvgArr Part of the specification for 
DM. InterArrTime 

8 (hours) 

PerSml Percentage of arriving tankers
 that are small 

25 % 

PerMed Percentage of arriving tankers
 that are medium 

25 % 

PerLrg Percentage of arriving tankers
 that are large 

50 % 

SmlMin Part of the specification for 
DM.LoadTimeSml

8 (hours) 

SmlMax Part of the specification for 
DM.LoadTimeSml

10 (hours) 

MedMin Part of the specification for 
DM.LoadTimeMed

10 (hours) 

Obser-

Obser-

deber

ber
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Constants
Name Role Value 
MedMax Part of the specification for 

DM.LoadTimeMed
14 (hours) 

LrgMin Part of the specification for 
DM.LoadTimeLrg

15 (hours) 

LrgMax Part of the specification for 
DM.LoadTimeLrg

21 (hours) 

Parameters
Name Role Values 
MaxBerth Number of operational berths

 at the port 
3 and 4 

The tankers represent the only consumer entity class within the Project 
Description. The attributes selected for this class are summarised in Table 
4.19.

Consumer Entity Class: Tanker 

Attributes Description 
Size The size  of  the  tanker (value  is  one of 

StartWait                           A timestamp used to determine  waiting  
times 

TotalWait                                Accumulated waiting time 

The tugboat that provides the berthing/deberthing service is the one 
resource entity in the conceptual model. Its selected attributes are 
summarised in the Resource template given in Table 4.20. 

This consumer entity class represents the tankers that arrive at the port 

TABLE  4.19.  The tanker consumer entity class.

for loading. 

SMALL, MEDIUM, LARGE) as assigned  
via DM.TankerSize 

In the perspective we have chosen, the tankers being loaded in the 
berths are regarded as being members of a group aggregate. In addition we 
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TABLE 4.20. The tugboat Resource Entity. 

Resource Entity: Tug 
This resource entity represents the tugboat that is needed to berth 

finished loading. 
Attributes Description 
Status Indicates  the  status  of  the  tug  as  specified by 

one of the following values 
BERTHING – berthing a tanker
DEBERTHING – deberthing a tanker 
TOHARBOUR – going to the harbour with no 
tanker in tow 
TOBERTHS – going to berth area with no 
tanker in tow 
PauseH – in the harbour following the 
tion of a deberthing operation 
PauseB – in the berth area following the 

Tnkr                 Attribute-tuple of the tanker being towed (when 
applicable)

formed by tankers in the harbour waiting for berthing service from the tug 
and the other to represent the virtual queue of tankers that have been 

operation. The specifications for these aggregates are provided in Table 

TABLE 4.21.  Templates for the various aggregate entities.

(a) The group aggregate representing the berths.

Aggregate Entity: BerthGrp 

Attributes Description 
List A list of the attribute-tuples of the tankers that occupy a 

berth
N The number of entries in List (maximum value is 

MaxBerth) 

tankers that arrive in the harbour and to deberth tankers that have 

This group aggregate represents the collection of tankers that are being loaded 

loaded and are waiting in a berth for a tug in order to begin a deberthing 

in one of the berths. 

introduce two queue aggregates, one to accommodate the virtual queue 

4.21.

comple-

comple-
tion of a berthing operation 
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(b) The queue aggregate representing the (virtual) tanker queue in the harbour. 

Aggregate Entity: HarbourQue 

harbour waiting to be assisted into a berth by the tug. 
Attributes Description 
List

waiting for the tug
Discipline: FIFO 

N Number of entries in List

(c) The queue aggregate representing the (virtual) tanker queue at the berths. 

Aggregate Entity: DeberthQue 
This queue aggregate represents the (virtual) queue of tankers that have 
completed loading and are waiting in a berth for deberthing assistance 
from the tug. 
Attributes Description 
List                A list of attribute-tuples of the tankers waiting to 

be deberthed
Discipline: FIFO 

N Number of entries in List

Input–Output Components 

The tankers that flow through the port represent an input entity stream. The 
variable T (t) is used to represent this stream and its characterisation is 
provided in Table 4.22.

Input
Input

Variable
Description Data Models Action Sequence 

  Domain 
Sequence

Range
Sequence

T (t) T represents 
the input entity

 stream 
ponding to the

 Tanker consumer
entity class

First arrival:
t = tFA

interarrival
time:
EXP(AvgArr)

All values 
equal to 1 

     C.Tanker) 

One of the project requirements is to determine the average number of 
berths that are occupied over the duration of the observation interval.   
This corresponds to the average value of the time variable A.BerthGrp.N
which is an attribute of the group aggregate called BerthGrp (see Table 
4.21a). The Trajectory Set associated with A.BerthGrp.N is summarised in 

This queue aggregate represents the (virtual) queue of tankers in the harbour 

A list of attribute-tuples of the tankers in the harbour 

 4.22. Input for ABCmod.Port.ver1.TABLE

corres-

TankerArrivals (
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Table 4.23. The specific output of interest is provided by the DSOV 
AvgOccBerths which is described in Table 4.25 below. 

TABLE 4.23. Trajectory set for ABCmodPort.ver1.

Trajectory Sets 
Name  Description 
TRJ[A.BerthGrp.N] The time variable A.BerthGrp.N is an attribute

 of the group aggregate BerthGrp and provides
 the number of occupied berths at any moment

 
t

A second project requirement is to determine the average time which 
tankers spend waiting for assistance from the tug. Recall that such waiting 
can occur in two separate contexts: the first is upon arrival in the harbour 
(waiting to begin the berthing operation) and the second is upon 
completion of loading (waiting to begin the deberthing operation). These 
two durations are accumulated in the sample variable C.Tanker.TotalWait
which is an attribute of the Tanker consumer entity class (see Table 4.19). 
The associated sample set is summarised in Table 4.24. The specific output 
value of interest is provided by the DSOV AvgWaitTime which is 
described in Table 4.25. 

TABLE 4.24.  Sample set for ABCmod.Port.ver1.

Sample Set
Name Description  
PHI[Tanker.TotalWait] Each member of PHI[Tanker.TotalWait] is the

 final value of the attribute Tanker.TotalWait
 for some instance of the consumer entity class
 called Tanker. This attribute serves to accumulate
 the time spent, by that instance, waiting for the tug 

TABLE 4.25. Derived scalar output variables for ABCmod.Port.ver1.

Derived Scalar Output Variables (DSOVs) 
Name Description Output Set Name Operator 
AvgOccBerths Average number

 of occupied berths
TRJ[A.BerthGrp.N] AVG

AvgWaitTime Average time that
 the tankers spend 

waiting for the tug 

PHI[Tanker.TotalWait] AVG
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Behaviour Components 

Time units: hours 
Observation interval: t0 = 0, tf : cannot be predetermined because a steady 
state study is required 

The attributes that require initialisation are listed in Table 4.26 with 
their chosen initial values. 

TABLE 4.26. Initialisation requirements.

Initialise
R.Tug.Status  PauseB 
A.BerthGrp.N  0 
A.HarbourQue.N  0 
A.DeberthQue.N  0

Several data modules are required in the formulation of 
ABCmod.Port.ver1. These are summarised in Table 4.27. 

TABLE 4.27. Data modules for ABCmod.Port.ver1.

Data Modules 
Name Description Data Model 
TankerSize Returns a value for 

the Size attribute of 
an arriving tanker

Percent of small, medium, and 
large tankers is given by the 
constants PerSml, PerMed and 
PerLrg repectively 

LoadTimeSml Returns the loading 
time for a small 
tanker 

UNIFORM(SmlMin, SmlMax) 

LoadTimeMed Returns the loading 
time for a medium 
tankers 

UNIFORM(MedMin, MedMax) 

LoadTimeLrg Returns the loading 
time for a large 
tankers 

UNIFORM(LrgMin, LrgMax) 

One user-defined module has been identified to facilitate the ABCmod 
conceptual model formulation. It is summarised in Table 4.28. 
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4.28.  User-defined module for ABCmod.Port.ver1.

User-Defined Modules 
Name Description 
LoadingTime(Size) The returned  value is the loading time for

 a tanker assigned according to tanker size.
 This module accesses one of the data

 modules LoadTimeSml, LoadTimeMed,
 or LoadTimeLrg according to the value

 of the Size argument

The most important step in characterising the behaviour aspect of any 
ABCmod conceptual model is the identification of the relevant ‘units of behaviour’
that are embedded within SUI. Each of these is associated with an Activity 
construct. Table 4.29 summarises these constructs for the port project 
under consideration. 

TABLE 4.29. Summary of Activity constructs for ABCmod.Port.ver1.

Summary of Activity Constructs 
Action Sequence 

TankerArrivals The Input Entity Stream of arriving tankers 
Activities

Berthing        The tug moves an empty tanker from the 
harbour into an empty berth 

Deberthing         The tug moves a loaded tanker from a berth 
out to the harbour 

MoveToHarbour   The tug moves to the harbour without any 
tanker in tow, to get a tanker waiting to be 
berthed

MoveToBerths     The tug moves to the berth area from the 
harbour without any tanker in tow 

Triggered Activities 
Loading                The loading of a tanker begins as soon as it is 

berthed. Thus the Loading Activity is 
triggered by the Berthing Activity 

The details for each of the Activity constructs listed in Table 4.29 are 
provided in Table 4.30. 

TABLE
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TABLE  4.30.  Elaboration of the various Activity constructs.

(a) The Action Sequence called Tanker Arrivals. 

Action Sequence: TankerArrivals(C.Tanker) 
Precondition t = M[ T ](t)
Event C.Tanker.Size  DM.TankerSize 

C.Tanker.StartWait t
C.Tanker.TotalWait  0 
SM.InsertQue(A.HarbourQue, C.Tanker)

Precondition (R.Tug.Status = PauseH)&(A.HarbourQue.N > 0) 
Event R.Tug.Status  BERTHING 

SM.RemoveQue(A.HarbourQue, R.Tug.Tnkr) 
R.Tug.Tnkr.TotalWait + (t – R.Tug.Tnkr.StartWait)

Duration BerthingTime
Event SM.InsertGrp(A.BerthGrp, R.Tug.Tnkr) 

TA.Loading(R.Tug.Tnkr)
R.Tug.Status  PauseB 

(c) The Triggered Activity called Loading. 

Triggered Activity: Loading(C.Tanker) 
Event
Duration UM.LoadingTime(C.Tanker.Size)
Event C.Tanker.StartWait t

SM.InsertQue(A.DeberthQue, C.Tanker)

(d) The Activity called Deberthing. 

Activity: Deberthing 
Precondition (R.Tug.Status = PauseB)&(A.DeberthQue.N  0) 
Event R.Tug.Status  DEBERTHING 

SM.RemoveQue(A.DeberthQue, R.Tug.Tnkr) 
R.Tug.Tnkr.TotalWait  R.Tug.Tnkr.StartWait)
SM.Put(PSI[Tanker.TotalWait], R.Tug.Tnkr.TotalWait)
SM.RemoveGrp(A.BerthGrp, R.Tug.Tnkr) 

Duration DeberthingTime 
Event R.Tug.Status  PauseH 

SM.Leave(R.Tug.Tnkr)

(b) The Action Sequence called Berthing. 

Activity: Berthing 

The operator ‘ ’  is  an  add and assign operator. For example, x  1 should
 be interpreted as x x + 1.

1

1

 + (t – 

 + +
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(e) The Activity called MoveToHarbour. 

Activity: MoveToHarbour 
Precondition (R.Tug.Status = PauseB)&

(A.DeberthQue.N = 0)&
(A.HarbourQue.N > 0)& 
(A.BerthGrp.N < MaxBerth) 

Event R.Tug.Status  TOHARBOUR 
Duration EmptyTravTime
Event R.Tug.Status PauseH

(f) The Activity called MoveToBerths. 

Activity: MoveToBerths 
(R.Tug.Status = PauseH) & (A.HarbourQue.N = 0) 

& (A.BerGrp.N>0) 
Event R.Tug.Status  TOBERTHS 
Duration EmptyTravTime
Event R.Tug.Status  PauseB 

4.3.2  Example 2 

The modelling and simulation project in this Example is an extension of 
the one considered in Example 1. The Project Description for Example 1 
indicates that upon completion of a deberthing task, the tug returns to the 
berthing area without any tanker in tow when there is no tanker in the 
harbour queue and the berths are not empty. This could be regarded as 
unrealistically simplistic because it ignores the situation where a tanker 
arrives in the harbour ‘shortly after’ the tug embarks on its trip back to the 
berth area. In this example we introduce an alternate, and possibly more 
practical, strategy for dealing with this case. As becomes apparent in the 
discussion that follows, this change gives rise to the need for an interrupt. 

Project Description 
The harbour operation as outlined in the Project Description for Example 1 
is changed in one respect which relates to the tug’s behaviour on 
completion of a deberthing task. When there is no tanker in the tanker 
queue waiting to be berthed and the berths are not empty, the tug again 
embarks on a return trip to the berthing area without a tanker in tow. 
However, in this modified case, if a tanker arrives in the harbour and the 
tug has not yet completed 70% of its journey back to the berths or if there 

Precondition 
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is no tanker waiting to be deberthed, then the tug returns to the harbour 
entrance to service the newly arrived tanker.

ABCmod.Port.ver2
Several extensions need to be incorporated into the conceptual model for 
Example 1 in order to accommodate the additional feature outlined in the 
revised project description of Example 2. These are summarised below. 

The time required for the tug to return to the harbour if such a 
requirement arises under the new policy, needs to be determined. We 
take this duration to be equal to the elapsed time between the tug’s 
departure from the harbour and the arrival of a tanker in the harbour. 
This determination requires a new (timestamp) attribute for the tug 
which holds the value of time when the tug leaves the harbour. The 
additional attribute of the tug is shown in the revised Tug specification 
given in Table 4.31. 

TABLE  4.31. Revised tug specification for ABCmod.Port.ver2.

Resource Entity: Tug 
This resource entity represents the tugboat that is needed to berth 
tankers that arrive in the harbour and deberth tankers that have 
finished loading. 
Attributes Description 
Status                     Indicates the task that is being carried 

out by the tug as specified by one of the 
following values 

BERTHING – berthing a tanker
DEBERTHING – deberthing a tanker 
TOHARBOUR – going to the harbour 
with no tanker in tow 
TOBERTHS – going to the berth area 
with no tanker in tow 
PauseH – in the harbour following the 
completion of a deberthing operation 
PauseB – in the berth area following the 
completion of a berthing operation

Tnkr              Attribute-tuple of the tanker being 
towed (when applicable) 

StartTime             Timestamp indicating the time when 
the tug leaves the harbour to travel back 
to the berth area 

The newly introduced possibility of the tug returning to the harbour 
under certain conditions implies an intervention within the behaviour 
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specified in the previous MoveToBerths Activity. More specifically, 
the possibility of an interrupt is introduced and hence this Activity 
needs to be replaced with an Extended Activity. Its details are given in 
Table 4.32. 

Port.ver2.

Extended Activity: MoveToBerths 
Precondition 

Event R.Tug.Status  TOBERTHS 
R.Tug.StartTime  t 

Duration EmptyTravTime
Interrupt

Precondition (A.HarbourQue.N > 0)&( 
((t-R.Tug.StartTime) < 0.7 *EmptyTravTime)) 
    (A.DeberthQue.N = 0)) 

Event TA.ReturnToHarbour 
Terminate

Event R.Tug.Status  PauseB 

The Event associated with the interrupt in Table 4.32 introduces a new 
unit of behaviour that we call ReturnToHarbour. This corresponds to a 
Triggered Activity whose details are provided in Table 4.33. 

TABLE 

Triggered Activity: ReturnToHarbour 
Event R.Tug.Status  TOHARBOUR 
Duration (t – R.Tug.StartTime)
Event R.Tug.Status  PauseH

4.3.3  Example 3 

In this Example, we further modify the port’s operating environment by 
introducing the possible occurrence of storms. The details surrounding 
such an occurrence are provided in the revised project description. 

Project Description 

of storms. The duration of storms is a random variable that is uniformly 
The operation of the harbour, as outlined thus far, is now subjected to the occurrence 

4.33. The Triggered Activity called ReturnToHarbour.

distributed; namely, UNIFORM(Short,Long) where Short = 2 hours and Long = 6 

(R.Tug.Status = PauseH)&(A.HarbourQue.N = 0)& 

TABLE 4.32. Revision of the MoveToBerths Activity required for ABCmod. 

(A.BerGrp.N>0) 

|
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hours. Likewise the time between successive storms is a random variable which 

tfst = 7 hours. When a storm arrives the tug , together with 

storm is over, the tug resumes the Activity that was underway before the 
storm occurred.

ABCmod.Port.ver3
The input variable SS(t) is introduced to represent the storm phenomenon. 
More specifically, we assign a value of TRUE to this variable when a 
storm is raging and a value of FALSE when storm conditions are absent. 
Because the first storm occurs after the beginning of the observation 
interval, an initial value (of FALSE) needs to be explicitly assigned to SS.

Several additional constants have been introduced and these need to be 
reflected in an update of Table 4.18. This addition is shown in Table 4.34. 

The updated Initialise table is given in Table 4.37.
 The updated Inputs 

 in Table 4.36.

TABLE 4.34. Addition to Table 4.18 required for ABCmod.Port.ver3.

Constants  
Name Role Value 
Short Part of the specification for

 the data model for input
SS(t); see  Table 4.36

2 (hours) 

Long Part of the specification for
 the data model for input

SS(t)

6 (hours) 

AvgCalm Part of the specification for
 the data model for input

SS(t)
tfst Part of the specification for

 the data model for input
SS(t)

7 (hours 
clock time) 

Two additional attributes are introduced for the tug in order to deal with 
the modified behaviour of the SUI resulting from the storm. These are 
TravelTime and Anchored. The revised table for the tug is given in 
Table 4.35. 

table that incorporates the input variable SS(t) is given

has an exponential distribution with a mean of AvgCalm = 144 hours. The first 

144 (hours) 

 at timestorm occurs
any tanker that is being towed, battens down hatches and drops anchor. When the 
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TABLE 4.35. Revised Tug Specification for ABCmod.Port.ver3.

Resource Entity: Tug 

that arrive in the harbour and deberth tankers that have finished 
loading. 
Attributes Description 
Status                   Indicates  the task that is being carried 

out  by the  tug as specified by one of the 
following values 

BERTHING – berthing a tanker
DEBERTHING – deberthing a tanker 
TOHARBOUR – going to the harbour 
with no tanker in tow 
TOBERTHS – going to the berth area 
with no tanker in tow 
PauseH – in the harbour following the 
completion of a deberthing operation 
PauseB – in the berth area following the 
completion of a berthing operation

Tnkr                              Attribute-tuple  of  the  tanker  being towed 
(when applicable) 

StartTime                     Timestamp indicating  the  time when the 
tug  leaves  the  harbour to travel back to 
the berth area 

TravelTime                   The travelling time required  to  complete 
the  current  task being carried out by the 
tug

Anchored                 Set to TRUE if tug  has been forced to 
stop  because  of storm, set to FALSE 
otherwise

This resource entity represents the tugboat that is needed to berth tankers 
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ABCmod.Port.ver3.

Initialise
R.Tug.Status  PauseB 
A.BerthGrp.N  0 
A.HarbourQue.N  0 
A.DeberthQue.N  0
SS  FALSE 

The Action Sequence Storm(SS) referenced in Table 4.36 is given in Table 
4.38.

TABLE 4.37. The modified Initialise table for 

TABLE  4.36.  Incorporation of SS(t) in the Inputs table for ABCmod.Port.ver3.

Inputs 

Input 
Variable 

Description Data Models Action 
Sequence 

  Domain Sequence Range 
Sequence 

 

SS(t) The input  
variable SS(t) 
represents the 
storm status  

First storm:  
t = tfst 
 

Duration:  
UNIFORM(Short, 
Long) 

 
Interstorm time: 
EXP(AvgCalm) 

Value of 
SS 
alternates 
between 

FALSE 
(calm 
prevails) 
and 

TRUE 
(storm is 
raging) 

Storm(SS) 

ũTk(t) ũTk represents 
the input 
entity stream 
corresponding 
to the Tanker 
consumer 
entity class  

First arrival:  
t = tFA  

Interarrival time: 
EXP(AvgArr) 

All 
values 
equal to 1 

TankerArrivals 

         

(
C.Tanker) 
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stormy environment. Because the storm introduces the possibility of an 
interrupt, these Activities need to be replaced by Extended Activities. 

Event associated with an Interrupt ends with a ‘Terminate’. The 
implication here is that the behaviour in question is stopped, usually to be 
reinitiated when circumstances permit (in this case, when the storm is 
over).

ABCmod.Port.ver3.

(a) The Extended Activity called Berthing. 

Extended Activity: Berthing 

( ((R.Tug.Status = PauseH) &
(A.HarbourQue.N > 0))

   | 

Event If(R.Tug.Anchored = FALSE) 
R.Tug.Status BERTHING 

R Tug.Tnkr.TotalWait +
      (t – R.Tug.Tnkr.StartWait) 

R.Tug.TravelTime  BerthingTime 
Else

R.Tug.Anchored  FALSE 
EndIf
R.Tug.StartTime t

Duration R.Tug.TravelTime
Interrupt

Precondition SS = TRUE 
Event

R.Tug.Anchored  TRUE 
Terminate

Event SM.InsertGrp(A.BerthGrp, R.Tug.Tnkr) 
TA.Loading(R.Tug.Tnkr)
R.Tug.Status  PauseB 

The various activity constructs are affected by the newly introduced 

TABLE 4.39.  Extensions to Extended Activities as required in 

(R.Tug.Status = BERTHING)))

SM.RemoveQue(A.HarbourQue, Tug.Tnkr)

  ((R.Tug.Anchored = TRUE) &

R.Tug.TravelTime - t - R.Tug.StartTime

These are listed in Table 4.39(a) through Table 4.39(e). Note that often the 

TABLE  4.38. The Action Sequence for SS(t) as required in ABCmod.Port.ver3.

Action Sequence: Storm(SS)
Precondition t = M[SS](t)
Event SS = NOT(SS)

Precondition (SS = FALSE) & 
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(b) The Extended Activity called Deberthing. 

Extended Activity: Deberthing 
Precondition (SS = FALSE) & 

( ((R.Tug.Status = PauseB) & (A.DeberthQue.N  0))
   | 
  ((R.Tug.Anchored = TRUE) &
  (R.Tug.Status = DEBERTHING)) ) 

Event If(R.Tug.Anchored = FALSE) 
R.Tug.Status  DEBERTHING 
SM.RemoveQue(A.DeberthQue, R.Tug.Tnkr) 

SM.Put(PSI[Tanker.TotalWait],
R.Tug.Tnkr.TotalWait)

SM.RemoveGrp(A.BerthGrp, R.Tug.Tnkr) 
R.Tug.TravelTime  DeberthingTime 

Else
R.Tug.Anchored  FALSE 

EndIf
R.Tug.StartTime t

Duration R.Tug.TravelTime 
Interrupt

Precondition SS = TRUE 
Event

R.Tug.Anchored  TRUE 
Terminate

Event R.Tug.Status  PauseH 
SM.Leave(R.Tug.Tnkr)

R.Tug.Tnkr.TotalWait + (t – R.Tug.Tnkr.StartWait) 

R.Tug.TravelTime - t - R.Tug.StartTime 
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(c) The Extended Activity called MoveToHarbour. 

Extended Activity: MoveToHarbour 
Precondition (SS = FALSE) & 

( ( (R.Tug.Status = PauseA) &
     (A.DeberthQue.N = 0) &
     (A.HarbourQue.N > 0) & 
     (A.BerthGrp.N < MaxBerth) )
  | 
  ( (R.Tug.Anchored = TRUE) &

Event If(R.Tug.Anchored = FALSE) 
R.Tug.Status  TOHARBOUR 
R.Tug.TravelTime  EmptyTravTime 
Else
R.Tug.Anchored  FALSE 
EndIf
R.Tug.StartTime t

Duration R.Tug.TravelTime
Interrupt

Precondition SS = TRUE 
Event

R.Tug.Anchored  TRUE 
Terminate

Event R.Tug.Status PauseH

 

    (R.Tug.Status = TOHARBOUR) ) ) 

R.Tug.TravelTime - t - R .Tug.StartTime
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(d) The Extended Activity called MoveToBerths. 

Extended Activity: MoveToBerths 
Precondition (SS = FALSE)& 

(A.HarbourQue.N = 0)&(A.BerthGrp.N>0))
  | 
  ((R.Tug.Anchored = TRUE)& 

(R.Tug.Status = TOBERTHS)) ) 
Event If(R.Tug.Anchored = FALSE) 

R.Tug.Status  TOBERTHS 
R.Tug.TravelTime  EmptyTravTime 

Else

EndIf
R.Tug.StartTime t

Duration R.Tug.TravelTime
Interrupt 1 

Precondition (A.HarbourQue.N > 0)&( 

Event TA.ReturnToHarbour 
Terminate

Interrupt 2 
Precondition SS = TRUE 
Event 

R.Tug.Anchored  TRUE 
Terminate

Event R.Tug.Status  PauseB 

*EmptyTravTime)) |  

( ((R.Tug.Status = PauseH)& 

    ((t - R.Tug.StartTime) < 0.7  

R.Tug.Anchored  FALSE 

    (A.DeberthQue.N = 0)) 

R.Tug.TravelTime - t - R.Tug.StartTravel 
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(e) The Extended Triggered Activity called ReturnToHarbour. 

4.4  Exercises and Projects 

4.1  The dining philosophers problem is a classic vehicle for illustrating 
the occurrence of deadlock in an operating system and, as well, for 
exploring strategies to avoid its occurrence. The concern in this 
problem is to explore the dining philosophers problem from the 
perspective of a modelling and simulation project. 

We imagine five philosophers seated around a circular table. 
Between each pair of philosophers there is a single fork and in the 
middle of the table is a large bowl of spaghetti. These philosophers 
have a very focused existence which consists of a continuous cycle of 
thinking and eating. There is, however, a basic prerequisite for the 
eating phase; namely, a philosopher must be in possession of both the 
fork on his  right and the fork on his left in order to access and eat the 
spaghetti at the center of the table. Inasmuch as the philosophers are an 
orderly group, they have a protocol for acquiring the forks. When any 
particular philosopher finishes his thinking phase, he must first acquire 
the fork on his right and only then can he seek to acquire the fork on his 
left (whose acquisition enables the initiation of the eating phase). When 
the eating phase is complete, the philosopher replaces both forks and 
begins his thinking phase. 

The situation outlined above can, however, lead to deadlock. This is 
a situation where no philosopher is eating and no philosopher is 
thinking, but rather they are all holding their right fork and waiting to 

                                                     
 Although the presentation suggests a group of male philosophers, this should not 

be taken literally because the group is, in fact, gender balanced.

Extended Triggered Activity: ReturnToHarbour 
Event R.Tug.Status  TOHARBOUR 

R.Tug.StartTime t
Duration R.Tug.TravelTime

Interrupt
Precondition SS = TRUE 
Event R.Tug.TravelTime - 

R.Tug.Anchored  TRUE 
Terminate

Event R.Tug.Status PauseH

R.Tug.TravelTime t – R.Tug.StartTime 

t  - R.Tug.StartTime 

2

2
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eat. Under these circumstances the left fork will never become available 
for any of them and hence none will ever eat!

exponentially distributed random variable with the same mean of µE

minutes. Likewise suppose that the thinking time TT for each of the 

same mean of µT minutes. It has been conjectured that there is an 
‘interesting’ relationship between the ratio (µE/µT) and the time it takes 
for deadlock to occur (we denote this time interval by Tdead

assessment is to be based on two graphs.  The first
 is a graph of   Tdead

versus (µE/µT) with (µE/µT) in the range 1 to 10 and the
 second is a graph of Tdead versus (µE/µT) with (µE/µT) in the range 0.1 to 1.

Formulate an ABCmod conceptual model for the project as outlined 
above. By way of initialisation, assume that the five philosophers enter 
the SUI in a sequential manner at times:  t = 0 (the left-hand boundary 
of the observation interval), t = 0.1 µE, t = 0.2 µE, t = 0.3 µE, and t = 
0.4 µE. Upon entry, each philosopher begins a thinking phase.

4.2  The repeated occurrence of deadlock has greatly annoyed the dining 
philosophers described in Problem 4.1 After due consideration, they 
agreed to alter their fork acquisition protocol in one small (but 
significant) way. Instead of having to first acquire the fork on his right, 
the fifth philosopher will henceforth be required to first acquire the fork 
on his left, and only then can he seek to acquire the fork on his right. (It 
can be readily demonstrated that with this altered rule deadlock will 
indeed be avoided.)  In this modified context the goal of the modelling 
and simulation project is to develop a graphical presentation of the 
average waiting time to eat as a function of (µE/µT) where waiting time 
is measured from the moment a philosopher stops thinking to the 
moment when he begins eating. 

Formulate an ABCmod conceptual model for these modified 
circumstances of the dining philosophers. Use the same initialisation 
procedure that was outlined in Problem 4.1

4.3  A lock system in a waterway provides the means for diverting boat 
traffic around a section of turbulent water.  One (or more) locks are 
placed in a manmade parallel water channel and each functions as an 
elevator, raising or lowering boats from one water level to another. In 
this way boat traffic is able to bypass the nonnavigatable portion of a 
river. A representation of a typical lock’s operation is given in Figure 
4.6a.

). A  modelling

Suppose that the eating time ET for each of the philosophers is an 

and simulation study has been proposed to determine if a noteworthy relation can

philosophers is an exponentially distributed random variable with the 

 indeed be identified.The
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FIGURE 4.6a. Lock operation.

The lock’s operation can be divided into two very similar cycles 
which we refer to as the up-cycle and the down-cycle. The up-cycle 
begins with the upstream gates closed, downstream gates open, and the 
water within the compartment at the downstream level. Boats waiting at 
the downstream end to move upstream, enter the compartment. When 
the compartment is suitably filled with boats, the downstream gates 
close, valve B opens (valve A is closed), and water fills the 
compartment to raise the boats to the upstream level. The upstream 
gates then open and the boats exit and continue on their journey. The 
stages of the down-cycle are the reverse of those described for the up-
cycle.

The number of boats that can be accommodated within the lock 
compartment during either phase is naturally restricted by the physical 
size of the compartment. This is basically dependent on the length of 
the lock because boats must be moored along the edges of the 
compartment for safety reasons. Hence the linear length of the 
compartment is a major constraining parameter. This constraint cannot 
be directly translated into a specific number of boats because boats 
have varying individual lengths. Furthermore, there is a requirement for 
a one meter separation between boats and between the boats adjacent to 
the moving gates and the gates themselves. A typical configuration of 
boats in the lock during an up-phase is shown in Figure 4.6b.

FIGURE 4.6b. Boat configuration in lock. 

Upstream
water
level

Upstream gates Downstream gates

Downstream
water
level

Valve AValve B

Compartement
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Both the up-cycle and the down-cycle have the same three phases 
which we call the loading phase, the transport phase, and the exit phase. 
The loading phase is the phase when boats from the waiting queue 
position themselves within the lock compartment. The duration of this 
phase is dependent on the number of boats that enter the compartment. 
A reasonable approximation for this loading duration is: (d1 + n d2)
where d1 = 4 minutes, d2 = 2 minutes, and n is the number of entering 
boats. The boats selected to enter the compartment are taken 
sequentially from the waiting queue in the order of their arrival until the 
‘next’ boat cannot fit any available space. Then the next boat in the 
queue that can fit into the available space is selected and this continues 
until no further boats can be accommodated.

The transport phase includes the closing of the open gate of the lock 
compartment and the filling/emptying of the water from the 
compartment by appropriate opening/closing of valves A or B. The 
duration of this phase is 7 minutes. The exit phase, during which the 
boats leave the compartment, has a duration of 5 minutes. Thus the total 
cycle time is: (d1 + n d2) + 7 + 5 = (16 + n d2) minutes.

The management of the lock system (the particular lock in question 
is one of a series of locks on the waterway) has been receiving 
complaints about long delays during the peak traffic period of the day 
which extends from 11:00 AM to 5:00 PM. (The lock system operates 
from 8:00 AM to 8:00 PM.) Fortunately traffic rapidly diminishes after 
5:00 PM and the queues that normally exist at the end of the busy period 
generally empty by the 8:00 PM closing time.

The usable length of the lock compartment is 40 meters. One option 
that is being considered by management to resolve the excessive delay 
problem is to increase the compartment length to 50 meters. There are 
significant costs involved in such a reconfiguration and there is 
uncertainty about what impact it would have on the delays experienced 
by the various boat categories. A modeling and simulation study has 
been proposed as a means for acquiring insight into the effectiveness of 
the plan. Furthermore, an increase in boat traffic is anticipated over the 
short term and it has been suggested that the proposed compartment 
extension would also be able to accommodate at least a 15% increase. 
This possibility is also to be investigated by the study. 

The boats traveling in this waterway fall into three categories which 
we reference as 1, 2, and 3. These categories are intended to reflect a 
size attribute (i.e., small, medium, and large, respectively). The actual 
length of arriving boats in category k is uniformly distributed in the 
range [Lk – k , Lk + k] meters. During the high-traffic portion of the day 
the interarrival time for boats in category k is exponentially distributed 
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with mean µk.(minutes). The values of the various constants are given in 
Table 4.40. 

TABLE 4.40. Size and arrival attributes of the three boat categories. 

Size µk (minutes Lk (meters) k (meters)
Small (k = 1) 5 6 1 
Medium (k = 2) 15 9 1.5 
Large (k = 3) 45 12 1.5 

a) Formulate a set of performance measures that would likely be of 
value for assessing the effectiveness of the proposed lock 
extension within the context of a modeling and simulation study. 

b) Develop an ABCmod conceptual model that captures the various 
relevant aspects of the problem. 

4.4  HappyComputing Inc. is a personal computer service, sales, and rental 
shop. Customers who arrive at the shop fall into one of four categories 
depending on the nature of the ‘work’ which results from their visit. 
These are labeled as follows. 

C1: This customer wishes to purchase or rent a PC. 
C2: This customer is returning a rental PC. 

   C3: This customer has brought in a PC that requires service of a 
relatively minor nature (e.g., upgrade of hard drive or installation of 
additional memory). The customer typically waits for the service to 
be completed or possibly returns later in the day to pick up the
machine.

   C4: This customer’s PC has a problem that needs to be diagnosed 
before repair can be undertaken. In this case the customer leaves the 
PC in the shop with the understanding that he or she will be 
telephoned when the problem has been corrected. 

The shop has three employees: one is salesperson and the other two 
are technicians. One technician (the senior technician) has extensive 
training and considerable experience. The other (the junior technician) 
has limited training and skills. The salesperson is the initial point of 
contact for all arriving customers. The needs of both type C1 and type 
C2 customers are handled exclusively by the salesperson. 

The shop is open Monday through Saturday inclusive from 9:00 AM
to 6:00 PM. The salesperson (or a substitute) is always present. The 
senior technician has a day off on Mondays and the junior technician’s 
day off is Thursday. Each employee has a one hour lunch break. 

Customers of the type C3 category are handled by the junior 
technician on a first-in-first-out basis. However, in about 20% of the 
cases the junior technician is obliged to consult with the senior 
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technician in order to deal with some aspect of the servicing 
requirement. This draws the senior technician away from his normal 
work activity which is the servicing of the PCs that are brought to the 
shop by category C4 customers. Note that on Thursdays the senior 
technician takes responsibility for the C3 work on a priority basis (i.e., 
he always interrupts his C4 task to accommodate the C3 customer).

It is the policy of the shop to carry out a comprehensive examination 
of all rental PCs when they are returned and to carry out any necessary 
refurbishing before they placed back into the rental pool. The 
refurbishing includes a range of possible tasks that usually involve 
hardware and software upgrades. This refurbishing activity is the 
responsibility of the junior technician but it is carried out only when 
there are no PCs from category C3 customers that require service. 

TABLE 4.41. Interarrival times for customer categories. 

Customer Category Min (minutes) Max (minutes)
C1   70 130 
C2 110 170 
C3 180 260 
C4 120 210 

The interarrival times of each customer category over the course of a 
business day are uniformly distributed; however, the parameters of the 
distributions vary according to customer type. The boundaries of the 
various uniform distributions are summarised in Table 4.41. 

Each arriving customer, in effect, generates a service requirement 
which requires time to complete. The service time requirement for each 
customer category is a random variable. The assumed distribution for 
each of the categories is given in Table 4.42 (together with associated 
parameter values). 

TABLE 4.42. Service time requirements for each customer category.

Customer
Category

Distribution of 
Service Time 
Requirement

Distribution
Parameters * 

(minutes).
C1 Normal = 25, 2 = 10 
C2 Uniform min = 25, max = 

35
C3 Triangular a = 30, b = 75, c = 

45
C4 Triangular a = 45, b = 175, c 

= 140 
* See Section A1.4.4 of Annex A. 
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The owner of the shop (who, in fact, is the senior technician) wants 
to decrease the turnaround time for the PCs brought in by C4 customers 
because that is the part of the business that he is especially interested in 
‘growing’. He has, furthermore, noticed that the current workload of the 
junior technician often leaves him with significant amounts of idle time. 
He is therefore considering asking the junior technician to take a 
number of courses in order to upgrade his technical skills. This will 
have two benefits. First, it will enable the junior technician to deal with 
the service requirements of C3 customers without having to request 
assistance and second, it will enable the (upgraded) junior technician to 
assist with the servicing of the PCs brought to the shop by the C4 
customers when he is not otherwise occupied with his current 
responsibilities. The owner anticipates that the net impact will be a 
reduction of about 25% in the turnaround time for the C4 category of 
service.

The goal in this modelling and simulation project is to determine if 
the owner’s expectation is correct.

a) The problem statement as given above omits several details that 
need to be provided before the project can be realistically 
undertaken. Identify these and suggest meaningful clarifications. 

b) What is a realistic performance measure for this study? Do you 
regard this as a bounded horizon study or a steady-state study? 

c) Develop an ABCmod conceptual model. 

4.5  Balking occurs when a customer in a queue (or anything else that is 
enqueued) has waited too long for service and abandons the queue. The 
length of the wait time that triggers the balking event may be fixed or 
may be a random variable. There are various ways in which balking can 
be handled within the ABCmod framework and the purpose of this 
exercise is to formulate at least one approach. 

In Section 5.3 of Chapter 5 we outline a simple modeling and 
simulation project formulated around a fast-food outlet called Kojo’s 
Kitchen. An ABCmod conceptual model that evolves from the project 
description is also presented. The SUI, as presented, does not include 
customer balking. Your task is to introduce this feature and duly 
modify/extend the given ABCmod conceptual model so that balking is 
incorporated.

Suppose we use the variable balk-time to represent the length of time 
that a customer will wait in the queue before becoming disgruntled and 
leaving.  For definiteness, assume that balk-time is a random variable 
and that it has a triangular distribution with parameters as shown in 
Figure 4.7. 
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balk-time

f(balk-time)

FIGURE 4.7.  Distribution for the random variable balk-time.

Note finally that a necessary part of any balking specification is the 
clarification of what happens to a customer that balks. In the case of 
Kojo’s Kitchen such a customer simply disappears from the SUI. 
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Chapter 5 DEDS Simulation Model Development 

5.1 Constructing a Simulation Model 

The simulation model associated with a modelling and simulation project 
is a computer program that captures the behavioural and structural details 
of the SUI as specified by the conceptual model. There are two important 
features of this computer program. The first is simply the fact that, like any 
computer program, its development must respect the rules of the 
programming language/environment chosen as the vehicle for 
implementation. The second feature, however, is distinctive to the 
modelling and simulation paradigm. It relates to the perspective the 
program writer takes with respect to the manner in which the model 
dynamics are ‘packaged’. This perspective is often dictated by the 
programming language/environment being used. 

For example, a reasonable choice might appear to be a direct 
implementation of the Activity constructs used in formulating the 
ABCmod conceptual model itself, as outlined in Chapter 4. This, however, 
is not a practical choice because it does not lend itself to an efficient time-
advance mechanism which is an important constituent in the execution of any 
simulation model. The inherent difficulty relates to the initiation of the 
various Activity constructs. The ‘trigger’ in each case is the logical 
expression within the Activity’s precondition. In most cases the 
precondition is formulated in terms of the model’s state variables, hence 
from an implementation point of view, there is little choice but to move 
time forward in small increments until some meaningful event occurs (e.g., 
the end of a duration) and results in state variable changes that may trigger 
one or more other Activities. In principle, this approach is straightforward 
but in practice it is awkward and exceedingly inefficient.

The perspective outlined above is called ‘Activity scanning’ and is one 
of three world views that are commonly recognised in the formulation of 

other two are called ‘event scheduling’ and ‘process oriented’, respec-
tively. Essentially all simulation programming languages/environments 
that are currently available have a bias, or even a total commitment, to one 
or the other of these world views. Each of these is briefly outlined below. 

discrete-event simulation models (See Chapter 3 of Banks et al. [5.1]). The 
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Event Scheduling: The essential constituent of this perspective is a      
set of future events that are scheduled to occur. A future event is a 
collection of actions that includes state variable changes and the possible 
scheduling of other future events. These actions all occur at the same value 
of (simulated) time. The simulation model’s behaviour is formulated in 
terms of these future events which are maintained in a time-ordered list. 

Process Oriented: Recall that our intent in developing our conceptual 
modelling framework was to identify atomic units of behaviour which 

are assembled into larger units that have a natural affinity in terms of 
capturing a higher level of behaviour. Each of these is called a process and 
the simulation model in the process-oriented world view is typically 
formulated as a collection of such processes which interact as they unfold 
over time. A process portrays the flow of entities from one Activity to 
another. In most cases, a process corresponds to the lifecycle of some entity 

process that captures the entry of a consumer entity instance into the model, its 
participation in a number of Activities, and finally its departure from the 
model. Processes can also be defined for resources that participate in one 
Activity after another (possibly in a circular manner) without ever leaving 
the model. 

5.2 Relationship Between the World Views 

At its most fundamental level, DEDS model behaviour takes place as a 

of some of the model’s state variables. As discussed in Section 4.2.4, there 
are two types of events: conditional events and scheduled events. A 
simulation model behaviour specification must provide the means to 
determine when these events occur and also to execute them, in other 

has its own approach for organising these event specifications for 
execution. Because all views are necessarily built from the same discrete 
events, it is natural to expect that relationships can be identified that permit 
transformations among the various ‘views’ to be carried out. These 

oriented simulation model. 

A simulation run therefore unfolds in discontinuous jumps in time which 
 correspond to the time stamps of the events in the future event list. 

emerged as Activities. In the process-oriented approach, various Activities 

within the ABCmod conceptual model. A commonly occurring example is a 

words, to carry out the status change specifications (SCS) associated with
the event. Each of the three world views described in the Section 5.1 

conceptual model into either an event-scheduling simulation model or a process-

result of discrete events at specific points in time which change the value 

relationships provide the basis that enables the translation of an ABCmod 
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framework is composed of a conditional event (the starting event which is 
linked to a precondition) followed by a duration which is then followed by a 
scheduled event (the terminating event). The various specifications 
included in both the starting event and the terminating event are called 
SCSs (status change specifications) and these always include state variable 
changes. Because the development of an ABCmod conceptual model is a 
conceptual modelling exercise, the management of these SCSs and the
advancement of time have no relevance. 

As indicated earlier in Section 5.1, in the event-scheduling world view a 
DEDS simulation model is expressed in terms of a set of future events. An 

view by reorganising the preconditions and the SCSs in the starting events and 
in the terminating events of the various Activities into members of this set. 
The basic concepts, data structures, and algorithms for our perspective of this 
world view are outlined in Section 5.4.1. The transformation of an 
ABCmod conceptual model into an event-scheduling simulation model is 
presented in Section 5.4. The Java programming language is used to illustrate
the creation of this category of simulation model. 

The event-scheduling approach breaks Activities down into constituent  
parts. The process-oriented approach on the other hand, interconnects Activities 
into units that correspond to entity lifecycles. Consider again Figure 4.2 
that presents the lifecycle of three different shoppers moving from activity 
to activity. A process-oriented simulation program would execute these 
lifecycles for each instance of the shopper entity. During a simulation run, 
entity instances typically interact with other entities within the ABCmod Activities 
that constitute the lifecycle. A prerequisite for the transformation of an 
ABCmod conceptual model into a process-oriented simulation model is an 
intermediate step that identifies these lifecycles (or processes).

Section 5.5 introduces an approach for developing processes from an 
ABCmod conceptual model. These processes are applicable to any process- 
oriented programming environment, and can be viewed as an additional step 
added to the conceptual modelling phase. The remainder of Section 5.5 shows 
how an ABCmod conceptual model can be transformed into a GPSS
(a process-oriented programming environment) simulation model. 

5.3 Kojo’s Kitchen 

A simple project formulated around a fast-food outlet in the food court of a 
shopping mall is used to illustrate the main concepts required for the 
translation of an ABCmod conceptual model into an event-scheduling model.  

ABCmod conceptual model is transformed into an event-scheduling world

Recall that the basic Activity in our ABCmod conceptual modelling 
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an ABCmod conceptual model. 
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FIGURE 5.1. Kojo’s Kitchen fast-food outlet.

Project Description 
Kojo’s Kitchen is one of the fast-food outlets in the food court of a 
shopping mall. The mall (and hence Kojo’s) is open between 10:00 AM
and 9:00 PM every day. Kojo’s serves only two types of product; namely, 
sandwiches and sushi. We assume there are only two types of customer: 
one type purchases only sandwiches and the other type purchases only 
sushi products. Two rush-hour periods occur during the business day, one 
between 11:30 AM and 1:30 PM, and the other between 5:00 PM and 7:00 
PM.

The stochastic process for customer interarrival times is nonho-
mogeneous but, for convenience, is taken to be piecewise homogeneous 
(see Section A1.8 of Annex 1). Interarrival times in each of the 
homogeneous segments are taken to be exponentially distributed with 
means as given in Table 5.1. 

We begin with a statement of the project followed by the development of 
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TABLE  5.1. Kojo’s Kitchen customer arrival data model.

Customer
Type

Period Mean Inter-
Arrival Time 

(min)
10:00 AM–11:30 AM 15  
11:30 AM–1:30 PM 3  
1:30 PM–5:00 PM 12  
5:00 PM–7:00 PM 4  

Sandwich
Customer

7:00 PM–9:00 PM 10  
10:00 AM–11:30 AM 22  
11:30 AM–1:30 PM 4  
1:30 PM–5:00 PM 15  
5:00 PM–7:00 PM 7  

Sushi
Customer

7:00 PM–9:00 PM 12  

Currently two employees work at the counter throughout the day 
preparing sandwiches and sushi products for the customers. Service times 
are product-dependent and they are both uniformly distributed, ranging 
from three to five minutes for sandwich preparation and from five to eight 
minutes for sushi preparation. 

Goal: Kojo’s manager is very happy with business, but has been 
receiving complaints from customers about long waiting times. He is 
interested in exploring staffing options to reduce these complaints. The 
specific interest is in comparing the current situation (base case) to an 
alternative where a third employee is added during the busy periods 
(between 11:30 AM and 1:30 PM and between 5:00 PM and 7:00 PM). The 
performance measure of interest is the percentage of customers that wait 
longer than five minutes for service over the course of a business day. 

The various components of an ABCmod conceptual model for the flow 
of customers through Kojo’s Kitchen are given in Tables 5.2 through 5.14. 
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Structural Components 

TABLE  

Constants
Name Role Value 

 
15

WMean2 Mean interarrival time for sandwich 
customer between 11:30 AM  and 1:30 PM

3

WMean3 Mean interarrival time for sandwich 
customer between 1:30 PM PM

12

WMean4 
PM and 7:00 PM

4

WMean5 Mean interarrival time for sandwich 
customer between 7:00 PM and 9:00 PM

10

UMean1 
between 10:00 AM and 11:30 AM

22

UMean2 Mean interarrival time for sushi customer 
between 11:30 AM and 1:30 PM

4

UMean3 Mean interarrival time for sushi customer 
between 1:30 PM and 5:00 PM

15

UMean4 Mean interarrival time for sushi customer 
between 5:00 PM and 7:00 PM

7

UMean5 Mean interarrival time for sushi customer 
between 7:00 PM and 9:00 PM

12

STWMin Minimum service time for sandwich customer 3
STWMax 5

5
STUMax 8
NumEmpReg Number of employees at counter during non- 2

NumEmpBusy 
busy times 

3

Case1 Identifier for the base case  1 
Case2 Identifier for the alternative  2 

Parameters
Name Role Values 

EmpSchedCase Set to Case1 for the base case and 
Case2 for the alternative case (when a 
third employee is present at the counter 
during busy periods)

Case1,
Case2

tomer between 10:00 AM and 11:30 AM

 and 5:00 

 

Mean interarrival time for sushi customer 

customer between 5:00 
Mean interarrival time for sandwich 

Maximum service time for sandwich customer

Maximum service time for sushi customer  

busy times 

STUMin Minimum service time for sushi customer 

Number of employees at the counter during 

WMean1     Mean interarrival time for sandwich cus- 

5.2. Constants and parameters for Kojo,s Kitchen project.
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TABLE  5.3.  Customer Consumer Entity Class. 

Consumer Entity Class: Customer 
The customers that purchase items at the  Kitchen. 
Attributes Description 
Type Set to the type of customer, either W

TABLE  5.4. Counter group.

Aggregate Entity: CounterGroup
This group contains the customers being served at  Kitchen. 
Attribute Description 
List

being served 
N Number of entries in List. This value is always less 

than or equal to the input variable EmpNum 
(number of employees at the counter)

TABLE  5.5. Customer queue. 

Aggregate Entity: CustQue 
Queue of customers in front of the  Kitchen. 
Attribute Description 
List

are waiting for service
 Discipline: FIFO   

N Number of entries in List

TimeEnterQu        The time  the  customer  enters   the queue

Set of attribute-tuples of the customers that are 

List of the attribute-tuples of the customers that 

 (sandwich) or U (sushi) 
,,

,,

Kojo,s

Kojo,s

Kojo,s
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TABLE  5.7. Output for Kojo’s Kitchen project.

Sample Set for Kojo’s Kitchen project. 

Sample Sets 
Name Description 

Each value in the sample set

spent waiting in the queue for service by 
some instance of the consumer entity 

DSOV for Kojo’s Kitchen project.

customers that 
wait longer  
than 5 minutes 
in the queue 

Behaviour Components 

Time units: minutes

Observation interval: tB0B = 0, tBf B: = 660 minutes (11 hour business day).

TABLE  5.8. Initialisation for Kojo’s Kitchen project.

Initialise
EmpNum(t B0B) = 2 

A.CustQue.N  0 

Data Modules 
Name Description Data Model 
WSrvTm Returns a value for 

the service time of a 
sandwich customer

USrvTm Returns a value for 
the service time of a 
sushi customer  

PHI[WaitTime]
PHI[WaitTime] is the time spent 

class called Customer

PHI[WaitTime] PropGT(5, PHI
[WaitTime])

Derived Scalar Output Variable (DSOV) 

A.CounterGroup.N  0 

UNIFORM(STWMin, STWMax)

TABLE  5.9. Data modules for Kojo’s Kitchen project.

UNIFORM(STUMin, STUMax)

Name Description Output  Set  OperatorName

PropLongWait Proportion of 

(b)

(a)
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TABLE  

User-Defined Modules 
PropGT(Val,SampleSet) This procedure analyses  the  set 

SampleSet and returns the proportion of 
entries in the set that exceed the value Val

TABLE  5.11. Summary of Activity constructs for Kojo’s Kitchen project. 

Summary of Activity Constructs 
Action Sequences 

WArrivals           The Input Entity Stream of arriving sandwich 
customer 

UArrivals The Input Entity Stream of arriving sushi customer 
SchedEmp Extra employee scheduling 

Activities
ServingW Service for a sandwich customer 
ServingU Service for a sushi customer 

TABLE  5.12. Sandwich customer Arrival Action sequence.

Action Sequence: WArrivals(C.Customer) 
Precondition  t = M[U Bw B](t)
Event C.Customer.Type  W 

SM.InsertQue(A.CustQue, C.Customer) 

TABLE  5.13. Sushi customer Arrival Action sequence. 

Action Sequence: UArrivals(C.Customer) 
Precondition t = M[U BUB](t)
Event C.Customer.Type U

SM.InsertQue(A.CustQue, C.Customer) 

TABLE  5.14. Employee scheduling Action sequence.

Action Sequence: SchedEmp 
Precondition
Event IF(t = 90) EmpNum = 3 

ELSE IF(t = 420) EmpNum = 3 
ELSE EmpNum = 2 

C.Customer.TimeEnterQu t

(t = M[EmpNum](t)) &(EmpShedCase = Case2) 

5.10. User-defined modules for Kojo’s Kitchen project.

C.Customer.TimeEnterQu      t



TABLE  5.15. Serving sandwich customer Activity. 

Activity: ServingW 
Precondition (A.CounterGroup.N < EmpNum) & (A.CustQue.N  0) & 

(A.CustQue[0].Type = W) 
Event SM.RemoveQue(A.CustQue, C.Customer) 

SM.InsertGroup(A.CounterGroup,C.Customer)
SM.Put(

Duration DM.WSrvTm()
Event SM.RemoveGroup(A.CounterGroup, C.Customer) 

SM.Leave(C.Customer)

TABLE  

Precondition (A.CounterGroup.N < EmpNum) &  
(A.CustQue.N  0) & (A.CustQue[0].Type = S) 

Event SM.RemoveQue(A.CustQue, C.Customer) 
SM.InsertGroup(A.CounterGroup,C.Customer)

Duration DM.USrvTm()

SM.Leave(C.Customer)

5.4.1 Event-Scheduling Simulation Models 

The execution of an event-scheduling simulation model is concerned with 
the processing of future events. The model’s behaviour over the course of 

These snapshots contain: 

The state of the model 
The list of scheduled future events
The value of the simulation clock 

PHI[WaitTime]

5.16. Serving sushi customer Activity. 

SM.Put(PHI[WaitTime],

Activity: ServingU 

(t-C.Customer.TimeEnterQu))

an Event-Scheduling Simulation Model 
5.4 Transforming an ABCmod Conceptual Model into 

taken at those the discrete points in time when the events in the future events
 list occur. 

the simulation run can be represented as a sequence of snapshots of the model 

Event SM.RemoveGroup(A.CounterGroup,C.Customer)  

5.4 Transforming an ABCmo d      Co  n  c  e  p  t u  a l      M o  d  e  l . . .          1  61 

, (t-C.Customer.TimeEnterQu))



A future event is more complex than the notions of a scheduled event or 

with a scheduled event (e.g., the Activity terminating event in an 
ABCmod Activity) whose changes to the model might enable the 

The view outlined above is fundamental to the translation of an 

In our particular view of event scheduling, a future event list (FEL) is 
used in the scheduling of future events. It is composed of a list of records 
called event notices. Each contains a future event name that identifies a 
future event and a time attribute that defines the time when it must occur. 
Event notices are ordered on the FEL according to their time attribute. A 
notice contains, as a minimum, the future event name and a value for the 
time attribute. The future event name serves primarily to reference a future 
event routine (FER) that carries out the actions specified in the future 
event.TP.

1
PT

entities or other values required by the FER. 
Essential to executing a simulation model is a time advance routine. An 

algorithm for such a routine is provided in the flowchart of Figure 5.2. The 
routine contains a loop that processes the event notices on the FEL until a 
stop event notice or stop condition is encountered. The processing of an 
event notice has two steps: the clock is advanced to the value of the time 
attribute, and the referenced FER is called to change the model’s state and 
possibly add notices to the FEL. The notice at the head of the FEL is the 
next one to be processed and is called the imminent event notice.

The handling of an input function (exogenous events) is generally 
achieved by creating event notices based on the times prescribed by some 
input domain sequence (the timing map M[]). Consider the arrival of 
sandwich customers at Kojo’s Kitchen. An event notice for the first customer 
arrival is placed on the FEL with a time attribute value that is greater than or 
equal to the left boundary of the observation interval (see Table 5.12). 
                                                     
TP

1
PT It is sometimes convenient to use the future event name as a reference to the 

event notice itself.  Such usage is always clearly apparent. 

a conditional event that have been previously introduced (see section 4.2.4). In 
some respects a future event can be regarded as a composite of these two notions.
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A future event is composed of a sequence of actions whose impact on the model 

conditional events, and this cascade may continue. This can lead to 

is captured by a status change specification (SCS). This sequence begins 

additional future events being scheduled (i.e., placed on the future 
event list) as becomes apparent in the discussion that follows. 

preconditions for one or more conditional events which then cause further 

conditional event). The changes to the model that result may enable more 

to implement the event-scheduling approach. 

ABCmod conceptual model to an event-scheduling simulation model. The
rest of this section describes the programming mechanisms that are required 

 The notice may also contain a third element that references model 

changes to the model (recall that the starting event of an Activity is a 



When this notice becomes the imminent event notice the referenced FER 
will:

Generate  an  interarrival  time,  say a*,  using  a  data  model 

Establish  the  time  of  the  next  arrival  as t* = t + a*  (t*  corresponds 
to the next time in the domain sequence CS BD B[U BwB]).
Insert into the  FEL  a  new  arrival  event  notice  having t*  as  the 
value of the time attribute.

This procedure (which we call bootstrapping) results in a stream of 
customer arrivals for the simulation model. 

Start Simulation  Run

Call 

referenced 

FER

Stop Event 

Notice?

Get imminent 

event notice

Stop 

Condition 

True?

End Simulation  Run

YN

Y

N

Set system clock 

time attribute

FIGURE 5.2. Time advance algorithm for event scheduling.

The same procedure is used for generating most inputs for a simulation 
model. Consider a manufacturing problem with machines that have a 
‘down-time’ (e.g., they become unserviceable and require repair). An 
initial breakdown event notice is created and placed on the FEL. When the 
breakdown event notice is processed, an end-of-repair event notice is 
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to event notice 

associated the input variable UW (t)  (see Table 5.6).

5.4 Transforming an ABCmo d      Co  n  c  e  p  t u  a l      M o  d  e  l . . .  
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scheduled to bring the machine back into service. When the end-of-repair 
event notice is processed, then another breakdown event notice is placed 
on the FEL which indicates the end of the ‘up-time’, and so on. 

Stopping the simulation run can be achieved using one of two methods. 
The first is to run the simulation until a predetermined time. In this case, a 
stop event notice is placed on the FEL. Its time attribute value is the 
prescribed termination time for the simulation run. In our considerations 
below of the Kojo’s Kitchen project, a stop event notice with the event 
name StopEvent and time attribute value of 660 minutes (11 hours) is 
placed on the FEL. 

The second method for stopping a simulation run is to specify some 
condition for termination, such as the production of the 100Pth P component, 
the occurrence of a catastrophic system failure (suitably defined), or the last 
carton shipped by a distribution centre. The actual time of termination is 
not known at the start of the simulation run, and the state of the model 
must be checked after the processing of the imminent event to determine if 
the conditions for termination have been established. 

FERs contain the specifications for the required changes to the model’s 
status. There are two main steps in the FER’s execution: 

1.   Carry out the changes to the model’s status associated with a scheduled 
event.TP

2
PT Typically, this would correspond to carrying out the SCS of 

some Activity’s terminating event. 
2.   Check the various preconditions to determine if any conditional events 

(i.e., starting events) can be activated. This involves testing the preconditions  
for all Activities (more efficient approaches are possible). For each 
precondition that is found to be TRUE, the FER 

a) Carries out state changes associated with that conditional event 
(i.e., the SCS of the corresponding Activity’s starting event).

b)   Schedules a future event derived from the SCS of the corresponding 
Activity’s terminating event. 

As an illustration of the various possible interactions between the FEL 
and the FER we examine the processing that is associated with the 
handling of a customer at Kojo’s Kitchen. Consider the situation where the 
imminent event notice on the FEL is an EndServing event notice. We 
assume that such a notice is associated with the scheduled event that 
corresponds to the completion of some customer’s service at the counter. 
As many as two (or three) event notices called EndServing can 
simultaneously exist on the FEL because there can be two (or three) 

                                                     
TP

2
PT

that are TRUE.
Generally, Step 2 needs to be repeated until there are no preconditions  

 Data output operations may also be carried out. 
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customers at the counter.TP

3
PT Each such notice would have been placed on the 

The next subsection outlines how the event-scheduling routine can be 
implemented using Java. 

Event-scheduling simulation models and simulation programs are typically 

for supporting this development. They provide functions for random 
number generators, random variate functions, list processing, and so on. 
                                                     
TP

3
PT

When an endServing event notice is processed, then the corresponding FER would 
simply decrement the attribute N; that is, the customer attribute-tuple serves no 
purpose once it is removed from the customer queue. Any time a customer is 

original attribute-tuple could be required for future processing once it left the 
counter (e.g., could be interested in the operation of the whole fast-food court). 

  In this simple project, the counterGroup List attribute is not necessary. Only the 

created using general programming languages. Often libraries are available 

attribute N is required to give the number of customers being serviced at the counter.

brought to the counter the attribute N is incremented. In more complex models, the 

customers simultaneously there. 

is waiting in the queue to be served: 
a) 

terminating event of the enabled Activity) by: 
i. Determine the serving time s (using the appropriate data 

model) for the customer entity instance newly placed at the 
counter and establish the end of service time as tBend B = t + s.

ii. Insert a new event notice in the FEL with time attribute set 
to tBend B, with name EndServing, and  with  a reference to  the 
customer entity instance placed at the counter. 

  5.4 Transforming an ABCmo d      Co  n  c  e  p  t u  a l      M o  d  e  l . . .  

5.4.2 Java-based Tools for Event Scheduling 

must necessarily contain a reference to the specific customer entity 

FEL when the customer arrived at the counter.

instance to be removed from the counter because there can be two (or three) 

The following processing is carried out by the FER. 

counter. This could enable either a ServingW Activity or a ServingU 
Activity (see Table 5.15 and Table 5.16). If a customer entity instance

Remove the customer entity instance from the queue and place it at 
the counter i.e., in the CounterGroup. 

2. In the case of the EndServing event, space becomes available at the 

b)  Insert that customer’s computed wait time into the PHI[WaitTime]
sample set. 

1. The customer just served  leaves the model. Note that the event notice

c) Schedule another EndServing event notice (based on the terminating
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Most if not all conceptual model entities can be mapped directly into Java 
classes (the following section provides some suggested mappings). This 

scheduling simulation models and the time advance algorithm (for creating 
TP

4
PT

Java supports Abstract classes.TP

5
PT Such classes cannot be instantiated as 

executing objects, but provide the mechanism for supplying an abstract 
definition for extension to create classes that can be instantiated. An 
EvSched Abstract class (see the UML class diagram in Figure 5.3) is 
presented for creating Java event-scheduling simulation models. The class 

event scheduling. The class is intended for use with other classes 
(EventNotice, ESAttributeList, and ESOutputSet) used to define future 

classes used by EvSched are summarised in Table 5.17 and include the 
following.

fel  variable  references  a PriorityQueue  object TP

6
PT  to  implement 

the FEL. This class provides the functionality to rank event notices 
in a list (see EventNotice class below).

time0  and timef  correspond  to  the  boundaries  of  the 
observation interval. The timef variable is set when the simulation 
execution ends. Its value will only be known at that point when the 
right-hand boundary of the observation interval is implicit. These 
values are required for calculating DSOV values for trajectory 
sets. 

                                                     
TP

4
PT Many books are available on the subject (e.g., [5.2], [5.3]) and complete reference 
material for Java version 5.0 is offered by Sun Microsystems [5.5].

TP

5
PT A Java class provides the specification for creating instances of objects. Thus an 

object corresponds to memory being allocated in a computer program that 
contains data and can be executed. The class is much like a data type whereas 
the object is much like the variable declared using the data type. 

TP

6
PT The PriorityQueue class is provided by the Java Collections Framework. 

The indent of this section is to demonstrate how event scheduling 

model. Java is an object-oriented language that offers many predefined classes. 

section presents an overall approach to using Java for implementing event-

simulation programs). It is expected that the reader is familiar with Java.

programming tools can be developed using the Java programming language.

contains the variables, abstract methods, and methods for implementing 

These tools will be used in the next section in the presentation of the translation
process from an ABCmod conceptual model to an event scheduling simulation

event notices, attribute-tuples, and collecting output. Abstract methods 
must be defined when extending the class. These components and other 

a) The 

b) The clock variable is the implementation of the simulation clock. 
c) The variables 
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TABLE  5.17. The EvSched Abstract class. 

 Name Description 
fel The Future Event List implemented 

as a PriorityQueue object 
clock The simulation clock 
time0, timef These two variables define the 

boundaries of the observation interval 

Variables

StopEvent A numeric identifier representing the 
future event name in the event notice 
for implementing the explicit right-
hand boundary of the observation 
interval 

initEvSched Used to initialise the simulation clock
and timing. There are two versions –
one with the time for the end of the 
observation interval and one without 

setTimef Used to change the right- hand
boundary of the observation interval 

runSimulation This method implements the event-
scheduling time advance algorithm 
and controls the execution of the 
simulation

addEventNotice The method provides the means to 
fel

Methods

removeEventNotice  fel.
This method allows implementation 
of interrupts and pre-emption

processEvent This method is used to execute the 
FERs associated to the future event 
names

Abstract
methods

implement the implicit right-hand 
boundary of the observation interval 

EventNotice Class used to instantiate event notice 
objects added to fel

ESAttributeList Class used to instantiate attribute-
tuples for implementing consumer 
and resource entities

Other classes 

Class to instantiate an output set 
(either trajectory set or sample set). 
The class provides methods to 
compute DSOV values (i.e., values 
for a scalar output variable) 

add an event notice to  
Used to remove a notice from  

  5.4 Transforming an ABCmo d      Co  n  c  e  p  t u  a l      M o  d  e  l . . .  

implicitStopCondition This method can be used to 

ESOutputSet 



event name in an event notice to schedule termination of the 
simulation at a predefined time (explicit right-hand boundary of 

method that implements the time advance algorithm (see Figure 

clock, time0 variable, and optionally sets up a StopEvent notice. 

time0 to its startTime argument. The second form provides 
endTime that is used to create an event notice on fel with the 
name StopEvent and timeAttr set to endTime.

setTimef  provides  the  means  to  change  the  right-hand 
boundary of the observation interval. Its effect is to add an event 
notice containing the StopEvent constant. This method can be used 
to handle warm-up periods or to increase the run length as 
described in Chapter 6. 

addEventNotice  provides  the  means  to  instantiate  an 

attribute are provided and the other where in addition to these two 
parameters, a reference to an object is provided. In the first case, 
the obj variable of the event notice object is simply set to null.

such interventions terminate ongoing Activities. Terminating an Activity 
is equivalent to removing the event notice that corresponds to the 
Activity's terminating event from fel (see Section 5.4.4 for details). 

out the SCS associated with the events. The runSimulation method 
calls processEvent  with arguments evName

the observation interval. This method should evaluate the model 
variables to determine when the condition for terminating the 
simulation exists. For example, the method could return TRUE 
when the 100 Pth P widget was completed in a manufacturing model. 
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d)  The constant StopEvent (integer constant set to –1) serves as the

the observation interval). 

f)   The method initEvSched initialises the fel variable, the simulation 

The two forms of the method initEvSched initialise clock and 

e)  The simulation model execution is centered on the runSimulation

g) The method 

h) The method 

are available, one where only a future event name and time 

j)  The processEvent  is  an  abstract  method  (to  be  created  when 
extending the EvSched Class)  for calling future event routines that carry  

5.2) for processing event notices on  fel.

event notice object and add it to fel. Two forms of the method 

interrupts and pre-emption. Recall from the previous Chapter that 
i) The removeEventNotice  method  supports  the  implementation  of 

associated with the event). obj (reference to objects 
 (event  name)  and

k)  The implicitStopCondition abstract method provides the mecha- 
nism for implementing an implicit right-hand boundary of 
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+initEvSched(in startTime : double) : void

+initEvSched(in startTime : double, in endTime : double) : void
+setTimef(in endTime : double) : void

+runSimulation() : void

+addEventNotice(in name : int, in tm : double) : void

+addEventNotice(in name  : int, in tm : int, in obj : Object) : void

+removeEventNotice(in name : int) : void
+processEvent(in evName : int, in obj : Object) : void

+fel : PriorityQueue

+clock : double = 0

+StopEvent : int = -1

+time0 : double
+timef : double

EvSched

+EventNotice(in evName : int, in tm : double)

+EventNotice(in evName : int, in tm : double, in o : Object)

+compareTo(in evn : Object) : int
+equals(in evn : Object) : boolean

+eventName : int

+timeAttr : double
+obj : Object

EventNotice

1

-Q
u
e
u
e
s

*

java.util.PriorityQueue

+indexOfName(in ty : String) : int
+setCharValue(in attName : String, in c : char) : void

+setIntValue(in attName : String, in i : int) : void

+setBooleanValue(in attName : String, in b : boolean) : void

+setDoubleValue(in attName : String, in d : double) : void

+setStringValue(in attName : String, in s : String) : void
+setESAttributeListValue(in attName : String, in l : ESAttributeList) : void

+charValue(in attName : String) : char

+intValue(in attName : String) : int

+booleanValue(in attName : String) : boolean

+doubleValue(in attName : String) : double
+stringValue(in attName : String) : String

+esAttributeListValue(in attName : String) : ESAttributeList

ESAttributeList

javax.management.AttributeList

1

+
C

o
n
ta

in
s

0..*

«interface»

java.lang.Comparable

1

-C
o
n
ta

in
s

1

javax.management.Attribute

1

-Contains1..*

+ESOutputSet(in name : String)

+put(in tm : double, in val : double) : void

+computePhiDSOVs() : void

+clearSet() : void

+rewindSet() : boolean

+get(out timVal : double[2]) : void

+number : long

+sum : double

+mean : double

+sumSquares : double

+variance : double
+stdDev : double

+meanSquares : double

+max : double

+maxTime : double

+min : double
+minTime : double

ESOutputSet

1

-Outputs To1..*

FIGURE 5.3. The EvSched Abstract class and other related classes. 

notices. An EvSched object queues one or more of the EventNotice
Three  variables  are  defined  in  the  class: 

attribute), and obj (reference to any object associated to the event). 
The EventNotice class implements the Comparable Interface 
which is a requirement for use with the PriorityQueue class.

objects  on  fel.

l)  The EventNotice class supports instantiation of future event 
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 The equivalent numeric identifier of the future event name is stored in the 

EventNotice object. For examples, see Table 5.20. 

 (future  event  name ),   (event  notice  time eventName  timeAttr

7

7

+computeTrjDSOVs(in time0 : double, in timef : double) : void

+implicitStopCondition () : void



170    5. DEDS Simulation Model Development 

that can represent consumer and resource entities. This class 
extends the AttributeList class T P… P T The AttributeList object 
manipulates a list of Attribute objects that relate a name to any 
Java object. Extensions to the AttributeList and Attribute classes 

(the indexOf method provided by AttributeList matches both the 
name and value during a search) and for setting/getting the values 
of attributes based on their names. The ESAttributeList provides 
the method indexOfName and a set of methods for setting attribute 
values  (e.g., setIntValue(attName,i)
(e.g., intValue(attName)).

during the simulation run (with the method put T P P T ) and then to 
compute derived scalar values (using methods computeTrjDSOVs
or computePhiDSOVs
file with the name provided in the constructor’s argument 
(ESOutputSet(File-Name)). The class also provides a number of 
other methods to facilitate collection and analysis of the output 
data:

                                                     
TP PT The AttributeList and Attribute classes are provided by Java Management 

Extensions (JMX). 
TP PT

to order the event notices according to their timeAttr attribute. 
The method compareTo is used by the PriorityQueue class methods 

m) The ESAttributeList  class  supports  instantiation  of  attribute-tuples 

).  The PSOV values are recorded in a 

)  and  getting attributes values 

i. clearSet: This method removes all data currently recorded. 

(see Chapter 6) or to re-initialise the simulation program. 
ii. rewindSet: This method provides the means to point to the 

beginning of the recorded data (i.e. beginning of the file that 
contains the data). This method is required before making calls 
to the get method. 

iii. get:

This method can be used to accommodate warm-up periods 

a PSOV so that project specific operators can be applied when 

 Note that collecting data for either a trajectory set or a sample set uses the same 
method; both a time value and data value are stored in both cases. 

This method allows access to output data collected for

that contain DSOV values after computeTrjDSOVs or
        computePhiDSOVs is called. 

 offers access to the variable number that contains the number 
of elements in the output data set. Table 5.18 shows the variables 

8

9

8

are necessary to find the index of an Attribute with a specific name 

9

the project has distintive DSOV requirements. The class 

n)  The ESOutputSet  class provides the means to collect output data 
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The complete listings for the classes EvSched.java, ESAttribute.java, 
ESOutput.java, and EventNotice.java can be downloaded from the 

execution of this method relates to the various elements in the algorithm as 
follows.

a) The fel.poll() method removes the event notice (EventNotice

Object reference returned by the method to an EventNotice object 
reference.

b)  The clock is updated with the value of the event notice attribute 
nxtev.timeAttr. This implements the time advance mechanism of 
the algorithm. 

d)  If no stop event is detected, the event name nxtev.eventName and 
objectnxtev.obj are passed as an argument to the processEvent
method. This method will be specific to the simulation model (see 
the next section for an example of how this abstract method is 
used). The function of this method is to call the FER associated 
with the event name. 

e)  Finally the implicitStopCondition abstract method is called to test 
for an implicit stop condition, that is, some state of the model that 
indicates the end of the simulation. When this method returns 
TRUE,runSimulation will break out of its processing loop. As 
with the processEvent method, this method is specific to the model 
being implemented. 

f)  The timef variable is set to the current value of the clock after 
breaking out of the main processing loop. At the end of a 
simulation run, the variables time0 and timef represent the 
boundaries of the observation interval. 

textbook Web site. The method runSimulation is shown in Figure 5.4. The 

object) at the head of fel. A cast is necessary to cast the 

event. Calling either initEvSched(double startTime, double endTime) 
or setTime(double endTime) places on fel an event notice with the 
name StopEvent (-1) and with its timeAttr set to the value of 
endTime. When such an event notice is found at the head of fel, the 
runSimulation method breaks out of its processing loop (while 
loop). This logic accommodates the case where the observation 
interval has an explicit right-hand boundary, that is, the simulation 
runs must stop at a predetermined time. 

c)  A check is then made to see if the event id corresponds to a stop 

  5.4 Transforming an ABCmo d      Co  n  c  e  p  t u  a l      M o  d  e  l . . .  
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The stage has been set to create an event-scheduling simulation model 
from a conceptual model developed using the ABCmod framework 
described in Chapter 4. The next Section describes this translation, 
illustrating it using the conceptual model of the Kojo’s Kitchen project 

TABLE  

Variable
computeTrjDSOVs computePhiDSOVs 

sum K

i

iiiKfK ttytty

1

11 )()(

K

i

iy

0

sumSquares K

i

iiiKfK ttytty

1

1
2

1
2 )()(

K

i

iy

0

2

mean

0tt

sum

f K

sum

Maximum value in 
the sample set (with 
time it was recorded) 

Minimum value in the Minimum value in 
the sample set (with 
time it was recorded) 

meanSquares

0tt

sumSquares

f K

sumSquares

variance 2meansmeanSquare 2meansmeanSquare

stdDev variance variance

B iB B iB

B0B B B

computeTrjDSOVs arguments time0 and timef.

 ESOutputSet 5.18. Computing DSOV values in the     

ESOutputSet

max,

from Section 5.3 and the Abstract class EvSched from this Section. 

maxTime

mi n, minTime 

trajectory set and the time
it was recorded 

trajectory set and the time  

Maximum value in the 

it was recorded

of recorded pair values (i.e., equals number), and t , , are the two 

10 The pair (t ,y ) represents the recorded time/value pairs,  K equals the total number 

class.10

tf
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FIGURE  5.4. Code for the runSimulation method.

structural components consisting of the entities, constants, parameters, 

simulation model. Components representing behaviour will be translated to 
routines.

// Run simuation 
public void runSimulation() 
{
   while(true) // set up loop 
   { 
      EventNotice nxtev = (EventNotice) fel.poll(); 
      if(nxtev == null) 
      {  // This is a safety check, in case system is not properly specified 
        System.out.println("FEL is empty - terminating"); 
        break; 
      } 

      clock = nxtev.timeAttr; // update the clock 

      if(nxtev.eventName == StopEvent) // Check for a timed stop event 
      { 
          System.out.println("Encountered stop event - terminating"); 
          break; 
      } 

      processEvent(nxtev.eventName, nxtev.obj);   // Call referenced FER 

      if(implicitStopCondition()) 
      { 
          System.out.println("Implicit stop condition is true - terminating"); 

      } 
   }
      timef = clock;
}

          break; 

input variables, and output sets are represented by data structures in the 

5.4.3 Translating to an Event-Scheduling Simulation Model 

scheduling simulation model. The ABCmod conceptual model
ABCmod conceptual model and how they relate to those of the event-
of a DEDS model. Figure 5.5 shows the various components in an 
An ABCmod conceptual model provides a specification of the behaviour 

    5.4 Transforming an ABCmo d      Co  n  c  e  p  t u  a l      M o  d  e  l . . .  
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FIGURE 5.5. Relating ABCmod components to event-scheduling model 
components.

Translating the structural components is relatively straightforward. 
Typically there is a one-to-one correspondence between data structures and 
the conceptual model component. Table 5.19 lists a set of possible Java 
classes that can be used and extended to represent the various ABCmod 
entities. It is by no means complete and the reader is encouraged to review 

Translating the behavioural components consisting of the Action 
Sequences, Activities, data modules, and user-defined modules, is not as 
straightforward. Dealing with data modules and user-defined modules is 
relatively easy because they are typically coded as routines (e.g., Java 
methods). Often libraries provide a number of routines for supporting 
simulation functionality such as random variate generation and list 
processing. For example, a Java package, cern.colt, TP PT  provides a number of 

                                                     
TP PT T T

of Java packages as Open Source Libraries for High Performance Scientific and 
Technical Computing in Java [5.4]. It provides a number of classes that 
implement stochastic data models. Version 1.2.0 was used during the writing of 
this textbook. 

 

11 

available Java classes for representing entities. 

  CERN (European Organisation for Nuclear Research) makes available a number 

11
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objects for implementing random variates. The challenge in translating 

TABLE  5.19. Representing ABCMod entities with Java objects. 

ABCmod
Entities

Java Object Class 

Consumers/ ESAttributeList – This class, developed in Section 5.4.2, 
is a subclass of the AttributeList class that creates and 
manipulates a list of Attribute objects. The Attribute class 

Java Class – The Java class provides the means to define 
attributes (as class variables) and methods to manipulate 
these attributes 

Queues Queue Interface with a number of Queue classes:
ArrayBlockingQueue (bounded FIFO queue) 
ConcurrentLinkQueue (Thread-safe FIFO queue using
linked nodes) 
DelayQueue (unbounded queue of delayed elements – 
when elements delay is expired, they are presented at the 
head of the queue in FIFO fashion) 
LinkedBlockingQueue(bounded queue implemented with 
linked nodes) 
ProrityBlockingQueue(similar to PriorityQueue, but 
offers also blocking retrieval functions when queue is 
empty)
PriorityQueue(unbounded queue that orders elements 
according to priority) 
SychronousQueue (queue that provides a rendezvous 

and take) 
Groups Set Interface with a number of Set classes:

HashSet – This class is an extension of the AbstractSet 
and supports the set methods using a hash table. This 
class provides constant performance for basic operations 
such as add, remove, contains, and size. But the time for
construction of the HashSet object depends on the size of
the hash table 
LinkedHashSet – Similar to the HashSet class but stores 
objects in the set using a doubly linked list. This provides 
an order to the added objects; that is, it is possible to read 
the objects in the same order they were stored 

associates a name with any type of object. 

is capturing the Activity specifications in a set of FERs.
behaviour from an ABCmod conceptual model to the simulation model

5.4 Transforming an ABCmo d      Co  n  c  e  p  t u  a l      M o  d  e  l . . .  

Resources

mechanism – does not collect but implements single put 
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FIGURE 5.6. Creating FERs. 
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modular approach is adequate for our introductory discussion. In 
general, it is not efficient because checking all preconditions in each FER may  

limited number of preconditions. As well, the precondition routine can 
become quite long when the model is complex. 

Each Activity in the ABCmod conceptual model is separated into its constituents; 
namely, the precondition, the SCS of the starting event, the SCS of the 
terminating event and the duration. These are re-organised into a precondition 
routine and a collection of FER’s. Fortunately, there exists a pattern in this re-
organisation as shown in Fig. 5.6.  
     A FER is created for each Activity in the ABCmod conceptual model. The 
program code of a FER has two parts, the first is an implementation of the SCS 
that is associated with the terminating event of the Activity and the second is an 
invocation of the precondition routine.  
      A simple modular approach can be taken in organizing the program code for 
the precondition routine as illustrated in Figure 5.6. Each segment of the routine 
is associated with some particular Activity and encompasses its precondition, the 
SCS of its starting event and its duration. The segment is entered only if the 
precondition of the Activity is TRUE. The program code for the segment has two 
parts. The first is an implementation of the SCS that is associated with the starting 
event of the Activity and the second is code that schedules a future event at time 
(t+D) where t is the current value of (simulated) time and D is the duration of the 
Activity. The future event is, in fact, the invocation of the FER that is associated 
with the Activity in question. 
    A FER is likewise created for each action sequence in the ABCmod 
conceptual model. However the structure of each such FER is different from the 
FER that evolves from an Activity. In part this is because an action sequence has 
no terminating event. The FER in this case has three parts. The first is an 
implementation of the SCS of the Action Sequence’s starting event. The second is 
program code that schedules a future event that is the FER’s own invocation at 
some a (future) time determined by a bootstrapping approach. The bootstrapping 
references the timing map that is associated with the action sequence. The third 
part is an invocation of the precondition routine. There is no segment needed in 
the precondition routine for an action sequence. 

FER but does give rise to a segment in the precondition routine. This segment is 
entered only when the precondition for the Action is TRUE. The segment has only 
one part which is the program code that implements the SCS of the Action’s 
starting event. 
 
 

      The transformation of an Action is straightforward. It does not give rise to a 

Kojo's Kitchen project. The corresponding FER carry's out 
 ServingW Activity (remove the 

   Recall the example of the EndServing future event of the  

not be necessary inasmuch as any particular SCS will typically affect only a 

the SCS of the terminating event of the 

presence of a C.Customer in the customer queue (the precondition for 
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C.Customer from the A.CounterGroup aggregate) and then tests for the 

In Figure 5.6 the precondition routine is called from all FERs. This 
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routine. In Java, data models usually correspond to available

class constructor provides the ideal place for initialising the 
simulation model object and including initialisation code specified 

However, for trajectory set output, the requirement is implicit and program 

variable associated with the trajectory set changes in value. 

entity instances are represented in Java as ESAttributeList objects with 
two attributes; namely Type (value is a Character object with possible 
values W or S) and TimeEnterQu (double value corresponding to the time 
the customer enters the queue). The counterGroup object is defined as a 
variable of the KojoKitchen class and implemented as a HashSet object 
(see Figure 5.7). The HashSet class provides the methods to add an object 

specified in the conceptual model together with an initialisation 

in the ‘Initialise table’ of the ABCmod conceptual model. 

User-defined modules are implemented as Java methods. The Java 

each FER is 
implemented as a Java method. 

objects. For example the classes Exponential and Uniform 

 In Java,  

Step 4 – Develop a precondition routine to start Activities or 

conceptual model explicitly state what is required (i.e., SM.Put( )). 

code must be formulated to provide time/value pairs each time the

ation model. Table 5.19 was used to 

Let’s examine how these steps can be applied to the ABCmod conceptual 
model for Kojo’s Kitchen (see Tables 5.2 through 5.16) to create a Java simul-

the group of customers being served at the counter (A.CounterGroup) 

output data. For generating sample set output, the SCSs in the ABCmod 

    select Java classes for 

and the queue at the counter (A.CustQue). The C.Customer 

The steps for creating an event-scheduling simulation model from an 

  Step 1 – Define appropriate data structures to accommodate the 
entities, constants, parameters, and input variables within the 

ABCmod conceptual model can be summarised as follows. 

with these data structures.
ABCmod conceptual model. The status of the model will be identified

Step 3 – Develop a FER for each Activity and each Action Sequence 
within  the ABCmod conceptual model. 

    S 

Step 2 – Develop the required data modules and user-defined modules 

tep 5 – Develop appropriate program code to generate the required 

representing the consumer entity instances (C.Customer), 

ServingW and precondition for ServingU). If a precondition is TRUE, the 
C.Customer is moved to the counter (starting event for ServingW or 
ServingU), and another EndServing event is scheduled (i.e., the 
terminating event for the ServingW or ServingU Activity). 

Actions when their precondition is TRUE. In Java the precondition

implement, respectively, exponential and uniform distributions. 

routine is implemented as a method. 
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EvSched

+KojoKitchen(in totime : double, in tftime : double, in addE : int, in sd : Seeds)

-processEvent(in eventNum : int, in obj : Object) : void

-implicitStopCondition() : boolean

-addSandwichCust() : void
-addSushiCust() : void

-schedEmployees() : void

-finishServing(in customer : Object) : void

-getMUw() : double
-getMUu() : double

-getMempNum() : double

+getPropGT(in val : double) : double

-WMean1 : double = 15

-WMean2 : double = 3
-WMean3 : double = 12

-WMean4 : double = 4

-WMean5 : double = 10

-UMean1 : double = 22

-UMean2 : double = 4
-UMean3 : double = 15

-UMean4 : double = 7

-UMean5 : double = 12

-STWMin : double = 3

-STWMax : double = 5

-STUMax : double = 8

-NumEmpBusy : double = 3

-NumEmpReg : double = 2

-empNum : int

-counterGroup : HashSet

-custQue : ConcurrentLinkedQueue
-sandwichInterArrDist : Exponential

-suchiInterArrDist : Exponential

-wSrvTm : Uniform

-uSrvTm : Uniform

-phiWaitTime : ESOutputSet

KojoKitchen

FIGURE

Step 1 is completed by encoding the constants, parameter, and input 
variable found in the conceptual model into the KojoKitchen class: 

Case1 : int = 1

-STUMin : double = 5

Case2 : int = 2

-preConditions() : void

 5.7. The KojoKitchen class. 
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EmpSchedCase

to the set (add), remove an object from a set (remove), and get the number 
of elements in the set (size). Finally the queue A.CustQue is defined as a 
ConcurrentLinkedQueue object called custQue that implements an unbounded 
FIFO queue. 
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UMean1, UMean2, UMean3, UMean3, UMean5 
STWMin, STWMax, STMin, STMax 

  NumEmpReg (2 – regular number of employees), NumEmpBusy 
(3 – number of employees during the busy period) 

  Case1 (1 indicating base case for executing the model), Case2 (2 
indicating alternate case for executing the model) 

  EmpSchedCase – (parameter) An int variable set to AECase1 for
the base case (only two employees serving at the counter) and 
AECase2 when an additional employee is added during busy 
periods

  EmpNum – (input variable) An integer variable that represents the 
number of employees at Kojo’s Kitchen 

Exponential objects sandwichInterArrDist and sushiInterArrDist) and two 
others for service times (i.e., the two Uniform objects coldCutSrvTm and 
sushiSrvTm). Three user-defined modules, getMUw, getMUu, and 

BW B BU B

M[EmpNum](t) functions, that is, the timing maps for the three Action 
Sequences. The class constructor KojoKitchen contains all necessary code 
to set up the various data model objects as well as the required 
initialisation. Step 2 is now complete. 

The class variables provide the set of data structures for representing the model 
structure. Methods are created to operate on these data structures in Step 3 

In Step 3, future events and corresponding FERs are defined. Table 5.20 
lists the four future events for the Kojo’s Kitchen model and the 
corresponding FERs implemented as Java methods. The processEvent
method, implemented with a simple switch statement as shown in   

   

Figure 5.8, is responsible for calling these methods. Recall from Section 
5.4.2 that this method is called by runSimulation.

Future Event 
Name

Identifier Java Method ABCmod 
Activity

Constructs
SandwichArrival 1 addSandwichCust WArrivals 
SushiArrival 2 addSushiCust UArrivals 
SchedEmp 3 schedEmployees SchedEmp 
EndServing 4 finishServing ServingW 

ServingU

Four objects serve as data modules: two for arrivals (i.e., the two 

getMEmpNum, implement, respectively, the M[U ] (t), M[U ] (t), and 

and 4 to capture model behaviour specified in the ABCmod conceptual model.

TABLE  5.20. Future events for the Kojo’s Kitchen simulation model. 

WMean1, WMean2, WMean3, WMean4, WMean5 



    181 

The addSandwichCust and addSushiCust methods are almost identical 
as can be expected when examining the corresponding conceptual model 
Action Sequences, WArrivals and UArrivals. Figure 5.9 shows the code 
for the addSandwichCust and getMUw methods.

FIGURE 5.8. Implementation the processEvent method for Kojo’s Kitchen. 

Figure 5.11 shows the code for the finishServing method (the 
endServing FER). Note that in this simple project, both terminating events 
for the Activities ServingW and ServingU are identical and thus 
implemented using a single FER. Normally two separate future events 
would be used. This method illustrates how a reference to an object in the 
EventNotice is used. As shown in Figure 5.12, when an event notice for the 

public void processEvent(int eventNum, Object obj)
{
 switch(eventNum) 
 { 
   case SandwichArrival: addSandwichCust(); break; 
   case SushiArrival: addSushiCust(); break; 
   case SchedEmp: schedEmployees() ; break; 
   case EndServing: finishServing(obj) ; break; 
                 default:

        System.out.println("Error: Bad event identifier" + eventNum); break; 
 } 
}

In addSandwichCust a C.Customer entity is instantiated as an 
ESAttributeList
initialised respectively, to a Character object (with value W) and a 

object is then added to the customer queue using the custQue.add method. 
Bootstrapping is used in addSandwichCust to create a stream of arriving 
customers using the getMUw method and scheduling the next arrival with 
the addEventNotice method. Arrival event notices are placed on the FEL 
as a SandwichArrival event. Finally the method invokes the preConditions 
method to test Activity preconditions (more on this later). 

Fig. 5.10 show the schedEmployees method (that uses the getMempNum 
method) to implements the Action Sequence SchedEmp. The input variable 
EmpNum is updated according to the current time per the conceptual 
model SCS. Again, bootstrapping is used to schedule the next update of 
the input variable. Note that in this case however, getMempNum generates                  
the timing map deterministically. Note also that preConditions is not called at the                 
end of the method because this Action Sequence will not cause any Activity 

5.4 Transforming an ABCmo d      Co  n  c  e  p  t u  a l      M o  d  e  l . . .  

 object  and the and TimeEnterQu  attributes  are  

     

Type

Double object (whose value is the current time). The C.Customer 

 to start.
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finishServing event is created, a reference to the customer added to          
the counterGroup is included in the notice. When processEvent (see  
Figure 5.8) is called by runSimulation, this reference is passed on until it 
reaches the finishServing method that will use the reference to remove the 
appropriate customer object from counterGroup. Finally, the method

Step 3. 

FIGURE 5.9. Implementation of the WArrivals Action Sequence. 

private void addSandwichCust()
{
 // WArrival Action Event SCS 
     ESAttributeList customer = new ESAttributeList(); 
     customer.add(new Attribute(Type,new Character('W'))); 
     customer.add(new Attribute(TimeEnterQu,new Double(clock))); 
     custQue.add(customer); 
     addEventNotice(SandwichArrival,getUw());// Schedule next arrival 

}

private double getMUw()  // for getting next value of Uw(t) 
{
     double nxtInterArr; 
     double mean; 

     if(clock < 90) mean = WMean1; 
     else if (clock < 210) mean = WMean2; 
     else if (clock < 420) mean = WMean3; 
     else if (clock < 540) mean = WMean4; 
     else mean = WMean5; 

     return(nxtInterArr+clock); 
}

preConditions is called to test Activity preconditions. This completes   

     preConditions(); // check preconditions 

     nxtInterArr = sandwichInterArrDist.nextDouble(1.0/mean);

Step 4 includes adding code for testing the preconditions of starting 
events. Because of the simplicity of Kojo’s Kitchen project, all testing of 
preconditions has been collected in a single method preConditions that is 
called by the methods addSandwichCust, addSushiCust, and finishServing 
(these methods correspond to FERs as discussed in Step 3). As shown in 
Fig. 5.12, the custQue.peek method is used to examine the head of the 
queue first to test the various Activity preconditions. The code 
implementing the starting events includes a statement calling the poll 
method to remove the head of custQue (note it is possible to use the poll 
method in place of the peek method making the code more efficient but 
this would deviate from the ABCmod conceptual model specifications). 
The starting event includes the logic to generate the output and is  
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FIGURE 5.10. Implementation of the SchedEmp Action Sequence. 

private void schedEmployees() // SchedEmp event
{
    double mEmpNum; //Timing map value 

    { 
      case Case1: return;  // no changes when addEmpCase is 1 
      case Case2: 
              if((clock==90) || (clock==420)) empNum = 3; 
              else empNum=2; 

  // Schedule next change 
 mEmpNum = getMempNum(); 
 if(mEmpNum != -1) addEventNotice(SchedEmp,mEmpNum);

               break; 
       default: 

    } 
}

private double getMempNum()  // for getting next value of EmpNum(t) 
{
   if(clock == 90.0) return(210.0); 
   else if(clock == 210.0) return(420.0); 
   else if(clock == 420.0) return(540.0); 
   return(-1);  // no more 
}

implemented as the method phiWaitTime.put method (more on this in the 
discussion of Step 5). The addEventNotice method implements the 
Activity durations, that is, schedules the future event that corresponds to 
the Activity’s terminating event.  

Step 5 deals with the collection of sample set and trajectory set data. 
However, there is no requirement for trajectory set output in the Kojo’s 
Kitchen project (a relevant illustration is provided in the following 

starting event SCS’s of ServingW and ServingU Activities (Tables 5.15 
and 5.16) is achieved using the phiWaitTime.put method as shown in 
Figure 5.12. The phiWaitTime.put method records the customer waiting 
time calculated by subtracting the time a C.Customer exits the queue from 
the time the C.Customer entered the queue as recorded in its timeEnterQu 
attribute. The put method records the output data in the file created when 
the phiWaitTime object was instantiated. A new method getPropGT is 
added to the KojoKitchen object to compute, from this recorded data, the 
proportion of customers that waited longer than five minutes.  

               System.out.println("Invalid empSchedCase:"+empSchedCase); 

 5.4 Transforming an ABCmo d      Co  n  c  e  p  t u  a l      M o  d  e  l . . .  

Section). The acquisition of sample set data indicated by the SM.Put in the 

    switch(empSchedCase) 
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FIGURE 5.11. Implementation of the ServingW and ServingU Terminating Events. 

private void finishServing(Object customer) // finishServing event

     if(counterGroup.remove(customer)==false) 
            System.out.println("Error: Customer not in counterGroup"); 
     preConditions(); // start Activities 
}

// Check for starting events of ServingW and ServingU
private void preConditions() 
{
 char typeCh; 
 ESAttributeList customer; 
 if(counterGroup.size() < empNum) // Space at counter  
 { 
    customer = (ESAttributeList)custQue.peek();   // check head of queue 
    if(customer != null)   // not null when customer is present 
    { // Get the Type attribute object 
       typeCh = customer.charValue(Type); 
       switch(typeCh) 
       { 
         case 'W': // ServingW starting event 

   customer = (ESAttributeList)custQue.poll();  
     counterGroup.add(customer); 
     phiWaitTime.put(clock, 

           clock-customer.doubleValue(TimeEnterQu));
     addEventNotice(EndServing,  

clock+sandwichSrvTm.nextDouble(),
    (Object)customer); 
     break; 
         case 'U': // ServingU starting event 

   customer = (ESAttributeList)custQue.poll(); 
     counterGroup.add(customer); 
     phiWaitTime.put(clock, 

           clock-customer.doubleValue(TimeEnterQu));
     addEventNotice(EndServing,  
    clock+sushiSrvTm.nextDouble(), 
    (Object)customer); 
     break; 
          default: 
     System.out.println("Invalid customer type found "  
         + typeCh + " ignored\n"); 
     break; 
       } //switch 
    }//if 
 }//if 
}

{// ServingW and ServingSU terminating event SCS 

FIGURE 5.12. Implementation of Activity preconditions and starting events. 
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TABLE  5.21. Future events for the port simulation model. 

Future Event 
Name

Identifier Java Method ABCmod Activity 
Construct

TankerArrival 1 addTanker TankerArrival 
BerthingDone 2 addToBerth Berthing 
DeberthingDone 3 tankerExits Deberthing 
ReachedHarbour 4 atHarbour MoveToHarbour 

ReturnToHarbour
ReachedBerths 5 atBerths MoveToBerths 
LoadingDone 6 addToDeberthQue Loading 

This Section focuses on some event scheduling functionality 

e.g., handling triggered activities and interrupts. For this, we return to our 
discussions of the Port project in Chapter 4. In particular, we examine 
some aspects of the ABCmod conceptual model called ABCmod.Port.ver2 

. 
Table 5.21 show the future events defined for the event scheduling 

simulation model corresponding to the activity constructs of the conceptual 
model given by ABCmod.Port.ver2. 

We first consider the implementation of Triggered Activities. Typically, 
a method for implementing the starting event,s SCS and scheduling the future 
event associated with the terminating event needs to be created. Then, a 
reference to TA.Name becomes a call to that defined method.  

In the Port project the reference to TA.Loading in the Berthing Activity 

LoadingDone future event as shown in Fig. 5.14. Because there is no 
starting event in the Loading Activity, no future action is needed. 

The method loadingTime shown in Fig. 5.15 illustrates an 
implemention of a user defined module. It generates a loading time for 
a given tanker. 

There is a requirement to observe the berth group size and this gives rise 
to the need for trajectory set output. Appropriate code for this task is 
shown in Figure 5.16. The class variable lastBerthGrpN is used to 
represent the last recorded value for the berth group size. Whenever a 
change in the size of the berthGrp aggregate is detected, it is recorded 
using the put method. 
                                                     

available at the Web site for this textbook.  The file is called PortVer2.java. The reader 
is encouraged to examine this program and identify how the five translation 
steps outlined in the previous section have been carried out. 

requirements not illustrated in the discussion of the Kojo Kitchen project: 

that was formulated in Example 2 in Section 4.1.2

5.4 Transforming an ABCmo d      Co  n  c  e  p  t u  a l      M o  d  e  l . . .  

 Note that an event scheduling Java based program for ABCmod.port.ver2 is 

5.4.4 Implementing Other Functionalities 

is implemented as a call to the addEventNotice method that schedules the 

12

12
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+PortVer2Model(in t0time : double, in numBerths : int, in sd : Seeds)

+processEvent(in eventNum : int, in obj : Object) : void
+addTanker() : void

+addToBerth() : void

+addToDeberthQue() : void

+tankerExits() : void

+atHarbour() : void
+atBerths() : void

+checkPreCond() : void

+getMUtk() : double

+loadingTime(in size : int) : double

-BERTHING_TIME : double = 2

-DEBERTHING_TIME : double = 1

-EMPTY_TRAV_TIME : double = 0.25
-AVGARR : double = 8.0

-PERSML : double = 0.25

-PERMED : double = 0.25

-PERLRG : double = 0.5

-SMLMIN : double = 8
-SMLMAX : double = 10

-MEDMIN : double = 10

-MEDMAX : double = 14

-LRGMED : double = 15

-LRGMAX : double = 23
-BERTHING : int = 0

-DEBERTHIHNG : int = 1

-TOHARBOUR : int = 2

-TOBERTHS : int = 3

-PAUSEH : int = 4
-PAUSEB : int = 5

-SMALL : int = 0

-MEDIUM : int = 1

-LARGE : int = 2

-numBerth : int
-loadTimeSml : Uniform

-loadTimeMed : Uniform

-loadTimeLrg : Uniform

-tankerSize : EmpiricalWalker

-getUTk : Exponential
-tug : ESAttributeList

-berthGrp : HashSet

-harbourQue : ConcurrentLinkedQueue

-deberthQue : ConcurrentLinkedQueue

+phiTankerTW : ESOutputSet
+trjBerthGrpN : ESOutputSet

-lastBertheGrpN : double

PortVer2

EvSched

FIGURE 5.13. The PortVer2 class (corresponding to ABCmod.Port.ver2). 
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FIGURE 5.14. Implementation of the Triggered Activity Loading(C.Tanker). 

FIGURE  LoadingTime.

FIGURE 5.16.

private double loadingTime(int size)
{
 switch(size) 
 { 
    case SMALL: return(loadTimeSml.nextDouble()); 
    case MEDIUM: return(loadTimeMed.nextDouble());
    case LARGE: return(loadTimeLrg.nextDouble()); 
    default: break; 
 } 
 return(0);  // bad value 
}

public void processEvent(int eventNum, Object obj)
{
 switch(eventNum) 
 { 

. . . . . 
 } 
 
 double n = (double) berthGrp.size();    
 if(lastBerthGrpN != n) 
 { 
 
    lastBerthGrpN = n; 
 } 
}

private void addToBerth() // BerthingDone event
{

    ESAttributeList tker = (ESAttributeList) tug.esAttributeListValue("Ship"); 
    berthGrp.add(tker); 
    // Start Loading Activity (TA.Loading(T.Tug.Tnkr)) 
    addEventNotice(LoadingDone,clock+loadingTime(tker.intValue("Size")),tker); 
    // R.Tug.Status <- PAUSEB 
     tug.setIntValue("Status", new Integer(PAUSEB)); 
    checkPreCond(); // check for other preconditions to start next Activities 
}

    // Berthing Activity terminating event SCS

 5.15. Implementation of user-defined module

method.

model’s status. Recall from Section 4.2.4 that the difference between 

The implementation of interrupts and pre-emption requires the termination  
of some Activity’s duration and carrying out an event SCS to update the 

  5.4 Transforming an ABCmo d      Co  n  c  e  p  t u  a l      M o  d  e  l . . .  

   trjBerthGrpN.put(clock,n); 

Implementation of  the processEvent

// Update the trjBerthGrpN Trajectory set 
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interruption and pre-emption is that the former is invoked when a 

In both cases, the challenge is to correctly terminate the duration of an 

TP PT

 presented in  Section 5.4.2 is used to 

FIGURE

                                                     
TP PT It may be possible that the Activity is not terminated, but the duration is 

modified. For example, when a tug is towing a tanker into a port and a storm 
sets in, the tug could simply slow down instead of dropping anchor. In such a 
case, the event notice is removed from the FEL and replaced with a new event 

// Check for Activity preconditions
private void checkPreCond() 
{
 int tugSt;  // tug state 
 double dbl1; 

 // get state of tug 
 tugSt = tug.intValue(“Status”); 
 . . .  
 . . .  
 . . .  

 // precondition for interrupting the MoveToBerths Activity 
 if( (tugSt == TOBERTHS) && (harbourQue.size() > 0) ) 
 { 
    // find out how close we are to the Berths 
    dbl1 = tug.doubleValue("TimeLeftHarbour"); // get TimeLeftHarbour
    if( (clock-dbl1) < (0.7 * EMPTY_TRAV_TIME) ) 
    { 
       // Terminates MoveToBerths Activity 
       removeEventNotice(ReachedBerths);  
       // Start the ReturnToHarbour Activity 
       tug.setIntValue("Status",new Integer(TOHARBOUR)); 

    // Schedule end of ReturnToHarbour - same as MoveToHarbour 
     addEventNotice(ReachedHarbour, clock+(clock-dbl1) ); 

    } 
 } 
}

precondition becomes TRUE whereas the latter is explicitly invoked in an  

implement this functionality. 

SCS of some other Activity. 

Activity. In any event-scheduling simulation model, the duration of an 
Activity is implemented by placing an event notice on the FEL to indicate 
the point in time when the duration ends. Thus to terminate the duration 
before its "natural ending'', this event notice must be removed from the FEL.   

removeEventNoticeThe  method

 5.17. Implementing the interrupt in the MoveToBerths Extended Activity of 

Table 4.32.  

notice that takes into account the slowing down of the tug. 

13

13



the tug is returning to the berths with no tanker in tow and 
a tanker arrives in the port. If no tanker is waiting to be deberthed or the tug 

preconditions for Activities. In the port simulation model, the method 

5.5.1 Process-Oriented Simulation Models 

process specifications. Each of these is formulated as an interconnection 

specification. Each process 
specification has a graphical representation which we illustrate below. 

It is important to realise that specifying a process for a consumer entity 
class means that each consumer entity instance in the model will ‘live’ its 
own lifecycle, in other words, its own process instance. Each of these 
individual process instances can interact with each other, often by sharing 
(usually competing for) the various resources in the model. Consider again 
the example of the shoppers as shown in Figure 4.2. The process for the 
shopper entity class has several distinct phases: arrival in the store, 
followed by movement between browsing activities and payment 
activities, and finally departure from the store. 
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Recall that in Example 2 the MoveToBerths Extended Activity can be 
interrupted when 

has not travelled more than 70% of the way back to the berths, the tug will 
return to the harbour to berth the tanker that has just entered the port. 
The event associated with the interrupt triggers the ReturnTo Harbour 
Activity (a Triggered Activity) and explicitly terminates the MoveToBerths 
Activity (the Terminate ‘instruction’). 

5.5 Transforming an ABCmod Conceptual Model into a 
Process-Oriented Simulation Model 

The interrupt precondition is checked in the same fashion as are 

checkPreCond contains the code for testing both Activity preconditions 

The process view for a simulation model begins with a collection of 

and interrupt precondition (see Figure 5.17). 

at least one process specification. Sometimes

cation are organised to reflect the lifecycle of one of the consumer entity 

of some of the Activities within an ABCmod conceptual model. In one of 
the most common circumstances, the interconnections in a process specifi-

classes that have been identified. The implication here is that there
generally is a process specification for each consumer entity class. A basic
(and natural) requirement is that every Activity in the ABCmod conceptual 
model needs to be included in 

to be captured in a process 
specification; that is, the resource participates 

involving consumer entity 
classes are also typically captured in a process 

this gives rise to a situation where one of the resources in the ABCmod 
conceptual model exhibits a lifecycle that needs 

in an Activity that is in-
dependent of consumer entities. Inputs not

 

5.5 Transforming an ABCmod Conceptual Model . . . 
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An entity’s flow from one Activity to another within a process depends 

then flow is interrupted and a delay occurs. This status can, however, 

Activities
 within the various process instances. This is how processes interact with
 each other. This situation is illustrated by the shopper that must wait in
 a  queue  before  acquiring  the  service  desk  resource. The desk 

entities, consider the Port project discussed in Chapter 4. The Activities 
MoveToHarbour and MoveToBerths involve only the tug resource entity. 
Because they do not involve the tankers, these Activities are not part of the 
tanker lifecycle. Thus it is necessary to define a process for the tug 

specification. Furthermore, the tanker process instances will interact with 
this tug process. For example, the arrival of the tanker in the port changes 

involves a tanker) a Berthing Activity could be initiated to move a waiting 
tanker in the harbour to the berths. Activities such as Berthing and 
Deberthing that involve both the tug and a tanker become part of both the 

processes can occur. 
The formulation of a process-oriented simulation model from an 

diagrams. These provide the means for organising the
 Activities in the 

be easily transformed into the
 process construct  of  the  programming 

 following subsection outlines the construction procedure for these process
 diagrams. 

 over time, of an arbitrary instance of some entity type within the model.

on the status of the ‘downstream’ Activity’s precondition. If it is FALSE 

As an illustration of how processes can also be defined for resource 

But what changes the model? In the ABCmod framework  changes
 to the model result from the occurrence of events. When some on- 
going Activity terminates, the SCS of its terminating event changes  the 
status of the model and this could enable many  pending 

becomes
 available to a specific shopper only when that shopper is at the head of
 the 

resource  such that these two Activities become part of a tug process 

the model’s status and this could result in a TRUE value for the 

Similarly when the tug completes the Deberthing Activity (which always 
precondition of the MoveToHarbour Activity, thereby initiating it. 

tanker process and tug process. This  also  illustrates  how interaction 
between 

ABCmod conceptual model is best carried out by first developing a 
group of process 

ABCmod conceptual  model into a collection  of process
 specifications.  Each  of  these can  then  

5.5.1.1 Formulating Process Diagrams from an ABCmod
 Conceptual Model 

A process diagram organises a subset of the Activities in the ABCmod 
conceptual model into a directed graph which then serves as a process

 specification. The purpose of the directed graph is

environment being used. The

queue and a server becomes available. 

change from FALSE to TRUE when a change in the model occurs. 

        to represent the flow,   
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ation model (in whatever programming environment that is to be used).  

diagrams and this reflects the inherent interaction among
 entity types. All 

The directed graph has two node types: namely, labelled rectangles and 
unlabelled circles. A labelled rectangle corresponds to an Activity in an 

a  directed arc may connect two rectangles signifying
 that  the  downstream Activity is immediately initiated upon completion of
 the  upstream  Activity (as  in  the  case  where  a  Triggered  Activity is
 invoked).  However,  in  most cases,  a  path between two Activities  is
 constructed  from  two  directed  arcs that  are interconnected through a
 circle.  The  circle,  which  is  called  an interaction  point, indicates a
 potential interruption in the flow of time between the completion of the
 upstream Activity and the initiation of the downstream Activity. 

Recall that the unit of behaviour that is embedded in an Activity can 
begin only when its precondition is TRUE. Generally the precondition is a 
Boolean expression that incorporates attributes from a number of different 

Activity within the process diagram there is no
 assurance  that  the conditions  required  to  initiate  a sequel Activity are
 necessarily in place; in 

Activities are satisfied. Consider, for example,
 a shopper who has 

immediately  begin  a  payment activity
 because the server may be busy with another shopper and/or other shoppers

 may  be  waiting  in  a  queue  to participate  in  their  own  payment
 activities.  The  interaction  point  in  a process diagram provides the
 means for  representing  such a potential delay. It can be viewed as a
 point where the flow of the entity to the next 

Activity is satisfied. 
In Section 5.3 we introduced the Kojo’s Kitchen project and an 

a process-oriented view requires the specification of three
 processes,  hence three  process  diagrams.  These  are  shown  in Figure
 5.18. Notice that all five Activity constructs summarised in Table 5.10 are
 included. 

Activities in an ABCmod conceptual model must be found 
in at least one process diagram. 

 

ABCmod  conceptual model and the label is the name of that Activity. In 
some special cases,  

entity  types  within  the  ABCmod  conceptual  model.  When  an entity
 instance completes an 

other words, the precondition requirements for none
 of  its  potential  sequel 

completed his or her Browsing activity. He or
 she is not necessarily  able  to 

Activity is interrupted until
 the precondition for some possible sequel 

ABCmod conceptual model was formulated (see Tables 5.1 to Table 5.16).
 The transition to 

5.5 Transforming an ABCmod Conceptual Model . . . 

Any particular Activity within a ABCmod conceptual model is typically included 

These specification set the stage for the development of a process-oriented simul- 

in multiple process
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WArrivals

ServingW

UArrivals

ServingU

Process for 

Sandwich Customer

Process for 

Sushi Customer

Add Employee 

Process

SchedEmp

FIGURE 5.18. Process diagrams for Kojo’s Kitchen project. 

The Sandwich Customer process and the Sushi Customer process are 
essentially identical. A Customer arrives (either WArrivals or UArrivals), 
waits for service (the circle), receives service (ServingW or ServingU), 
and then leaves the model. The Activity SchedEmp (an Action Sequence) 
whose purpose is to appropriately modify the input variable EmpNum, 
gives rise to its own distinct process, 

Our notion of process diagrams is further illustrated in the following 

process  diagrams  are  then used in Section 5.5.2  as  the
 basis for developing a GPSS simulation model. 

5.5.1.2 Process Diagrams for the Port Project 

process diagrams are sufficient to capture the complete behaviour of the 
model: one for the tanker consumer entity class and another for the tug 
resource entity. As we indicated earlier, the need for the latter specification 
arises because the MoveToHarbour and MoveToBerths Activities involve 
only the tug and make no reference to a tanker. 

We begin by observing that a tanker which has arrived in the harbour 
must participate in a sequence of three Activities before leaving the port 
(and hence leaving the simulation model): namely, berthing, loading, and 
deberthing. The Berthing Activity can begin only when the tug is available 

subsection within the context of the Port project. Process diagrams are 

We begin with Version 1 of the Port project (see Section 4.3.1). Two 

derived from the ABCmod conceptual model developed for this project in 
Chapter 4. These 
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and the specific tanker in question is eligible for its service (i.e., it is at the 
head of the harbour queue). An interaction point is thus required between 
the Arrival Activity and the Berthing Activity. The Loading Activity is a 
Triggered Activity and can be immediately initiated upon the completion 
of the Berthing Activity. The Deberthing Activity parallels the Berthing 

point is needed; that is, the path from Loading to Deberthing requires an 
interaction point. The resulting process diagram for the Tanker process is 
shown in Figure 5.19. 

The lifecycle associated with the tug is circular; that is, the tug moves in 
an endless loop between the harbour and the berth area over the course of 
the observation interval. If the tug is at the berths, it will move to the 
harbour area in one of two possible ways (i.e., with or without a tanker in 
tow) depending on conditions that exist with respect to the tanker 
population. Likewise, when the tug is in the harbour area, it will move to 
the berths in one of two possible ways (again, with or without a tanker in 
tow). This circular flow is apparent in the process diagram shown in Figure 
5.20. Note the various interaction points that are necessary to reflect the 
conditions superimposed by the tanker population. 

FIGURE 5.19. Tanker process diagram. 

Activity in terms of the existence of a precondition, hence an interaction 

5.5 Transforming an ABCmod Conceptual Model . . . 

TankerArrivals

Loading

Berthing

Deberthing
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MoveToHarbour Deberthing

Berthing MoveToBerths

Initialisation

FIGURE 5.20. Tug process diagram. 

Possible interventions in the flow of an Activity need to be reflected in 

interrupted.  Figure 5.21 shows the additional ReturnToHarbour Activity 
that is invoked (as a triggered Activity) when the MoveToBerths is 

 added to illustrate this behaviour. Consider 

be over.
 When the storm is over, the Deberthing Activity is started again 

                                                     
 The tug’s movement to the berths with no tanker in tow can be interrupted if a 
tanker arrives in the harbour and, if there is no tanker ready for deberthing or the 
tug has not travelled more that 70% of the way back to the berths. 

reaction to an interrupt (or to a pre-emption).
Consider now Version 3 of the Port project, where a storm can interrupt 

the Activities that involve the tug’s movement. Figure 5.22 shows the tug
 process diagram for this version of the Port project. When an  Activity

the Deberthing Activity. When
 interrupted, this Activity is terminated and the tug is  placed in a state (R.
Tug.Anchored = TRUE) during which  it waits for  the storm to 

(see the
 precondition of the Deberthing Activity). 

 is interrupted by a storm, its duration is terminated. 

interrupted.  A  dashed  exit  path  from an Activity is used to identify the 

process diagrams. This is achieved with the use of dashed arrows. Recall 

 of the Port project under consideration, the state of the tug also 
 changes inasmuch as it drops anchor interrupted. Activity will 

  In the context      

 restart when the storm is over. 

that in Version 2 of the Port project the MoveToBerths Activity can be 

Points of interaction have been

14

14
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MoveToHarbour Deberthing

Berthing MoveToBerths

Initialisation

ReturnToHarbour

FIGURE 5.21. Tug process diagram with possible interrupt of the MoveToBerths 
Activity.

Similar interaction points representing the delay caused by the storm 
MoveToBerths

 Activities in Figure 5.22. It is not necessary to add such  a point  for  the
 Berthing  Activity  because  a  suitable  interaction  point  already 

MoveToHarbour Activity

MoveToHarbour Deberthing

Berthing MoveToBerths

Initialisation

ReturnToHarbour

FIGURE 5.22. Tug process diagram with possible interruptions caused by storms. 

d  

exists.
 When the ReturnToHarbour is interrupted, the 

It  is interesting  to  note that  the 
MoveToHarbour Activity  can be interrupted in either of two ways: by the

 storm or by a tanker arriving in the harbour. 

 is  started after  the  storm is  over. 

5.5 Transforming an ABCmod Conceptual Model . . . 

have been associated with the M oveToHarbour an
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Process diagrams are not linked to any simulation language or 
environment. Their purpose is to simplify the transition from an ABCmod 

the process diagrams developed in this section are used
 in formulating a simulation model in GPSS. 

5.5.2 Overview of GPSS 

We provide a brief introduction to the GPSS simulation environment. 
More extensive background material is provided in the GPSS primer given 
in Annex 2. Readers who are not familiar with GPSS should take the time 
to review Annex 2. 

GPSS provides a process-oriented environment for developing 
simulation models. These models are formulated in terms of processes for 
GPSS Transactions. A Transaction is composed of a collection of 

Transaction  includes  several  standard
 parameters  that  support GPSS processing,  for example,  a  time
 parameter for scheduling and two references to GPSS Blocks (one that
 references  the  current  Block in which the Transaction resides and the
 other the next Block the Transaction wishes to enter).

GPSS manages Transactions on a number of lists using list-processing 
techniques. Two lists are especially important in GPSS: namely, the future 
event chain (FEC) and the current event chain (CEC). The FEC contains a 
list of Transactions ordered according to a standard time parameter. To 
advance time the GPSS Scheduler will move the Transaction at the head of 
the FEC to the CEC and update the simulation clock to the Transaction’s 
standard time parameter (see Annex 2 for details). Transactions are 
scheduled by placing them on the FEC with a future time value stored in 
its time parameter. The Scheduler processes the Transactions on the CEC 
by invoking the functions of the Block referenced in the Transaction Next 
Block parameter. When the CEC becomes empty, the Scheduler returns to 
the FEC for another Transaction.

GPSS Blocks are associated with specific functions and they provide the 
basic processing elements for executing a simulation model. Conceptually, 
Transactions trigger these functions as they traverse the Blocks. For 
example, when a Transaction enters an ADVANCE Block, it will be 
delayed for some defined time before exiting the Block. This Block 
provides a natural mechanism for implementing an Activity’s duration. TP PT

                                                     
TP PT The ADVANCE Block in fact schedules the entering Transaction on the FEC.

conceptual model to any process-oriented language or environment. Section 
5.5.2 shows how 

parameters  (this  corresponds  to an  attribute-tuple in an ABCmod 
conceptual model). Each 

15
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The GPSS Block functions act on structural entities (representing 
internal data structures). It is important to be aware of such structural 
entities when creating a GPSS simulation model. For example, when a 
Transaction traverses the ENTER Block, the Block inserts the Transaction 
in a Storage structural entity. Table 5.22 shows possible mapping from 
ABCmod consumer entity classes and service entities to the most common 
GPSS structural entities (see Annex 2 for a complete list of GPSS 
structural entities). 

TABLE  5.22. Mapping ABCmod entities to GPSS structural entities. 

ABCmod Entity GPSS Structural Entity Options 
Transaction 

Resource Facility or Transaction
Group aggregate Storage or Transaction Group 
Queue aggregate User Chain 

The mapping is not perfect. For example, consider the case where a 
resource is represented by a Transaction and it is necessary to attach a 
consumer entity instance, also represented by a Transaction, to the 

section.
Development of a structure diagram as presented in Annex 2 is a 

recommended first step in creating a simulation model in GPSS. GPSS 

Elements of behaviour in a GPSS simulation model are expressed in 
terms of sequences of GPSS Blocks, each of which is called a GPSS Block 
segment (or simply a segment). A process in GPSS is formulated in terms 
of one or more such segments and has a graphical representation (see 
Figure 5.23). In most cases a process has a single segment. Segments start 
with a GENERATE Block through which Transactions enter the 
simulation model (this provides the means for handling input entity 
streams) and end with the TERMINATE Block when Transactions leave 
the simulation model. An example is shown in Figure 5.23. It is shown 
later that additional segments are needed to implement interventions. The 

be regarded as a GPSS process. 
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Consumer entity instance 

resource. In the ABCmod framework, the cei is assigned to an attribute of 
the resource. In GPSS, Transaction parameters are simple numeric 
values and consequently it is not possible to assign the Transaction 

Blocks operate on the structural entities that appear in this diagram. 

representing the cei to a parameter in the resource Transaction.  
An alternate mechanism to accommodate this attachment needs‘ ’
to be identified and possible approach is outlined in the following 

collection of segments that completely implement a process diagram (as 
outlined in Section 5.5.1.1) can 

5.5 Transforming an ABCmod Conceptual Model . . . 
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A GPSS simulation model is a collection of GPSS processes. Each 
Block within the graphical view of a GPSS process corresponds to a GPSS 
statement thereby facilitating the construction of the corresponding GPSS 
program code. As an illustration, Figure 5.24 shows the GPSS program 

Type,"W"

ASSIGN

TimeEnterQu,AC1

ASSIGN

ENTER

CounterGroup

LEAVE

CouterGroup

TERMINATE

GENERATE

(getMUw()),,(getMUw())  

TEST

L S$CounterGroup,X$EmpNum

ADVANCE

(UNIFORM(3,STWMin,STWMax))

ASSIGN

WaitTime ,(AC1-P$TimeEnterQu)

WRITE

P$WaitTime,PHIWaitTime ,,OFF

WArrivals ServingW

FIGURE 5.23. GPSS process for a sandwich customer at Kojo’s Kitchen. 

fragment that corresponds to the GPSS process shown in Figure 5.23. 
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There are many situations where a TERMINATE Block is not part of a 
process because the entity never leaves the simulation model. This is 

(see Figure 5.29). 

FIGURE 5.24. GPSS code for the GPSS process shown in Figure 5.23. 

In this section we illustrate the procedure for transforming an ABCmod 

1.  The consumer entity classes and service entities specified in the 

2. 

must carefully consider how the ABCmod constructs affect the GPSS 
structural entities and then implement the action using GPSS Blocks. 
When an Activity appears in multiple process diagrams, its various 
components need to be separated and translated into Blocks within 
different segments. These segments appear in the GPSS processes that are 

**********************************************************

*  Sandwich Customer Process 

**********************************************************

***WArrivals Activity 

WCust GENERATE (getMUw()),,(getMUw()) ; Bootstrap. Block 

 ; Action Sequence SCS 

 ASSIGN Type,"W"            ; Update type 

 ASSIGN TimeEnterQu,AC1     ; Mark with current time 

***ServingW Activity 

 ; Precondition 

 TEST L S$CounterGroup,X$EmpNum  ; Precondition 

 ; Starting Event SCS 

 ASSIGN WaitTime,(AC1-P$WaitTime)

 WRITE P$WaitTime,PHIWaitTime,,OFF  ; To Sample Set 

 ENTER CounterGroup ; Enters the group 

 ; Duration 

 ADVANCE (UNIFORM(3,STWMin,STWMax))

 ; Terminating Event SCS 

 LEAVE CounterGroup ; Leaves the counter 

 TERMINATE  ; Leave 

5.5.2 Developing a GPSS Simulation Model from an ABCmod 

Blocks are used to implement the preconditions, SCSs, and durations 

conceptual model (augmented with process diagrams) into a process- 

process. There are two basic steps:
priented simulation model in GPSS. Each process diagram becomes a GPSS  

Each process diagram and the ABCmod behaviour constructs that 

ABCmod conceptual model are mapped to GPSS structural entities 
(the result is a GPSS Structure Diagram). 

that appear in the ABCmod Activities. The GPSS simulation modeller 

they reference are transformed into a GPSS process. 

5.5 Transforming an ABCmod Conceptual Model . . . 

Conceptual Model  

illustrated in the tug process for the Port project that is examined later 
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the counterparts to the several processes where the Activity is located. 
These various notions are illustrated in the discussion that follows which is 

D R

Storage

Max

A.BerthGrp

3

Members

User Chain : A.HarbourQue

User Chain : A.DeberthQue

User Chain : R.Tug.Tnkr
T8

T7

T9

T5 T6

T6

R.Tug

provides a GPSS-oriented representation of the ABCmod entities: R.Tug, 
A.HarbourQue, A.BerthGrp, and A.DeberthQue and, as well, 
representative tanker Transactions called (T1, T2, T3, . . . ). Note that 
R.Tug is represented using a Transaction (R.Tug) and a User Chain to 

fact that GPSS cannot attach a tanker Transaction to the tug Transaction 
parameter).

C.Tanker. It can be directly translated into the first section of the 

model. The section begins with the GENERATE Block that provides the 
necessary function to create an input stream of tanker Transactions. The 

Notice how the DM.TankerSize data model is implemented using the 

an argument in the first ASSIGN Block. The rectangle backdrop in Figure 
5.26 represents the Action sequence rectangle from the tanker process 
diagram of Figure 5.19. The main rectangle is divided into two parts that 
correspond to the standard components of an Action Sequence; namely, 

handle the R.Tug.Tnkr attribute (this is an approach for dealing with the 

based on the Port project introduced in Section 4.3. 

FIGURE 5.25. Components of the GPSS structure diagram for the Port project. 

Figure 5.25 shows a GPSS structure diagram for the Port project. It 

generate the arrival of tanker Transactions into the GPSS simulation 

Let’s consider first the ABCmod Action Sequence TankerArrivals 
(C.Tanker) that defines arrivals of the consumer entity class called 

GPSS Function Entity with the same name (FN$TankerSize) and is used as 

 The reference to the SM.InsertQue procedure becomes an LINKBlocks.
 Block which adds the tanker Transaction to the HarbourQue User 

Chain (see Figure 5.25).

the precondition (PR) and the Action Sequence Event (E). 

GPSS process as shown in Figure 5.26. The task of this section is to 

TankerArrivals()  servesSCS of the event of the Action Sequence called 
 to initialise the three tanker attributes: it is transformed into three ASSIGN 
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FIGURE 5.26. Translating the TankerArrival Action Sequence.

In subsequent figures that illustrate the GPSS processes, a backdrop of 
rectangles and circles is added to help illustrate Step (b) (as in Figure 
5.26). The rectangles and circles are organised to reflect process diagrams 
where a rectangle corresponds to an Activity. These rectangles are broken 
down into the components of the ABCmod constructs and the following 
labels are used to identify these components. 

PR – Precondition
E – Event (for Action Sequences) 
SE – Starting Event
DU – DUration
TE – Terminating Event
IPR – Interrupt PRecondition
IE – Interrupt Event
PMPR- PreeMpt Precondition
PME – PreeMpt Event

5.5 Transforming an ABCmod Conceptual Model . . . 
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Now we consider the case where a particular Activity appears in 
more than one process diagram. The Deberthing Activity is such a case 
because it is found in both the tanker and tug process diagrams (see 
Figures 5.19 and 5.20). Figure 5.27 shows how this ABCmod 
Activity is translated into GPSS Blocks located within the GPSS 
tanker and tug processes. The following comments elaborate on this 
translation. 

a) Precondition: The tanker Transactions are placed in the De-
berthQue User Chain waiting for the availability of the tug (see 
Figure 5.25). Consequently the tug Transaction is responsible for 
initiating the Deberthing Activity, that is, implements the 
precondition using a TEST Block in the tug process. The 
BV$DeberthingCnd is the GPSS Variable entity that represents the 
expression (CH$DeberthQu 'NE' 0). Note that checking the tug 
Status parameter is not required in the expression because it tries 
to enter the TEST Block only when its Status parameter is set to 
PauseB (see Figure 5.29). 

b)  Starting event: Parts of the starting event’s SCS apply to the tug 
whereas others apply to the tanker. The parts that apply to the tug 
are implemented in the tug process; for example, setting the Status 
parameter to DEBERTHING and correspondingly, those that apply 
to the tanker are implemented in the tanker process; for example, 
manipulation of the tanker attributes (i.e. Transaction parameters). 
The WRITE Block saves the value of the WaitTime parameter in a 
data stream labeled PHITotalWait that represents the output sam-
ple set, called PHI [Tanker.TotalWait]. Removal of the tanker 
from the A.BerthGrp, SM.RemoveGrp(A.BerthGrp, R.Tug.Tnkr), 
is implemented by having the tanker Transaction traverse a 
LEAVE Block that references the BerthGrp Storage entity. 

The SM.RemoveQue in the starting event’s SCS is more com-
plex because it carries out two actions. The first removes the 
tanker from A.DeberthQue and the second attaches the tanker to 
the tug. This corresponds to removing a tanker Transaction from 
the DeberthQue User Chain and placing the Transaction in the 
Tug_Tnkr User Chain (see Figure 5.25). Two different Blocks 
are required; the UNLINK Block, traversed by the tug Transac-
tion carries out the first action, and a LINK Block, traversed by 
the tanker Transaction, places the tug Transaction in the 
Tug_Tnkr User Chain. 

c)  Duration: Because tanker Transaction is in the Tug_Tnkr User 
Chain, the ADVANCE Block required for implementing the dura-
tion is placed in the tug process. 

 



  203 

S
E

T
ED
U

P
R

T
E

S
T

E
,B

V
$

D
eb

er
th

in
g

C
n

d
,T

R
U

E

A
S

S
IG

N

S
ta

tu
s,

D
E

B
E

R
T

H
IN

G

U
N

L
IN

K

D
eb

er
th

Q
u
,T

o
T

u
g
B

rt
h
s,

1

A
D

V
A

N
C

E

D
eb

er
th

in
g
T

im
e

U
N

L
IN

K

T
u
g
_
T

n
k
r,

L
ea

v
eH

b
r,

1

S
ta

tu
s

, 
P

au
se

H

A
S

S
IG

N

G
P

S
S

 S
eg

m
en

t 
fr

o
m

 

th
e 

T
an

k
er

 P
ro

ce
ss

P
o
rt

io
n
 o

f 
G

P
S

S
 

S
eg

m
en

t 
fr

o
m

 t
h

e 

T
u

g
 P

ro
ce

ss

S
E

T
E

D
U

P
R

T
o

T
u

g
B

rt
h

s

L
ea

v
eH

b
r

A
S

S
IG

N

T
o
ta

lW
ai

t+
,(

A
C

1
-P

$
S

ta
rt

W
ai

t)

L
E

A
V

E

B
er

th
G

rp

L
IN

K

T
u
g_

T
n

k
r,

F
IF

O

T
E

R
M

IN
A

T
E

W
R

IT
E

P
$
T

o
ta

lW
ai

t,
P

h
iT

tw
,,

O
F

F

D
eb

er
th

in
g

D
eb

er
th

in
g

A
ct

iv
it

y:
 D

eb
er

th
in

g 
P

re
co

nd
it

io
n

(R
.T

ug
.S

ta
tu

s 
=

 P
au

se
B

)&
(A

.D
eb

er
th

Q
ue

.N
 •

 0
) 

E
ve

nt
 

R
.T

ug
.S

ta
tu

s 
 D

E
B

E
R

T
H

IN
G

 
R

.T
ug

.T
nk

r 
 S

M
.R

em
ov

eQ
ue

(A
.D

eb
er

th
Q

ue
) 

R
.T

ug
.T

nk
r.

T
ot

al
W

ai
t +

 (
t –

 R
.T

ug
.T

nk
r.

S
ta

rt
W

ai
t)

) 

S
M

.R
em

ov
eG

rp
(A

.B
er

th
G

rp
, R

.T
ug

.T
nk

r)
 

D
ur

at
io

n 
D

eb
er

th
in

gT
im

e 
E

ve
nt

 
L

ea
ve

(R
.T

ug
.T

nk
r)

 
R

.T
ug

.S
ta

tu
s 

 P
au

se
H

 

FI
G

U
R

E
 5

.2
7.

T
ra

ns
la

tin
g 

th
e 

D
eb

er
th

in
g 

A
ct

iv
ity

. 

5.5 Transforming an ABCmod Conceptual Model . . . 

SM
.P

ut
(P

H
I[

T
an

k
er

. 
T

o
ta

lW
ai

t]
, R

.T
ug

.T
nk

r.
T

ot
al

W
ai

t)
 



  204  5. DEDS Simulation Model Development 

d) Terminating Event: The part of the terminating event’s SCS that up-
dates the Status attribute becomes an ASSIGN Block in the tug proc-
ess. Leave(R.Tug.Tnkr) specifies that the tanker leaves the ABCmod 
conceptual model. The UNLINK Block in the tug process is used to 
remove the tanker Transaction from the Tug_Tnkr User Chain and 
send it to the TERMINATE Block (label TnkrLeave) that removes it 
from the GPSS simulation model. 

The complete GPSS process for the tanker derived from the tanker 
Process Diagram of Figure 5.19 (and associated ABCmod constructs) is 
given in Figure 5.28. Similarly the GPSS process for the tug is given in 
Figure 5.29 (based on the Process Diagram of Figure 5.20). The transla-
tion is based on the principles described in the previous paragraphs. By 
way of additional clarification, we note the following 

 

a) From the process diagrams presented earlier, it’s apparent that the 
Loading Activity and the TankerArrivals Action Sequence are spe-
cific to the tanker process and the MoveToHarbour and MoveTo-
Berths Activities are specific to the tug process. These Activities are 
consequently implemented in only one GPSS process. 

b) The Berthing Activity, like the Deberthing Activity examined in detail 
earlier, is distributed into both the GPSS tanker and GPSS tug proc-
esses. 

c) Movement of a Transaction from a LINK Block to a subsequent 
Block requires a number of actions (as represented by the grey arrows in 
Figure 5.28); A LINK Block moves the tanker Transaction into one 
of the User Chains shown in Figure 5.25. The Transaction is moved 
out of a User Chain by another Transaction (in this case the tug 
Transaction) when it traverses an UNLINK block. The tanker Trans-
action is then “sent” (see Annex 2 for details) to some GPSS Block. 
The grey arrows in Figure 5.28 represent both the action of the LINK 
Block that moves the tanker Transaction into the referenced User 
Chain and the action of the UNLINK Block traversed by the tug 
Transaction to move the tanker Transaction out of the referenced User 
Chain to the referenced GPSS Block. For example, the grey arrow 
leading from the TankerArrival Action Sequence to the Berthing Ac-
tivity represents the following actions:  

i. Upon entering the LINK Block, the tanker Transaction is moved 
into the HarbourQue User Chain. 

ii. When the tug Transaction enters the appropriate UNLINK Block, 
the tanker Transaction is moved from the HarbourQue User 

 
 
 

Chain to the ASSIGN Block labelled: To TugHrb (see Figure 5.29). 
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d) The Loading Activity is implicitly triggered because the tanker Trans-
action moves automatically from the ENTER Block to the AD-
VANCE Block that implements the duration of the Loading Activity. 
No explicit action is required (this is the commonly used GPSS coun-
terpart for a Triggered Activity). 

e) The UM.LoadingTime User Module in the ABCmod conceptual 
model is implemented using a GPSS Plus Procedure with the same 
name. 

f) The GPSS tug process has only one GPSS Block segment in which 
the tug Transaction circulates without ever leaving the simulation 
model. Testing preconditions of the ABCmod Activities is imple-
mented using TEST Blocks as shown in Figure 5.29. Each precondi-
tion is implemented with Boolean Variable Entities that are refer-
enced by the GPSS TEST Blocks. The definitions for these Variable 
Entities are as follows (as previously noted, testing the Status parame-
ter is not required). 

i.  MvTHarbPreCnd BVARIABLE ((CH$HarbourQu 'NE' 0) 'AND'    
(S$BerthGrp 'L' MaxBerth) 'AND' (CH$DeberthQu 'E' 0)) 

ii.   BerthPreCnd BVARIABLE (CH$HarbourQu 'G' 0)) 
iii.  DeberthPreCnd BVARIABLE (CH$DeberthQu 'NE' 0) 
iv.  MvTBerthsPreCnd BVARIABLE (CH$HarbourQu 'E' 0) 'AND' 

(R$BerthGrp 'G' 0)) 

g) Note the use of the BUFFER Block in the TE area of the Berthing 
segment of the tug process. When the tug Transaction enters this 
Block, it allows the tanker Transaction to be processed first in order to 
ensure that the tanker Transaction traverses the ENTER Block (and 
hence becomes member of the BerthGrp Storage entity), before the 
tug Transaction moves on. This is important because the tug Transac-
tion eventually tries to enter the TEST Block that implements the 
MoveToHarbour Activity’s precondition. This precondition includes 
evaluating the number of tankers in the BerthGrp Storage entity. 

5.5 Transforming an ABCmod Conceptual Model . . . 
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SE

TE

DU

PR

SE

SE

TE

DU

PR

ToTugHarb

enterBerth

SE

TE

DU

PR

ToTugBrths

TnkrLeave

GENERATE

(Exponential(1,0,AvgArr))

ASSIGN

Size,FN$TankerSize

ASSIGN

StartWait ,AC1

ASSIGN

TotalWait ,0

LINK

HarbourQu,FIFO

ASSIGN

TotalWait+,(AC1-P$StartWait)

LINK

Tug_Tnkr,FIFO

ENTER

BerthGrp

ADVANCE

(LoadingTime(P$Size))

ASSIGN

StartWait ,AC1

LINK

DeberthQu,FIFO

ASSIGN

TotalWait+,(AC1-P$StartWait)

LEAVE

BerthGrp

LINK

Tug_Tnkr,FIFO

TERMINATE

WRITE

P$TotalWait ,PhiWaitTime ,,OFF

Deberthing

Berthing

Loading

FIGURE 5.28. GPSS Tanker process. 

TankerArrivals
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SE

TE

DU

PR

SE

TE

DU

PR

SE

TE

DU

PR

SE

TE

DU

PR

Status,PauseB

ASSIGN

TRANSFER

ASSIGN

Status,TOHARBOUR

ADVANCE

EmptyTravTime

ASSIGN

Status,PauseH

TRANSFER

TEST

E,BV$BerthingPreCnd,TRUE

Status,BERTHING

ASSIGN

UNLINK

HarbourQu,ToTugHarb,1

ADVANCE

BerthingTime

UNLINK

BUFFER

Status,PauseB

ASSIGN

TEST

E,BV$MvTHarbPreCnd,TRUE TEST

E,BV$DeberthingPreCnd,TRUE

ASSIGN

Status,DEBERTHING

UNLINK

DeberthQu,ToTugBrths,1

ADVANCE

DeberthingTime

UNLINK

Tug_Tnkr,LeaveHbr,1

Status , PauseH

ASSIGN

TEST

E,BV$MvTBerthsPreCnd,TRUE

Status,TOBERTHS

ASSIGN

ADVANCE

EmptyTravTime

Status,PauseB

ASSIGN

GENERATE

,,,1

TRANSFER

Tug_Tnkr,enterBerths,1

Initialisation

MoveToHarbour

Berthing

MoveToBerths

Deberthing

FIGURE 5.29. GPSS Tug process. 

5.5 Transforming an ABCmod Conceptual Model . . . 
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FIGURE 5.31. GPSS implementation of an ABCmod interrupt (Port Version 2). 

interventions that may occur within an ABCmod Extended Activity. In 
particular, PREEMPT and RETURN Blocks can be used to implement 
pre-emption, whereas the DISPLACE Block can be used to implement an 

tions that are on the FEC as a result of having entered an ADVANCE 

5.5 Transforming an ABCmod Conceptual Model . . . 

, ,

interrupt. Both the PREEMPT and DISPLACE Blocks remove Transac-

A number of Blocks in GPSS are especially relevant for implementing 

Block, that is, Transactions whose duration is currently in progress.
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about the operation of these Blocks can be found in 
Annex 2 or in the GPSS references that are provided there. 
Additional details 

Version 2 of the port project introduces the possibility of an interrupt. 
In this case the tug, while carrying out its MoveToBerths Activity can 
(under certain conditions) become obliged to return to the Harbour to ser-
vice a tanker that has arrived. Because of this interrupt possibility, the 
ABCmod Extended Activity construct is required and Figure 5.30 shows 
how it is translated into two GPSS segments that make up the GPSS tug 
process. An additional segment is required for a special Transaction, 
called the interrupt Transaction, to monitor the interrupt condition because 
the tug Transaction cannot monitor itself when scheduled on the FEC dur-
ing the Extended Activity’s duration. The interrupt precondition and inter-
rupt event are implemented within this additional segment. 

The MoveToBerths interrupt precondition is implemented with the 
TEST Block that the interrupt Transaction traverses only when the inter-
rupt condition becomes TRUE TP �P This can occur when the tug is involved 
in the MoveToBeths Activity (has entered the corresponding ADVANCE 
Block and is scheduled on the FEC).  

The DISPLACE Block implements MoveToBerths Interrupt Event’s 
SCS (i.e., TA.ReturnToHabour and Terminate). The DISPLACE Block 
uses the X$TugId argument to identify the tug (it contains the tug Transac-
tion identifier) to be displaced from the FEC and the ReturnToHarbour 
argument as the label of the destination Block for the displaced Transac-
tion. Thus the Block sends the tug Transaction to the first Block of the 
realisation of the ReturnToHabour Activity and by doing so halts the 
MoveToBerths Activity. The BUFFER Block that follows the DISPLACE 
Block allows the tug Transaction to move so that the interrupt condition 
becomes FALSE (the tug Status is changed) before the interrupt Transac-
tion can test the state of the model. Figure 5.31 shows how the above 
changes fit into the overall GPSS implementation of the tug process. 

 
 

                                                      
TP PT A PLUS procedure, IsMvToBerthInt, is called to evaluate the status of the 

model. Using a procedure provides a clearer means of expressing the pre-
condition than Boolean Variable entity. All SNAs needed for testing are 
passed as arguments to the Procedure. Note that it is necessary to represent 
the tug attributes as SaveValue entities instead of Transaction parameters to 
support the testing of these attribute values. GPSS places the interrupt 
Transaction on the Retry chains of the Tug_Status SaveValue entity, 
Tug_StartTime SaveValue entity, HarbourQu User Chain entity, and Deber-
thQu User Chain entity. Whenever any of these entities changes, GPSS 
moves all transactions from the corresponding retry chain to the CEC, in-
cluding the interrupt Transaction which will try again to traverse the TEST 
Block, that is, re-evaluate the TEST. 

16

16
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TP PT

                                                     
TP PT A GPSS simulation program for version 3 can be downloaded from the textbook 

Web site. 
TP PT The Queue Entities are dedicated to collecting statistics and can be used, for 

example, to collect statistics on the delay chains of the various structural 
entities, on the time Transactions spend in the model, and so on. See Annex 2 
for details. 

TP PT A GPSS data stream can either be an internal data stream stored in internal 
memory or a file data stream store within a system file. 

Version 3 of the Port project introduces the occurrence of storms which
represent inputs to the SUI. The ABCmod conceptual model that is formu-
lated in Chapter 4 handles the situation by the use of interrupts in the various 
Activities that are affected by storms. Implementation of these various interrupts 

5.5.1.3 Generating Output 

in the GPSS simulation model can be accomplished using the same approach 
that is outlined above. Details are left as an exercise for the reader.

GPSS automatically provides data relating to the entitiesTP PT found in a 
simulation model; this data can be accessed using GPSS SNA’s (see An-
nex 2). Often these SNA’s correspond directly to values for ABCmod de-
rived scalar output variables (DSOV’s) that are stipulated in the project 
goals. 

To determine values for DSOV’s that are not automatically provided by 
GPSS, a two step process is proposed: 

1. Save the sample set or trajectory set output into a GPSS data stream. 
2. When the simulation run has finished, use a Plus Procedure to com-

pute the DSOV value using the contents of the data stream and store 
the results in a SaveValue entity. 

Figure 5.32 illustrates the above two step method for the case of Kojo’s 
simulation model to collect customer wait times in the PHI[WaitTime] 
sample set and then compute a value for PropLongWait using the values 
in this set. The WRITE Block records customer wait time values in the 
PHIWaitTime data stream (i.e. in the PHI[WaitTime] sample set). The 
data stream is set up as a file, PHIWaitTime.txt, during initialisation by the 
OPEN Block (the first segment shown in the figure is traversed by a single 
Transaction to initialise the simulation model). 

The Plus procedure propGT (shown in Figure 5.32) executes at the end 
of the simulation run and its returned value is stored in the SaveValue en-
tity called PropLongWait. This is accomplished by the second segment 
shown in Figure 5.32. A Transaction is generated at the end of the obser-
vation interval, that is,  at time 660 minutes (11 hours) after the start of the 
simulation run. The Transaction traverses a WRITE Block to add a -1  

5.5 Transforming an ABCmod Conceptual Model . . . 
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18

19

17

18

19
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to the end of the PHIWaitTime data stream and then the SAVEVALUE 
and store the results in 

PropLongWait. A similar approach is used for computing the 
AvgWaitTime
code available on the textbook Web site provides details). 

5.6 Exercises and Projects 

5.1  Develop an event-scheduling simulation program (and/or process-
oriented simulation program) based on the ABCmod conceptual model 
formulated in Problem 4.1 of Chapter 4. 

****************************************************

*  Initialisation 

****************************************************

 GENERATE 0,,,1 

 OPEN ("PHIWaitTime.txt"),PHIWaitTime 

 

 TERMINATE 

***************************************************

*  Stop simulation after 660 minutes (11 hours) 

****************************************************

 GENERATE 660 

 WRITE "-1",PHIWaitTime,,OFF 

 CLOSE ,PHIWaitTime 

 TERMINATE 1 

    SEEK(PHIWaitTime,1);   /* go to start of stream */ 

    totalCount = 0; 

    sample=READ(PHIWaitTime); 

    WHILE(StringCompare(sample,"-1") 'NE' 0) DO BEGIN 

 wtm=VALUE(sample); 

 

 totalCount=totalCount+1; 

 sample=READ(PHIWaitTime); 

    END; 

END;

 DSOV in the Port simulation model (the Port Project GPSS 

 SAVEVALUE PropLongWait,(propGT(5))

PROCEDURE propGT(5) BEGIN 

    TEMPORARY totalCount, countGT; 

    countGT = 0; 

    return(countGT/totalCount); 

IF(wtm > val) THEN countGT=countGT+1; 

FIGURE 5.32. Output collection for the Kojo’s Kitchen project. 

Block to invoke  propGT

SAVEVALUE EmpNum,2 ; Initialise for experiments 
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5.2  Develop an event-scheduling simulation program (and/or process-
oriented simulation program) based on the ABCmod conceptual model 
formulated in Problem 4.2 of Chapter 4. 

5.3  Develop an event-scheduling simulation program based on the 
ABCmod conceptual model formulated in Problem 4.3 of Chapter 4.

5.4  Assume that the development of the conceptual model of Problem 4.3 
and the development of the simulation program of Problem 5.3 have 
been carried out by two teams where Team A has the primary 
responsibility for the ABCmod conceptual model and Team B has the 
primary responsibility for the simulation program. Carry out a 
verification exercise by: 

a) Giving Team B the task of reviewing the conceptual model before 
developing the event-scheduling simulation program.

b) Giving Team A the task of reviewing the simulation program once 
it has been completed. 

5.5  Develop a process-oriented simulation program based on the ABCmod 
conceptual model formulated in Problem 4.3 of Chapter 4. 

5.6  Repeat the verification exercise of Problem 5.4 in the context of 
Problem 5.5. 

5.7  Develop an event-scheduling simulation program (and/or process-
oriented simulation program) based on the ABCmod conceptual model 
formulated in Problem 4.4 of Chapter 4.

5.8  Develop an event-scheduling simulation program (and/or process-
oriented simulation program) based on the modified ABCmod 
conceptual model formulated in Problem 4.5 of Chapter 4. 
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Chapter 6 Experimentation and Output Analysis 

6.1 Overview of the Issue 

In this chapter we explore the activities of experimentation and output 
analysis, which are both central to the success of any modelling and 
simulation project. In other words, we examine the process of correctly 
formulating and carrying out goal-directed experiments with the 
simulation program and then extracting meaningful information from the 
data acquired via its output variables. The underlying complexity here 
arises from the uncertainty that is superimposed on all variables in any 
DEDS model by the random nature of input variables and by the random 
behaviour of ‘internal’ processes (e.g., message service time at the nodes 
of a communications network or failure characteristics of machines in a 
manufacturing plant). As we have previously noted, these random 
phenomena represent one of the essential differences between models 
arising from the DEDS context and those arising from the realm of 
continuous-time dynamic systems. 

A simulation program provides an observation window onto a variety of 
random phenomena that unfold as a result of the model’s execution. Each 
can be linked to a random variable and some of these random variables are 
of special interest from the perspective of the project goals. 

The notion of output variables was explored in the discussions of both 
Chapters 2 and 4 where it was stressed that any model necessarily has one 
or more such variables associated with it. This follows simply because 
they serve as the conduits for the data that are essential for the resolution 
of the project’s goals. In these earlier discussions we introduced two 
categories of output variable called point-set output variables (PSOVs) and 
derived scalar output variables (DSOVs).

There are two types of variable in the PSOV category; namely, time 
variables and sample variables. These share a common means for  
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delivering data from any particular execution of the simulation program, 
namely, through the accumulation of a finite set of (possibly) time-indexed 
values. However, the specific values in such a set are rarely of interest. 
Instead what is of interest is typically some property of these accumulated 
data, for example, minimum, maximum, average, or number (a count of 
the number of values in the set). Such a value is computed and assigned to 
a designated scalar variable. Such variables are necessarily random 
variables and they fall into the category of DSOVs. Our interest 
throughout this chapter is primarily with DSOVs and for convenience we 
refer to these simply as output variables. 

Let’s consider some examples of DSOVs that might arise at the level of 
the ABCmod conceptual modelling framework as discussed in Chapter 4. 
The list below demonstrates the most fundamental feature of any such 
variable; namely that it always has a ‘definition’, that is, a meaning in 
terms of the behaviours that are represented within the conceptual model. 
Although this may appear obvious, it is a feature that must be 
unambiguously documented in the statement of project goals.

An output variable YA which represents the proportion of customers that 
waited for more than five minutes for service at Kojo’s Kitchen in the 
food court 
An output variable YB, which represents the average time spent waiting 
for tugboat service by the tankers that pass through an ocean port 
model 
An output variable YC, which represents the maximum number of 
messages in the input buffer of a particular node P of a 
communications network, over a 24 hour period 
An output variable YD, which represents the portion of time that all the 
attendants in a full-service gas station are busy, over the course of a 
business day 

Some details for these four variables are presented in Table 6.1 in terms 

these variables by carrying out an operation on some underlying output set 
of data values. 

of the notions in our ABCmod framework as discussed in Chapter 4. In  
particular the table shows how a value might be established for each of  
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Any particular output variable listed in Table 6.1 acquires a value as a 
consequence of the execution of its respective simulation program (i.e., as 
a consequence of a ‘simulation run’ or simply a ‘run’). However, this 
value is not a direct outcome of the experiment but rather is obtained by 
carrying out an operation on a set of data values as illustrated in Figure 
5.1. In the case of YA the data set is the sample set 
PHI[C.Customer.WaitTime] which is populated by values of the sample 
variable Customer.WaitTime (an attribute of the consumer entity class 
called Customer). Each Customer instance that passes through Kojo’s 
Kitchen contributes a value to PHI[C.Customer.WaitTime], and for any 
particular simulation run, the value acquired by YA is obtained as 
PropGT(5,PHI(C.Customer.WaitTime)). Here PropGT(Val,SampleSet) is a 

p1,1, p1,2, ...p1,m1 p2,1, p2,2, ...p2,m2 pn,1, pn,2, ...pn,mn

Simulation 

Run

PSOV Data 

1 2 n•   •   •

•   •   •

Set 

Operator

y1

Set 

Operator

y2

Set 

Operator

yn

Output Data 

(DSOV) 

Ouput Set

•   •   •

Ouput Set Ouput Set

FIGURE 6.1. Generation of data from multiple simulation runs. 

As previously observed, any DSOV is a random variable. There are 
certainly circumstances where interest in a random variable can focus 
simply on a particular value (e.g., the sum of the dots showing on a pair of 
dice when the dice are thrown during a game of chance). However, the 
value of a DSOV acquired from a single simulation run generally falls far 
short of providing useful information from the perspective of the 
requirements of project goals. The information that is needed typically 

mean value estimate that appears to coincide directly with some DSOV 

                                                     1 Strictly speaking, this is not entirely correct. In the context of a steady-state 
study, there does exist an approach called the method of batch means where all 

user-defined module specified in the ABCmod conceptual model for the 
Kojo's Kitchen project in Chapter 5 (see Table 5.10). 

A frequent misunderstanding occurs when the project goals require a 

relates to the values of the parameters of the distribution of the DSOV (e.g. 

organised to yield independent observations.

required data are generated from a single long simulation run. A brief discussion 
can be found in Section 6.3.2. 

                                 1
formulated from results obtained from multiple runs that have been 
mean, variance) and meaningful estimates of such parameters can only be 
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(for definiteness, let’s call it Y) that is defined as an average. Consider, for 
example, our port project where the mean waiting time of tankers is 
required. A particular simulation run will yield a sample set whose 
members are the waiting times of the tankers that passed through the port 
during that run. The average of the values in this sample set (which we 

ˆ

For the most part, our interest in experimentation focuses on the mean 
values of designated output variables within the simulation program. It 
needs to be recognised, however, that the determination of an exact value 
for these is rarely feasible. Experiments with the simulation program can, 
at best, deliver the data from which an estimate of the mean (called a point
estimate) can be formulated together with an assessment of the quality of 
the estimate (i.e., a confidence interval). Guidance for determining what 
experiments need to be carried out and how the acquired data need to be 
handled in order to obtain credible estimates are provided by some of the 
fundamental results from probability theory. An overview of these can be 
found in the latter sections of Annex 1. The topic is explored in the 
discussions below. 

6.2 Bounded Horizon Studies 

y ) would represent a single observation of the DSOV, Y.

 

We now consider the basic problem of analysing the values acquired by an 

zon study. From a collection of values acquired from n simulation runs, 
we determine a point estimate of the mean (i.e., a single number whose 
validity has some credible basis) and then formulate an interval in which 
the point estimate lies with a prescribed degree of confidence. 

One might be tempted here to use  as an estimate of the mean value 
that we seek (namely, the mean waiting time of tankers that pass through 
the port). However there generally is a correlation among the values be-
cause, for example, a long wait by some tanker will likely result in long 
waits by succeeding tankers thereby introducing a bias in the collected 
data. This circumstance precludes the use of the standard methods of sta-
tistics which depend on the assumption of independence, for example. for 
the determination of the confidence interval that we discuss below. It is 
for this reason that suitably replicated simulation runs (or other equivalent 
approaches) are required which will generate a collection of independent 
observations of Y from which the desired mean value estimate and a con-
fidence interval can be formulated. This is achieved by proper manage-
ment of the seeds used in the random variate generation procedures that 
are embedded in the simulation model. 

output variable in the simulation program in the case of a bounded hori-

ŷ

denote by 
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The considerations that follow rely heavily on the results presented in 
Annex A1, in particular the results in Sections A1.5 through A1.7. 

6.2.1  Point Estimates 

n

k
kY

n
nY

1

1
)(

and we regard the Yks as surrogate random variables for Y that are 
associated with a sequence of n correctly replicated experiments with M
(the variable Yk is associated with experiment k). All  have the same 
distribution as Y because they reflect the same process (namely the 
simulation program M). Furthermore, because they are linked to a 
sequence of correctly replicated experiments, we can assume that the

Correctly replicated simulation runs are a key requirement in 
formulating the estimate that we seek. The implication here is that there is 
appropriate management of the seeds used to initialise the various random 
number generators from run to run to create a meaningful set of 
independent and identically distributed observations (initial conditions, 
however, must remain invariant except when their values are part of the 
random envelope). 

On the basis of the above, a point estimate of µ can be obtained in the 
following way. 

1. Choose a suitable value for n, the number of replications (in principle, 
n needs to be large, but a value in the order of 30 is generally 
satisfactory).

2. Collect the n observed values y1, y2, . . . , yn for the random variables 
Yk, k = 1, 2, . . . , n, that result from n replicated simulation runs of the 
simulation program M.

3. Compute:

n

k
ky

n
ny

1

1
)( .

The numerical value that results for )(ny  is then taken to be the point 
estimate for µ = E[Y] that we seek. 

Suppose Y is an output variable (i.e. DSOV) of the simulation program M 

estimate of µ = E[Y]. The fundamental result from probability theory upon 

Annex A1). The interpretation in our context is that )(nY  approaches µ as 
n becomes large where:  

and we seek an estimate of the mean of the distribution of Y, namely an 

Yk’s

Yk’s
are independent. Hence the Yk  can be taken to be a set of independent 
identically distributed (IID) random variables. 

which we rely is the strong law of large numbers (see Section A1.5 of 
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6.2.2  Interval Estimation 

The procedure is outlined below and is based entirely on the discussion 

1. Choose values for C,  and 
as well, an initial value for n that is not smaller than 20. 

2. Collect the n  observed  values y1,  y2,  . . . , yn  for  the  random 
variables Yk , k  =  1, 2, . . . , n,  that  result  from n  replicated 
simulation runs of the simulation program, M.

3. From tabulated  data  for  the  Student t-distribution,  determine tn-1,a

where a = (1 – C)/2.
4. Compute: 

n

nst
n

n

nyy

ns

y
n

ny

n

n

k

k

n

k

k

)(
)(

1

))((

)(

1
)(

,1

1

2

2

1

(6.1)

in Section A1.7 of Annex 1 (Equation (A1.36) has particular relevance). 

r and  for  the  confidence  level parameter 

We now expand our task by undertaking to find a suitable value for the 

, ,

estimate )(ny . We know from Section A1.7 that an interval (called the 
confidence interval) can be established within which µ falls with a 

n-1,a ns /)(

on the Student t-distribution
 value tn-1,a.

The quality criterion we introduce is the requirement that, with 
confidence 100C% (0 < C < 1), | )(ny µ| < *. In other words, we want 
to ensure that (with a prescribed level of confidence) the interval half 
length (n) is less than a specific value denoted by *. A possible choice 
for * is r )(ny where r is a value chosen in the range (0, 1). With this 
choice, the maximum displacement of the estimate from µ is proportional 
to the value of the estimate itself. Note that our quality measure can be 
interpreted as 

r
ny )(

number of replications n which will ensure a particular quality  for the 

[y(n) (n), y(n) (n)] where (n) = (t

prescribed level of confidence. This interval has the form 

n)(

n ), and  s(n)  is  

(n) the confidence inter-
val half length.  Its  value  is  clearly  dependent 
an estimate of the standard deviation . We call
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5. If  (n) < * = r )(ny (or (n) / )(ny < r)  then accept  )(ny  as the 
point estimate of µ and end the procedure, otherwise continue to 
Step 6. 

6. Choose n no smaller than 3 and collect additional 
observations yn+1, yn+2, . . . , yn+ n  through a  further n replications, 
replace n with n + n, and repeat from Step 3. 

6.2.3  Output Analysis for Kojo’s Kitchen Project 

This section examines how the analysis techniques described in Section 
6.2.2 can be applied to achieving the goal set out in the Kojo’s Kitchen 
project. Recall that the goal set out in Chapter 5 was to investigate the 
impact on the output variable PropLongWait (i.e., the proportion of 
customers waiting longer than five minutes) of adding an additional 
employee. The Java event-scheduling simulation program presented in 
Section 5.4.2 is used to experiment with the simulation model and generate 
data for analysis. The collected data are analysed using a number of useful 
data analysis tools available in Microsoft Excel. 

Figure 6.2 shows the Java method used to carry out multiple simulation 

    The first part of the method generates the random seeds used in all the 
simulation runs. The CERN Java package offers a Class Random-
SeedGenerator that provides the means to generate appropriate 
(uncorrelated) random seeds. This ensures that the different simulation 
runs provide independent values for the PropLongWait output variable. 
Note also that the seeds are stored in an array of Seeds objects.

 Thus they can be
 reused when executing the runs for the alternate case. This is important
 for comparing the two cases as discussed in Section 6.4. 

Also
 note that four seeds make up a Seedsobject, one for each random 
number generator used in the simulation program. 

   For each simulation run, a new KojoKitchen object is created using the 
Class constructor. The constructor provides the data necessary for the 
simulation run, that is, specifies the observation interval (the first two 
arguments specify the right- and left-hand boundaries of the interval), a 
value for the empSchedCase parameter (either Case1 or Case2), and 
finally a Seeds

  After each run, the value generated for PropLongWait is displayed 
along with the run number. The output of the running program can be 
redirected into a file and subsequently loaded into an Excel worksheet 
for analysis. 

runs with the  Kojo’s Kitchen simulation model (see Section 5.3).  Note the 
following. 

 object to seed the random number generators. Recall that 
Case 1 is the base case and Case 2 is the situation where the third employee 
is hired during busy periods. 
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FIGURE 6.2. Java method for experimentation with the Kojo’s Kitchen simulation 
program.

class KojoExperiment1 
{
   public static void main(String[] args) 
   { 
       final int NUMRUNS = 10000;
       int i; 
       Seeds[] sds = new Seeds[NUMRUNS]; 
       KojoKitchen kojo;  // simulation program 
       double propLongWait; 

       RandomSeedGenerator rsg = new RandomSeedGenerator(); 
       for(i=0 ; i<NUMRUNS ; i++) 
 sds[i] = new Seeds(rsg.nextSeed(),rsg.nextSeed(), 
        rsg.nextSeed(),rsg.nextSeed()); 

       // Loop for NUMRUN simulation runs for each case 
       // Case 1 
       System.out.println("Case 1 - no additional employee"); 
       for(i=0 ; i < NUMRUNS ; i++) 
       { 
          kojo = new KojoKitchen(0.0,660.0,KojoKitchen.Case1,sds[i]);
          kojo.runSimulation(); 
          propLongWait = kojo.getPropGT(5); 
          System.out.println((i+1)+", "+propLongWait); 
       } 
       // Case 2 
       System.out.println("Case 2 - add employee during busy times"); 
       for(i=0 ; i < NUMRUNS ; i++) 
       { 
          kojo = new KojoKitchen(0.0,660.0, KojoKitchen.Case2,sds[i]);
          kojo.runSimulation(); 
          propLongWait = kojo.getPropGT(5); 
          System.out.println((i+1)+", "+propLongWait); 
       } 
   } 
}

       // Get a set of uncorrelated seeds 
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Table 6.2 shows the values for propLongWait for the first 20 simulation 
runs for each of the two cases. The values for the point estimate ( )(ny ),
the standard deviation (s(n)), and the confidence interval half length ( (n))
are shown in the table, with n = 20. These were computed by using 

)()( nny  and right boundary )()( nny  of the confidence
 interval are given by CI Min and CI Max, respectively. 

TABLE 6.2. Analysis of generated data from the first 20 simulation runs. 

Run Case 1 Case 2

1 0.634 0.263

2 0.595 0.209

3 0.256 0.067

4 0.532 0.335

5 0.282 0.049

6 0.649 0.278

7 0.458 0.024

8 0.515 0.158

9 0.618 0.062

10 0.667 0.348

11 0.483 0.238

12 0.524 0.107

13 0.663 0.447

14 0.235 0.053

15 0.404 0.051

16 0.472 0.112

17 0.425 0.094

18 0.565 0.124

19 0.392 0.048

20 0.381 0.123

0.487 0.160

s(n) 0.134 0.121

(n) 0.052 0.047

CI Min 0.436 0.113

CI Max 0.539 0.206

)(ny

Equation (6.1) with a 90% confidence level (i.e C= 0.9). The left 
boundary 
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Table 6.3 shows for each of the two cases the values of )(ny , s(n), and 

(n) (computed using Equation (6.1)) as well as the boundaries of the 
confidence interval (CI Min and CI Max) and the ratio (n)/ )(ny  when n
(the number of simulation runs) is increased. Note from the rightmost 
column how the ratio (n)/ )(ny  decreases as n increases. This is mainly a 
consequence of a decreasing value for the confidence interval half length 
(n).

Observe that for Case 1, with 20 runs the half length of the confidence 
interval is essentially 10% of the point estimate (see rightmost column 
where the value is 0.106). However with 20 runs, the interval half length in 
Case 2 is almost 30% of the point estimate (value in rightmost column is 
0.293). For Case 2, 100 runs are required to achieve a comparable 
confidence interval as Case 1. 

TABLE 6.3. Impact of number of runs on the confidence interval. 

n s(n) (n) CI Min CI Max

20 0.487 0.134 0.052 0.436 0.539 0.106

30 0.503 0.125 0.039 0.464 0.542 0.077

40 0.502 0.119 0.032 0.471 0.534 0.063

60 0.504 0.116 0.025 0.479 0.529 0.049

80 0.499 0.129 0.024 0.475 0.523 0.048

100 0.503 0.132 0.022 0.481 0.524 0.044

1000 0.510 0.120 0.006 0.504 0.517 0.012

10000 0.508 0.126 0.002 0.506 0.510 0.004

n s(n) (n) CI Min CI Max

20 0.160 0.121 0.047 0.113 0.206 0.293

30 0.192 0.124 0.039 0.153 0.230 0.201

40 0.193 0.119 0.032 0.161 0.225 0.165

60 0.187 0.115 0.025 0.162 0.211 0.133

80 0.185 0.121 0.023 0.162 0.207 0.122

100 0.187 0.123 0.020 0.167 0.207 0.109

1000 0.188 0.121 0.006 0.181 0.194 0.034

10000 0.184 0.120 0.002 0.182 0.186 0.011

Case 1

Case 2

(n)y (n)y
(n)

(n)y (n)y
(n)

6.3 Steady-State Studies 

The fundamental requirement in a steady-state study is the postponement 
of data collection during a simulation run until it is apparent that the 
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simulation model is operating under steady-state conditions; that is, the 
stochastic processes associated with the output variables of interest have 
become stationary. A necessary (but not sufficient) condition for steady-
state behaviour of the simulation model is the requirement that the 
underlying random variables associated with autonomous stochastic 
processes, such as arrival rates and service rates, are themselves stationary. 
But even when this is the case, the model’s initial conditions usually give 
rise to circumstances that cause dependent stochastic processes in the 
simulation model to pass through a transient phase at the start of a 
simulation run.

Recall that for steady-state studies, the right-hand boundary of the 
observation interval is not specified. This provides the flexibility to 
execute a simulation run for as long as necessary in order to first reach 
steady-state conditions and then acquire sufficient data to permit 
meaningful conclusions. Consequently the execution of experiments for 
steady-state studies must address two important issues: 

Determining a warm-up period: A transient period is always present at 
the beginning of any simulation run. Behaviour data from this interval 
are (by definition) incompatible with the steady-state requirements of 
the study. The implication here is that a warm-up period that precedes 
the collection of data needs to be recognised. The duration of this 
period cannot be predicted and hence a mechanism for determining the 
end of the warm-up period must be incorporated into the 
experimentation procedure. Data collection can begin only after this 
transient, or warm-up period, has come to an end.  
Establishing confidence in the conclusions. A single simulation run 

estimate of the mean of the output variable (or
 variables) of interest can be calculated. Provided the length of the
 run has generated a sample of sufficiently large size, the estimate
 can have reasonable credibility (e.g., on the basis of the law of large
 numbers)  However,  a confidence  interval  for  any  such  estimate
 requires a  collection  of independent  observations in order to apply
 the techniques described in Section 6.2.2. 

6.3.1  Determining the Warm-up Period 

Considerable research effort has addressed the problem of establishing a 
suitable warm-up period for a simulation run, that is, an interval which 
allows sufficient time for the dependent stochastic process of interest to 

average method is one of the many available approaches. It is graphically 

can  be  executed for an  extended observation interval to yield data 
from which a point 

reach a steady-state (see, e.g., [6.4], [6.6], [6.7], [6.8]). The Welch moving 
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oriented, relatively straightforward, and provides reasonable estimates. 
This section outlines the application of this method (a more extensive 
presentation can be found in Law and Kelton [6.5]). 

The Welch moving average method relies on a relatively small number 
of simulation run replications (e.g., five to ten). The duration of each 
replication needs to be sufficiently long so that it extends beyond the 
transient period. A typical replication is shown in Figure 6.3 which 
illustrates a representative transient condition at the start of the simulation 
run (e.g., a case where the simulation model begins without any consumer 

(simulated) time which has been compartmentalised into m
 time cells. The vertical axis shows how the average value for some output
 variable  might change  if separate averages were computed within the
 time cells. The 

time cell D, changes in average value no longer occur and hence steady-
state can be assumed. 

Selecting the size of the time cells and the number of time cells (which 
is equivalent to establishing the length of the simulation run) depends on 
the underlying nature of the simulation model. The size of the time cell 
should be large enough to be provide reasonable results (i.e., enough data 
points to compute a credible average within the cell), and yet short enough 
to be able to detect the existence of the transient. 

Replication j generates an output set of nj values; for example, {yk,j: k = 
1, 2, . . . , nj}. The average of those values that fall into time cell i is 
computed to produce jiy , which is the ith cell average for the jth

replication. Thus n replications will produce the set of n averages { jiy , : j = 

1, 2, . . . , n} where i is the time cell index. The following steps are carried 
out to obtain an estimate of the time cell index where the system transient 
terminates, in other words, the system reaches steady-state. 

1. i

 averages ( jiy , ); that is, 

n

j

jii y
n

a

1

,

1
.

entity  instances  being present). The  horizontal axis  in Figure 6.3 
corresponds to 

changing shape of a hypothesised distribution function 
for this output variable is superimposed. The Figure shows that starting at 

Obtain the value a  as the average over the n replications of the ith cell
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FIGURE 6.3. Reaching steady-state.

2. The values ia , i = 1, 2, . . . , m  usually  vary  considerably.  If 
plotted against index i the resulting graph is ‘choppy’ and difficult 
to interpret. A smoothing operation is required in order to smooth 

the trend. For this purpose, the moving-average values 
)(wai are  computed  using  Equation  (6.2).  The  parameter w

represents a window size that controls the smoothing operation. Its 
selection is by trial and error. Usually a number of values for w
need to be tried. The objective is to find as small a value as 
possible that provides the desired smoothing effect. 
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12
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1

)1(

  . (6.2)

3. Equation (6.2) is  not  as  complex  as  it  might  appear.  When i > w
there are w cell averages on either  side  of ia  that  are  averaged  to 
produce the  running  average  value )(wai .  When  i w  there  are 
not enough values preceding time cell ito fill the window. In this 

out rapid variations to obtain a smoother curve that captures 
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averages are computed for the case where w = 3. 

 The values )(wai are plotted against the cell index i and it should be 

practice is to extend the apparent length of the warm-up period (say by 
30%). The idea here is to err on the safe side by making the warm-up 

TABLE 6.4. Welch running average with w = 3. 

i )3(ia  Equation )3(ia Expansion

1

1

0

0l

lia

1

1a

2

3

1

1l

lia

3

321 aaa

3

5

2

2l

lia

5

54321 aaaaa

4

7

3

3l

lia

7

7654321 aaaaaaa

5

7

3

3l

lia

7

8765432 aaaaaaa

.

.

.

.

.

.

.

.

.

m – 3

7

3

3l

lia

7

123456 mmmmmmm aaaaaaa

case w is replaced with  (i – 1).  Table  6.4  shows  how  the  running 

apparent from this graph when steady-state has been achieved. A good 

period somewhat longer than necessary rather than inappropriately short.
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We illustrate the use of the Welch moving average method using 

variables of interest are berth group size and the tanker total wait time. 
Figures 6.4 and 6.5 show the results of 10 simulation runs (n = 10) each of 
duration 15 weeks. The time cells have a width of 1 week which means 
that m = 15. The following observations are noteworthy. 

   In the case of the berth group size, there is no apparent transient. Even 
without the use of running averages (see Figure 6.4a), the graph is 
relatively smooth. This result can be attributed to the small size of the 
group (namely, three) which results in the available berths being quickly 
filled by the first few arrivals of tankers. 

    A transient is certainly apparent for the tanker total wait time as shown 
in Figure 6.5 and moving averages are required to smooth out the graph. 
A window size of five provides a suitable result and shows that the 
transient lasts for approximately three weeks. Either four or five weeks 
can be selected as a suitable warm-up period. 

     The warm-up period has relevance for the elimination of the transient in 
the tanker total wait time output variable. However, this does not 
preclude the collection of berth group size data during the warm-up 
period.

data to be collected during a simulation run and this provides the basis for 
a number of methods for generating the necessary data for analysis (i.e., a 

experimentation with the port simulation program as presented in Section 
6.3.3. An overview of the method of batch means is also given. A more 
comprehensive presentation of the available options can be found in Law 
and  Kelton [6.5]. 

version 1 of our port project (no intervention and no storms). The output 

Extending the right-hand boundary of the observation interval allows more 

set of IID values  for the output variable). We examine two approaches. 

 Our problem continues to be the determination of an estimate

as previously noted, in steady-state studies we must reduce the effect of 

6.3.2  Collection and Analysis of Results 

of the mean of an output variable Y , i.e. = E[Y ]. However,

The replication–deletion method is described and illustrated using 

µ

transient data, and ideally eliminate it. 
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FIGURE 6.4. Welch method applied to berth group size. 
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FIGURE 6.5. Welch method applied to tanker total wait time. 



6.3  Steady-State Studies    233 

observation interval (i.e., tf ) is simply taken to be the value of (simulated) 
time when a sufficient amount of data has been collected to generate a 

It does, however, have the computing time overhead
 of repeating the warm-up period for each of the replications. 

This approach resembles the experimentation and output analysis 

the output data, a point estimate and confidence interval can be obtained 
using Equation (6.1). In the discussion of Section 6.2.2 it was noted that 
increasing the number of simulation runs (i.e., replications) reduced the 
confidence interval half length (n) and increased the quality of the point 
estimate. This equally applies in the replication–deletion approach for a 
steady-state study. However, in a steady-state study, (n) can also be 
reduced by increasing the length of the simulation run, that is, by adjusting 
the right-hand boundary tf of the observation interval. Based on these 
observations the procedure for the replication–deletion method can be 
formulated as a straightforward extension of the earlier procedure 
presented in Section 6.2.2. It is as follows. 

1. 
well an initial reasonable value  for tf ,  and  an  initial  value  for n  that 
is not smaller than 20. 

2. Collect the n  observed  values y1,  y2, . . . , yn  for  the  random 
variables Yk , k = 1, 2, . . . , n,  that  result  from n  replicated 
simulation runs of the simulation program M that terminate at time 
tf.

3. From  tabulated  data  for  the  Student  t-distribution,  determine tn-1,a

where a = (1 – C)/2.
4. Compute )(ny  and (n) using Equation (6.1). 
5. If (n) < r )(ny (or (n)/ )(ny < r)  then  accept )(ny  as  the  estimate 

of µ and end the procedure, otherwise continue to Step 6. 

observations yn+1, yn+2, . . . , yn+ n  through  a further n  replications, 

The right boundary of the 

In  fact  a 
sequence of n
valid and meaningful  collection of output observations.  

simulation runs is executed to produce a set of n output 
values.  
 

An important feature of this method is that it naturally generates a 
set of IID values. 

previously outlined for a bounded horizon study (see Section 6.2). From 

A practical approach in the replication–deletion method is to  
determine  the  right boundary of the warm-period  (using methods 

output  set data generated prior to tw.  

Choose values for r, and for the  confidence level  parameter C,  and  as 

6. EITHER choose n no smaller than 3  and  collect  the  additional 

(Note that the output set,  from  which  yi 's  are obtained,  include only 
data collected after the end of the warm-up period)

such as the one described in Section 6.3.1) and to delete any 
 tw

replace n with n + n and repeat from Step 3
 OR increase the value of tf by at least 50% and repeat from Step 2.2

                                                                                                                          
2 In some environments (e.g., Java), it may be possible to save the state of the 

simulation program for each replication so that simulations runs can be 
continued from the previously specified tf.
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The batch means method is an entirely different approach that requires 
only a single (but potentially ‘long’) simulation run. An advantage of this 
approach is economy of computing time because the warm-up period only 
needs to be accommodated once. The end of the observation interval tf is 

autocorrelation of the output data must be dealt with in order to generate 

p0,0, p0,2, ...p0,m0 p1,0, p1,2, ...p1,m1 p2,0, p2,2, ...p2,m2 pn,0, pn,2, ...pn,mn

t0 t
tw tc1 tc2 tc(n-1) tf Observation 

Interval

PSOV Data 

Warm-up 

period
Time cell 1 Time cell 2 Time cell n•   •   •

•   •   •

Set 

Operator

y1

Set 

Operator

y2

Set 

Operator

yn

Output Data 

(DSOV) 

Batch 1 Batch 2 Batch n

•   •   •

the
 warm-up  period  is  divided  into n time cells as shown in Figure 6.6. The 

i

this  method  (and  also  other  methods  which  use a single
 simulation run), 

6.3.3  Experimentation and Data Analysis for the Port Project 

The Java program given in Figure 6.7 illustrates how the required 

Welch’s method). The major steps include: 

can be found in Law and Kelton [6.5]. 

obtain 

selected  to generate all the data necessary for analysis. However possible 

the necessary IID data. 

To generate a set of IID values, the observation interval beyond 

result is a 
set  of n batches. A DSOV output value is then computed for each  batch,
 providing a set of output values y  for i = 1, 2, . . .  
 be used to a point estimate of the mean value of the distribution of
 the output variable of interest, together with the corresponding  confidence
 interval. 

implemented.  The replication–deletion method  is being used to generate
 the  necessary output data with a warm-up period of five weeks (previously
 determined by 

FIGURE 6.6. Output values using method of batch means.

n. Equation (6.1) can then

experiments for the steady-state study of the Port project can be 

   Details  about 

One of the challenges of the batch means method is the proper 
selection of the length of the time cells. If the length is too short the

PSOV values that fall into a time cell is called a batch. The end 

iy  values may be correlated. Appropriate checks therefore need to be incorporated.
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1. The main method obtains  the  value  of tf  (the  right-hand  boundary  of 
the observation interval expressed in weeks) from the command line 
arguments (arg[0]). A simulation run termination time expressed in 
hours is assigned to endTime.

2.  A set of uncorrelated seeds is generated (to ensure independent 
replications) and saved into an array. The seeds are reused when 
carrying out the simulation runs for the alternative case of the port 
project (this implements the use of common random numbers 
described in Section 6.4).

3.  Two sets of simulation runs are carried out, one set where 
numBerths = 3 (base case), and one set where numBerths = 4 
(alternate case). This is implemented as a loop that increments 
numBerths.

4.   A simulation run consists of instantiating the PortVer1System  object 
that is initialised with the start time, number of berths, and random 
number generator seeds. The termination time of the 
PortVer1System object is first set to warmUpTime (using the 
setTimef method) and the simulation program executes for the 
warm-up period. The output set for the tanker total wait time is 
cleared. The termination time of the PortVer1System object is now 
set to endTime and continues execution until the end of the
observation interval.

5. The output data values are then computed by the ESOuputSet
methods,computeTrjDSOVs, and computePhiDSOVs. The values 
are then printed.

For each of the two cases (number of berths equals three and four), 
output data for each of the output variables (the average group size and 

f

of increasing values of n (number of replications). For each of the output 

(s(n)), and confidence interval half length ( (n)) values computed from the 
recorded data using Equation (6.1). The last column shows the ratio of 
(n)/ )(ny which gives a measure of the quality of the point estimate. As 

expected, increasing the number of runs (n) reduces the confidence interval 
half length (n). Increasing the simulation run length also improves the 
quality of the results. A comparison of the three and four berth options is 
undertaken in Section 6.4.1 using an appropriate statistical framework. 

tanker total  wait  time) using t  equal  to 10, 20, and 30 weeks are 
generated and analysed. In  each case results are obtained for a sequence 

variables, Table 6.5 shows point estimate ( y n) ), standard deviation 
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public static void main(String[] args)

{

    double week=(7*24); 

    double startTime=0.0;

    double warmUpTime=5*week;

    double endTime 

    int NUMRUNS=10000; 

    Seeds [] sds = new Seeds[NUMRUNS]; 

    // Find end time, tf, from command argument 

    if(args.length != 1) 

    { 

 System.out.println("Usage: PortV1Exp2 <endTime>"); 

 System.exit(1); 

    } 

    endTime=Double.valueOf(args[0])*week;

    // Lets get a set of uncorrelated seeds 

    RandomSeedGenerator rsg = new RandomSeedGenerator();

    for(int i=0 ; i<NUMRUNS ; i++) 

 sds[i] = new Seeds(rsg.nextSeed(),rsg.nextSeed(),

         rsg.nextSeed(),rsg.nextSeed(),

         rsg.nextSeed()); 

    // Simulation Runs 

    System.out.println("End Time = "+ args[0] + 

"("+endTime+")");

    // Run for 3 berths and then 4 berths 

    for(int numBerths=3 ; numBerths<=4 ; numBerths++) 

    { 

 System.out.println("Number of berths = "+numBerths); 

 for(int i=0 ; i<NUMRUNS ; i++) 

 { 

        PortVer1System portSys = new PortVer1System( 

          startTime,numBerths,sds[i]);

        portSys.setTimef(warmUpTime); // end of warmup 

        portSys.runSimulation();

  portSys.tankerTW.clearSet();  // clear output set 

        portSys.setTimef(endTime); // now run to tf 

        portSys.runSimulation();

        // compute DSOV 

        portSys.berthGrpN.computeTrjDSOVs(

         portSys.time0,portSys.timef);

        portSys.tankerTW.computePhiDSOVs();

        System.out.println(portSys.berthGrpN.mean+", "+ 

portSys.tankerTW.mean);

 } 

    } 

}

Example 1 of Section 4.3.1). 
FIGURE 6.7. Experiments  with the  Java port simulation program (corresponds to 
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TABLE

(a) Number of berths = 3.

t f :

n s(n) (n) s(n) (n) s(n) (n)

20 1.845 0.138 0.053 0.0290 1.858 0.072 0.028 0.0149 1.866 0.066 0.025 0.0137

30 1.820 0.139 0.043 0.0237 1.833 0.088 0.027 0.0149 1.842 0.078 0.024 0.0132

40 1.824 0.138 0.037 0.0201 1.833 0.095 0.025 0.0138 1.838 0.071 0.019 0.0103

60 1.827 0.147 0.032 0.0173 1.833 0.099 0.021 0.0117 1.828 0.077 0.017 0.0090

80 1.828 0.138 0.026 0.0141 1.834 0.102 0.019 0.0103 1.833 0.076 0.014 0.0077

100 1.823 0.138 0.023 0.0126 1.834 0.101 0.017 0.0091 1.830 0.078 0.013 0.0071

1000 1.834 0.130 0.007 0.0037 1.833 0.094 0.005 0.0027 1.833 0.077 0.004 0.0022

10000 1.826 0.132 0.002 0.0012 1.832 0.095 0.002 0.0009 1.833 0.078 0.001 0.0007

20 7.144 2.387 0.923 0.1292 7.196 1.937 0.749 0.1041 7.256 1.543 0.597 0.0822

30 6.815 2.432 0.754 0.1107 7.042 1.695 0.526 0.0747 7.268 1.394 0.432 0.0595

40 6.703 2.482 0.661 0.0987 7.099 2.020 0.538 0.0758 7.320 1.487 0.396 0.0541

60 7.958 5.733 1.237 0.1554 7.451 2.626 0.567 0.0760 7.324 1.727 0.373 0.0509

80 7.857 5.243 0.976 0.1242 7.454 2.438 0.454 0.0609 7.410 1.762 0.328 0.0442

100 7.844 5.148 0.855 0.1090 7.665 2.498 0.415 0.0541 7.456 1.781 0.296 0.0397

1000 7.613 4.518 0.235 0.0309 7.682 2.817 0.147 0.0191 7.700 2.299 0.120 0.0155

10000 7.449 4.510 0.074 0.0100 7.686 2.926 0.048 0.0063 7.729 2.293 0.038 0.0049

10 weeks 20 weeks 30 weeks

Berth Group Size

Tanker Total Waiting Time

(n)y (n)y (n)y
(n)y

(n)
(n)y

(n)
(n)y

(n)

(b) Number of berths = 4. 

t f :

n s(n) (n) s(n) (n) s(n) (n)

20 1.859 0.149 0.058 0.0310 1.872 0.075 0.029 0.0154 1.877 0.068 0.026 0.0140

30 1.835 0.146 0.045 0.0247 1.847 0.090 0.028 0.0152 1.854 0.079 0.025 0.0132

40 1.839 0.145 0.039 0.0210 1.847 0.096 0.025 0.0138 1.850 0.071 0.019 0.0103

60 1.844 0.155 0.033 0.0181 1.846 0.101 0.022 0.0118 1.840 0.078 0.017 0.0092

80 1.844 0.146 0.027 0.0147 1.847 0.105 0.019 0.0105 1.845 0.077 0.014 0.0078

100 1.839 0.144 0.024 0.0130 1.847 0.104 0.017 0.0094 1.841 0.080 0.013 0.0072

1000 1.850 0.135 0.007 0.0038 1.846 0.097 0.005 0.0027 1.845 0.079 0.004 0.0022

10000 1.842 0.136 0.002 0.0012 1.845 0.098 0.002 0.0009 1.846 0.080 0.001 0.0007

20 2.533 1.045 0.404 0.1595 2.534 0.641 0.248 0.098 2.533 0.422 0.163 0.0644

30 2.488 0.938 0.291 0.1170 2.556 0.569 0.177 0.069 2.598 0.450 0.140 0.0537

40 2.452 0.885 0.236 0.0962 2.554 0.564 0.150 0.059 2.582 0.422 0.112 0.0435

60 2.769 1.562 0.337 0.1217 2.601 0.705 0.152 0.059 2.547 0.487 0.105 0.0412

80 2.709 1.432 0.267 0.0984 2.582 0.691 0.129 0.050 2.549 0.499 0.093 0.0364

100 2.711 1.379 0.229 0.0845 2.624 0.683 0.113 0.043 2.552 0.496 0.082 0.0323

1000 2.539 1.114 0.058 0.0228 2.557 0.639 0.033 0.013 2.559 0.508 0.026 0.0103

10000 2.501 1.094 0.018 0.0072 2.557 0.662 0.011 0.004 2.564 0.512 0.008 0.0033

Berth Group Size

Tanker Total Waiting Time

10 weeks 20 weeks 30 weeks

(n)y(n)y(n)y (n)y
(n)

(n)y
(n)

(n)y
(n)

6.4 Comparing Alternatives 

A frequently occurring requirement among the goals of a modelling and 
simulation project is the evaluation of several alternate system designs. For 
example, what reduction in maximum patient waiting time could be 
expected in the emergency admitting area of a large hospital if an 
additional orthopaedic specialist were hired or what might be the impact 
on traffic flow in the downtown core of a large city if a network of one-
way streets were implemented? There can be a large number of such 

 6.5. Results from  experiments with  the Java port simulation program of 
Figure 6.7.
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design alternatives that need to be evaluated but we first examine the case 
where there are only two.

In principle the problem solution is straightforward. Develop a 
simulation program for each of the scenarios (alternatives), obtain a value 
for some common performance measure applied to each scenario (e.g., a 

There  is,  however,  a  serious  complication  that
 emerges,  namely,  what assurance  is there that any observed difference
 between  the performance measure  values  is a consequence of  the design
 difference  being  studied  and not simply a consequence of the inherent
 random behaviour within the model?

A number of different approaches have emerged for dealing with this 
problem and comprehensive discussions can be found in the literature 

straightforward is called the paired-t confidence interval method The 
objective here is to first establish a confidence interval for an estimate of 
the mean of a random variable that is the difference between the output 
variables associated with each of the scenarios. A decision about relative 
superiority is then based on the position of the confidence interval relative 
to zero. Some details are provided below. 

6.4.1  Comparing Two Alternatives 

Suppose that Y is the output variable to be used for the evaluation and let’s 
assume that we seek as large a value as possible for this variable. The 
simulation program for each of the design alternatives is replicated n times 
with appropriate care taken to ensure that in each case the n observations 
of Y can be assumed to be independent (i.e., by proper management of the 
random number streams that ‘drive’ the simulation models). Suppose that 
y1k is the value of Y obtained for case 1 on the kth replication and suppose 
that y2k is the value for case 2 on the kth replication. Let: 
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(6.3)

mean value estimate for  the distribution  of some DSOV), and compare
 the values  obtained. 

(e.g., Banks et al. [6.1] and Goldsman and Nelson [6.2]). One of the most 
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where tn-1,a is a value from the Student t-distribution  (see  Table  A1.4)  that 
corresponds to (n – 1) degrees of freedom and a = (1 – C)/2 with C the 
confidence level parameter. Here )(nd is  a  point  estimate  of  the  mean of 

the differences and )(2 ns is  the sample  variance.  (The similarity of  these 
results with those given in Equation (6.1)  is  worth noting.)  The associated 

confidence interval is ])([)( ndnCI .
There are three possible outcomes based on CI(n); namely,

a)  If CI(n) lies entirely to the right of zero then the result of case 2 
exceeds the result of case 1 with a level of confidence given by 
100C%.

b)  If CI(n) lies entirely to the left of zero then the result of case 1 
exceeds the result of case 2 with a level of confidence given by 
100C%.

c)  If CI(n) includes zero then at the level of confidence, 100C%.,
there is no meaningful difference between the two cases. 

The procedure outlined above is best carried out in conjunction with a 
technique called common random numbers (CRN). When undertaking the 
comparison of the data that flow from the two simulation programs that 
embody the two design alternatives, there is reason to be concerned about 
the extent to which any observed difference is a genuine reflection of the 
design alternatives or is simply the result of a lack of symmetry in the 
random phenomena that take place within the respective simulation 
models.

The common random number technique seeks to establish this 
symmetry and thus enhance the reliability of the conclusions. The 
application of the technique corresponds to endeavouring to ensure that, 
insofar as possible, the random phenomena within the two simulation 
programs are co-ordinated; for example, comparable entities flowing in the 
two models are subjected to the same sequence of delays. In principle, this 
can be achieved by the strict management of the random variate generation 
procedures within the two programs. This coordination is straightforward 
for input data models. The coordination task can also be easily achieved 
with all data models when the simulation model is relatively simple. 
However, except for input data models, the coordination task can become 
increasingly more difficult as the simulation model complexity increases. 
Often the design differences themselves may inhibit a rigorous application 
of the approach. 

The common random number procedure outlined above has the effect of 
establishing correlation between the output data generated in 
corresponding simulation runs with the two alternative designs. This, in 
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turn, has a quantitative manifestation; more specifically, the procedure, 
when operating as intended, should yield the inequality: 

)()()( 2
2

2
1

2 nsnsns  , (6.4)

where )(2
1 ns and )(2

2 ns are the variances for the data obtained for Case 1 

We return now to our experiments with the port project as outlined in 
Section 6.3.3. For the two cases where the number of berths is 3 and 
4, Table 6.6 shows the output data for each of the output variables (the 
average group size and tanker total wait time) from a sequence of 
experiments with tf = 20 weeks and n = 30. The difference column is 
obtained as (numBerths=4) – (numBerths=3). The comparison of the two 
alternatives is carried out using Equation (6.3) and the results are 
provided at the bottom of Table 6.6 (CI min and CI max are the boundaries 

follows.

1.   It is clear that increasing the number of berths from three to four does 

2.  Although the confidence interval for the berth group size is to the 
right of zero, the point estimate of the difference is so small 
relative to the individual point estimates we are obliged to 
conclude that increasing the berth group size has no meaningful effect

 on this output variable. This is somewhat counterintuitive but is a
 consequence 
 tug’s cycle time (time to deberth and berth a tanker), and the
 tanker loading times. 

measure that would
 be interesting is the percentage of time that all available berths are
 occupied. The interested reader is encouraged to experiment with
 the simulation program by exploring the effects of changing these

Table 6.7 shows the data obtained from equivalent experiments which 
do not use common random numbers (CRN) for the two cases of interest, 
that is, numBerths=3 and numBerths=4. This was achieved by not using 
the same seeds for the random number generators that implement the 
data modules in the experiments. Note that the confidence interval half 
length (n) increases for both output variables when compared to the 

and Case 2, respectively and s (n) is the value obtained from Equation (6.3). 2

of  the confidence interval). Some interpretation of the data is as 

decrease the mean tanker total wait time (by almost 4.5 hours).

For example, experimentation with the model
 has shown that when the loading times are increased, the average 
berth group size does increase. An alternate 

 various  times  in  the  simulation

 results in Table 6.6. Note also that it can be shown that the Tanker Total 
Wait Time  data  in Table 6.7  is  not  consistent with  the inequality of 
Equation (6.4).

of the relative values of tanker arrival rate, the

 model  (The  PortVer 1  simulation
model is available from the textbook Web site). 
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TABLE

n = 30). 

Run numBerths=3 numBerths=4 Difference numBerths=3 numBerths=4 Difference

1 1.721 1.729 0.008 5.981 2.182 -3.799

2 1.847 1.862 0.014 7.433 3.182 -4.251

3 1.911 1.920 0.008 7.594 2.758 -4.836

4 1.876 1.888 0.011 6.299 2.039 -4.260

5 1.897 1.917 0.020 7.177 2.483 -4.694

6 1.833 1.843 0.011 4.589 1.679 -2.910

7 1.866 1.888 0.023 8.234 3.411 -4.823

8 1.864 1.877 0.013 9.310 2.995 -6.315

9 1.790 1.796 0.006 6.398 2.580 -3.819

10 1.949 1.969 0.020 7.131 2.403 -4.728

11 1.952 1.956 0.003 9.387 2.950 -6.438

12 1.830 1.846 0.016 7.776 2.548 -5.229

13 1.720 1.743 0.023 4.764 1.719 -3.046

14 2.004 2.044 0.039 12.640 4.030 -8.610

15 1.811 1.819 0.008 4.678 1.623 -3.055

16 1.834 1.852 0.018 6.126 2.446 -3.680

17 1.932 1.941 0.009 9.013 3.127 -5.887

18 1.836 1.841 0.005 5.782 1.731 -4.050

19 1.828 1.833 0.004 5.795 2.017 -3.778

20 1.856 1.870 0.014 7.816 2.782 -5.035

21 1.921 1.924 0.003 7.344 2.853 -4.490

22 1.744 1.754 0.011 6.092 2.491 -3.601

23 1.636 1.658 0.023 6.183 2.659 -3.524

24 1.823 1.856 0.032 6.797 3.126 -3.672

25 1.747 1.746 0.000 6.619 2.214 -4.405

26 1.843 1.848 0.005 7.074 2.422 -4.652

27 1.668 1.683 0.015 4.597 1.801 -2.795

28 1.699 1.715 0.015 7.429 2.920 -4.509

29 1.928 1.964 0.036 8.780 3.093 -5.686

30 1.828 1.833 0.005 6.410 2.417 -3.993

0.014 -4.486

s(n) 0.010 1.221

(n) 0.003 0.379

CI Min 0.011 -4.864

CI Max 0.017 -4.107

Berth Group Size Tanker Total Wait Time

(n)y

and 

-

 6.6. Comparing alternative cases in the port project of Example 1 (with CRN 
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TABLE
and n = 30).

Run numBerths=3 numBerths=4 Difference numBerths=3 numBerths=4 Difference

1 1.721 1.834 0.113 5.981 2.943 -3.038

2 1.847 1.881 0.033 7.433 2.591 -4.843

3 1.911 1.887 -0.024 7.594 2.507 -5.087

4 1.876 1.881 0.005 6.299 3.278 -3.021

5 1.897 1.862 -0.035 7.177 2.107 -5.070

6 1.833 1.835 0.002 4.589 3.588 -1.001

7 1.866 1.868 0.002 8.234 2.224 -6.009

8 1.864 1.923 0.059 9.310 2.527 -6.783

9 1.790 1.838 0.048 6.398 1.828 -4.570

10 1.949 1.811 -0.138 7.131 1.895 -5.236

11 1.952 1.905 -0.048 9.387 1.418 -7.969

12 1.830 1.876 0.047 7.776 3.003 -4.774

13 1.720 1.829 0.109 4.764 2.183 -2.581

14 2.004 1.879 -0.126 12.640 2.633 -10.007

15 1.811 1.822 0.011 4.678 2.741 -1.937

16 1.834 1.905 0.071 6.126 4.414 -1.712

17 1.932 1.925 -0.008 9.013 4.340 -4.673

18 1.836 1.854 0.018 5.782 1.658 -4.124

19 1.828 1.865 0.037 5.795 2.158 -3.637

20 1.856 1.878 0.022 7.816 2.346 -5.470

21 1.921 1.844 -0.077 7.344 2.360 -4.984

22 1.744 1.937 0.194 6.092 3.644 -2.448

23 1.636 1.709 0.073 6.183 2.934 -3.249

24 1.823 1.870 0.047 6.797 2.117 -4.680

25 1.747 1.712 -0.034 6.619 2.200 -4.419

26 1.843 1.868 0.026 7.074 2.472 -4.602

27 1.668 1.686 0.017 4.597 2.799 -1.798

28 1.699 1.769 0.070 7.429 1.895 -5.533

29 1.928 1.878 -0.050 8.780 1.786 -6.994

30 1.828 1.909 0.081 6.410 4.787 -1.623

0.018 -4.396

s(n) 0.069 2.003

(n) 0.021 0.621

CI Min -0.003 -5.017

CI Max 0.039 -3.775

Berth Group Size Tanker Total Wait Time

(n)y

6.4.2  Comparing More than Two Alternatives 

The paired-t confidence interval method described above can be extended 
to the case where multiple comparisons need to be carried out. The basis 
for carrying out this extension is provided by the Bonferroni inequality 
(sometimes called the Boole inequality). It states that: 

 6.7. Comparing alternative cases in the port project of Example 1 (without 
CRN  

-
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In our context, the Ak can be interpreted as the event (in a probability 
context) that the kth confidence interval contains the kth mean in a 
collection of K (pairwise) comparisons, The Bonferroni inequality, in 
effect, places constraints on the individual comparisons in order to achieve 
an overall result that has a prescribed level of confidence, 100C%. In other 
words with 100C% confidence, the mean differences all fall into their 
respective confidence intervals. The (simplified) result that flows from the 
Bonferonni inequality is that each of the K comparisons should be carried 
out with a confidence level parameter value of: 

(6.5)

Note that the result given in Equation (6.5) is overly restrictive because it 
has imposed the unnecessary (but simplifying) requirement that the 
confidence level parameter of all constituent comparisons be equal. 

The following is a typical scenario. There exists a ‘base case’ which 
normally corresponds to the current status of the SUI. The project goals 
introduce M alternate designs together with the requirement to identify the 
best of the alternate designs by comparing each alternative to the base 
case. Thus K = M comparisons need to be made. If an overall confidence 
level of 100C% is stipulated then the K individual comparisons have to be 
carried out with a confidence level parameter of CK as given in Equation 
(6.5).

It may, on the other hand, be stipulated in the project goals that the M
alternative designs not only be compared to the base case but also be 
pairwise compared to each other. In this case, there is a requirement for K
= M(M + 1)/2 comparisons. The number of comparisons can easily rise 
quickly and the reliability of the procedure deteriorate. In addition, of 
course, the computational overhead can become overwhelming. 

Some illustrative results obtained using the multiple alternatives 

Kojo’s Kitchen project. We consider a base case (Case 1) which 
corresponds to the two employees working over the entire business day 
(10:00 AM – 9:00 PM) and three alternative employee scheduling options 
(Cases 2, 3, 4). These options allocate different numbers of employees to 
various segments of the day. The employee scheduling schemes are 

total number of employee-hours associated with each option. This is 
relevant in the ultimate selection decision because it represents the ‘cost’ 

1
1K

C
C

K
.

procedure outlined above are given in Table 6.9. The results relate to the 

summarised in Table 6.8. The rightmost column of this Table provides the 
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of the option. The output variable of interest continues to be the percentage of 
customers who wait more than five minutes before receiving service.

TABLE

Slow Busy Slow Busy Slow Emp-
(10:00am-

11:30am)

(11:30am-

1:30pm)

(1:30pm-

5:00pm)

(5:00pm-

7:00pm)

(7:00pm-

9:00pm)
Hours

Case 1 (Base Case) 2 2 2 2 2 22

Case 2 2 3 2 3 2 26

Case 3 1 3 1 3 1 19

Case 4 1 3 2 3 1 22.5

results shown for Diff21 are obtained by subtracting the results of the base 
case (Case 1) from Case 2 and applying Equation (6.3), and similarly for 
Diff31 and Diff41. These results were obtained using the Java simulation 
program previously discussed in Section 6.2.3. In each case the results are 
based on data from 100 replications (n = 100) and use of a confidence 
level parameter value of Ck = 0.968 in the determination of the confidence 
interval for the individual comparisons. This gives a value of C = 0.904 
using Equation (6.5), that is, a confidence of 90.4% in the conclusions 
from the comparison. Table 6.9 suggests that the scheduling alternative of 
Case 2 provides the best improvement over the base case. (Unfortunately it 
is also the most expensive! Note however that scheduling in Case 4 
provides a significant improvement at very little additional cost). 

Comparison

Point

Estimate 

(n) s(n) CI Min CI Max / (n)

Diff21 -0.315 0.011 0.024 -0.340 -0.291 -0.076

Diff31 -0.127 0.013 0.028 -0.155 -0.099 -0.220

Diff41 -0.243 0.012 0.025 -0.268 -0.218 -0.105

6.5 Exercises and Projects

6.1  Use the program developed in Problem 5.1 to carry out experiments 
that provide the values required for the graphs that are stipulated in the 
goals of the project outlined in Problem 4.1. Write a short report that 

 6.8. Multiple scheduling alternatives for Kojo’s Kitchen. 

TABLE 6.9. Results for multiple scheduling alternatives (Kojo's Kitchen). 

Table 6.9 provides a summary of the each of the three comparisons. The 
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outlines the problem, the goals of the modeling and simulation project, 
and the conclusions obtained from the study. 

6.2  Use the program developed in Problem 5.2 to carry out experiments 
that provide the values required for the graphs that are stipulated in the 
goals of the project outlined in Problem 4.2. Write a short report that 
outlines the problem, the goals of the modeling and simulation project, 
and the conclusions obtained from the study. 

6.3  Use the program developed in Problem 5.3 to carry out experiments 
that provide values for the proposed performance measures referred to 
in part (a) of Problem 4.3. Write a short report that outlines the 
problem, the goals of the modeling and simulation project, and the 
conclusions obtained from the study. 

6.4  Use the program developed in Problem 5.5 to carry out experiments 
that provide values for the proposed performance measures referred to 
in part (a) of Problem 4.3. Write a short report that outlines the 
problem, the goals of the modeling and simulation project, and the 
conclusions obtained from the study. 

6.5  Use the program developed in Problem 5.7 to carry out experiments 
that provide values for the proposed performance measures referred to 
in part (b) of Problem 4.4. Write a short report that outlines the 
problem, the goals of the modeling and simulation project, and the 
conclusions obtained from the study. 

6.6  Use the program developed in Problem 5.8 to carry out experiments to 
evaluate the effects of balking introduced in Problem 4.5. Write a short 
report that outlines the problem, the goals of the modeling and 
simulation project, and the conclusions obtained from the study. 
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PART 3 
CTDS Modelling and Simulation 

There are several features that distinguish the modelling and simulation 
activity within the continuous-time dynamic system (CTDS) domain. 
Perhaps one of the most important is the dependence of the project’s 
success upon the selection of the behaviour generation tool that is best 
suited to the nature of the conceptual model. Because the conceptual model 
in this domain always includes a set of differential equations, the tools in 
question relate to the numerical procedures for solving these equations (we 
restrict our discussions to the case where only ordinary differential 
equations (ODEs) are included in the model).

Many families of approaches for the solution of ODEs can be found in 
the literature and within each family there generally are numerous specific 
options. The methods in these families have their characteristic strengths 
and weaknesses and are often best suited for specific categories of 
problems. Furthermore, the use of any of these methods usually involves 
the specification of values for embedded parameters. The range of options 
is indeed wide and can even become daunting. To embark on a modelling 
and simulation project in this environment without some appreciation for 
the issues involved can be foolhardy. Our objective in Part 3 of this 
textbook is to provide a basic foundation for dealing with these issues. 

In Chapter 7 we establish a context for the discussion by formulating a 
range of simple CTDS conceptual models. For the most part, these have 
their origins in the portions of the physical world where behaviour can be 
readily characterised by familiar laws of physics. This central role of the 
laws of physics is a typical circumstance in the CTDS domain and should 
not be interpreted as a biased perspective. However, this is not to suggest 
that CSTD models cannot be formulated in the absence of directly 
applicable physical laws and we illustrate this point by providing an 
example of the formulation of some credible CTDS models based entirely on 
intuitive arguments. The final topic in Chapter 7 is a brief examination of 
the problem of transforming a conceptual model that has evolved with 
higher-order differential equations into an equivalent set of first-order 
differential equations. Such a format is a frequently required by numerical 
software.

In Chapter 8 we provide an overview of some of the basic numerical 
tools for solving the ODEs of the CTDS conceptual model. The 
presentation is relatively informal and is at an introductory level. Features 
that have practical relevance, especially those that can lead to numerical 
difficulties, are emphasised.
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Because of our assumed absence of random affects in the CTDS models 
which we treat in this textbook, it is conveniently feasible to include 
classical optimisation requirements in the project goals. This topic is 
examined in Chapter 9. The typical objective here is to find values for 
parameters within the conceptual model which yield a minimum value for 
a prescribed performance (or criterion) function. Such a function could, for 
example, correspond to the operating cost of some chemical process. We 
outline several minimisation procedures that could be applied in a CTDS 
context.

As a concluding comment in this synopsis, we encourage the reader to 
examine Annex 3 where we have provided an introduction to Open Desire 
which is a software tool specifically designed to facilitate simulation 
experiments with CTDS conceptual models. 

7.   Part 3  CTDS Modelling and Simulation



Chapter 7 Modelling of Continuous-Time 
Dynamic Systems 

7.1 Introduction

Our concern in this chapter is with exploring the modelling process within 
the context of continuous-time dynamic systems (CTDS). From our 
perspective, the essential distinguishing feature of this category of system 
is the fact that a conceptual model can be formulated as a set of differential 
equations, possibly augmented with a set of algebraic equations. For the 
most part, such models emerge from a deductive process that has its basis 
in physical laws that are known to govern the behaviour we seek to 
explore, that is, the behaviour of the SUI. This is in contrast to an inductive 
process whereby a model is developed on the basis of observed (or 
hypothesised) behaviour, as is the case in the development of almost all 
models in the realm of discrete-event dynamic systems (DEDS). The 
deductive model building process is generally associated with systems that 
have their origins in engineering or in the physical sciences. Because of the 
availability of ‘deep’ knowledge provided by relevant physical laws, such 
models can incorporate subtleties and a level of detail that are not usually 
possible within the DEDS context. This enhances the scope of project 
goals that are realistically achievable. 

For convenience, we refer to conceptual models that have a differential 
equation format as CTDS models. Although such models arise most 
commonly from a deductive process, it needs to be stressed that this is not 
a prerequisite. It is most definitely possible to develop credible and useful 
CTDS models via an inductive process in certain cases where the SUI falls 
outside the realm of established physical laws. The fields of biology and 
economics provide many examples of such an approach. 

CTDS models can be formulated in terms of either ordinary or partial 
differential equations (or both). When the modelling power of partial 
differential equations is required, the SUI is usually called a distributed
parameter system. Such systems arise in a wide variety of domains. 
Included here are: heat transfer, hydrodynamics, electromagnetics, and 
elasticity. The treatment of models that depend on this formalism is, 
however, beyond the scope of this textbook. Our considerations are 
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restricted to CTDS models that can be formulated exclusively within the 
framework of ordinary differential equations. Nevertheless much of the 
discussion in both this and the following chapter does have relevance to 
the case of distributed parameter systems.

Frequently random effects are absent in continuous models. Although 
this is not an essential property, we limit our considerations in this chapter 
to this restricted (i.e., deterministic) case. One especially significant 
feature associated with the deterministic context is that a search for 
operating conditions that yield some prescribed behaviour for the SUI 
becomes a significantly simpler task because there is no requirement to 
assess efficacy of a candidate solution over some potentially vast 
stochastic environment.

Another important difference between CTDS and DEDS models relates 
to the nature of the time advance mechanism required in the simulation 
program. In the case of CTDS models, the fundamental requirement is that 
of solving the underlying differential equations within the conceptual 
model and that process intrinsically incorporates a time advance procedure 
thereby eliminating any need for additional considerations. The 
mechanisms in question are explored in Chapter 8. 

7.2 Some Examples of CTDS Conceptual Models 

7.2.1  Simple Electrical Circuit 

An electrical circuit consisting of a resistor (R), capacitor (C), inductor (L), 
and a voltage source (E(t)) connected in series (see Figure 7.1) provides an 
archetypical example of a system whose dynamics can be represented 

The nature of CTDS models as outlined above, suggests a number of 
differences from the class of DEDS models examined in Parts 1 and 2 in  
this book. In effect, CTDS models exhibit a “smoothness” property in the 
sense that the time trajectories of the variables within the model tend to 
undergo only small changes in response to small changes in parameters or 

of system behaviour at a relatively detailed level (resulting from the un-
derlying deep knowledge that is typically available) and the absence of 
stochastic effects, permits the formulation of project goals that can be 
more demanding in terms of expected precision and reliability. This, in 

can, with reasonable confidence, provide the basis for system implementa-
tion. We examine this topic in some detail in Chapter 9. 

in operating conditions. This feature, combined with the characterisation 

particular, makes feasible credible optimisation studies whose outcome 
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using a CTDS model. An analysis of the circuit based on the application of 
Kirchoff’s voltage law, yields the equation: 

)(
)(

)()( ''' tE
C

tq
tRqtLq  , (7.1)

where q(t) is the charge on the capacitor C, and q t
circuit. If we denote by t0 the left-hand boundary of the observation 
interval, then it is important to observe here that the solution of Equation 
(7.1) (i.e., the behaviour generation process) requires the specification of 
two initial conditions: namely, q(t0) and q (t0) as well as the explicit 

variables for the model and E(t) is an input variable. 

E(t)

R

L

C

q'(t)

+

-

FIGURE 7.1. A simple electrical circuit. 

7.2.2  Automobile Suspension System 

A vehicle of mass 4 M  is traveling forward at constant velocity over a 
road which is initially smooth and horizontal. It is in an equilibrium 
condition and any particular point on the body has a constant vertical 
displacement from the road surface. The body is connected to each of the 
four wheels through a spring/shock absorber system and each wheel 

At time t = t0 the vehicle begins to travel over a section of the road 
which has an irregular surface (see Figure 7.2). This causes vertical motion 
of the vehicle about its equilibrium position. If we use y(t) to represent this 
vertical displacement, then from the application of Newton’s second law, 
the trajectory of y(t) is defined by: 

M y˝(t) +  fb(t) +  fa(t) = 0  , (7.2)

supports one quarter of the total mass. 

                                                                                                                          

specification of the function E(t). In other words, q(t) and q (t) are state 

( )  is the current in the 

  The prime superscript denotes differentiation with respect to time (d/dt).1

1
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where fa(t) and fb(t) represent the forces associated with the spring and the 
shock absorber, respectively. We choose the variable u to represent the 
vertical irregularities in the road surface, taken with respect to the road’s 
smooth horizontal (equilibrium) condition. Although u is a function of 
horizontal displacement from some reference point it can, from the 
perspective of the vehicle moving over it at constant speed, be treated as a 
function of time; that is, u = u(t). This time function u(t), in fact, 
represents an input to the CTDS model being formulated. A particular 
choice for u(t) that matches the presentation in Figure 7.2 is: 

00
max

0

))(cos(1
2

0

)(
ttfortt

u

ttfor

tu  , (7.3)

where  is proportional to the vehicle’s horizontal velocity. 
For definiteness, we assume that the spring is linear; hence fa(t) = k(y(t)

– u(t)) where k is the spring constant. On the other hand let’s assume that 
the shock absorber is nonlinear and that the associated force is: 

fb(t) =  |v(t)| v(t) , (7.4)

where v(t) = (y (t) – u (t)) and  is the shock absorber constant. 
If we choose y(t) and y (t) to be the state variables for the model, then 

the solution of the second-order differential equation, Equation (7.2), 
requires the two initial conditions: y(t0) and y (t0). From the definition of 
y(t) and as a direct consequence of the equilibrium assumption prior to t =
t0, both of these values are zero. 

A possible goal for a modelling and simulation study associated with the 
above model could be the determination of values for the spring and shock 
absorber constants which yield a best value for some prescribed measure 
of ride quality. 
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t = to 

Road contour u (t)

t

Equilibrium position

Direction of motion

Mass 4M

y(t)

Shock 
Absorber

Spring

FIGURE 7.2. Automobile suspension system. 

7.2.3  Fluid Level Control 

The cleaning solution required in an industrial process passes through two 
holding tanks (see Figure 7.3). Valves control the inflow into each of the 
tanks and the position of these valves is established by a control strategy 
based on the height of the liquid in the respective tanks. The rate of change 
of the volume of liquid in each tank is equal to the difference between the 
inflow rate and the outflow rate. If we let A1 and A2 represent the cross-
sectional areas of Tank 1 and Tank 2, respectively; then: 

A1 h1 (t) = w0(t) – w1(t)

A2 h2 (t) = w1(t) – w2(t) , 
(7.5)

where w0 (t), w1(t), and w2(t) are the volume flow rates (e.g., cubic meters 
per second) into and out of the tanks as shown in Figure 7.3. (Note that the 
solution of Equation (7.5) requires initial conditions for h1 and h2.)
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Flow Control Specifications 
Tank 1: The valve V0 opens when the level in Tank 1 is decreasing and 

falls below a value which corresponds to a half-full tank. More precisely, 
V0 moves from a closed to an open position at time ta where h1 (ta) < 0 and 
h1(ta) < H1/2. Once open, V0 stays open until h1(t) reaches the level H1

which is the full-tank condition. When V0 is open, the inflow rate is 
constant; that is, w0(t) = K.

Tank 2: The control policy for valve V1 is analogous; that is, V1 moves 
from a closed to an open position at time tb where h2 (tb) < 0 and h2(tb) < 
H2/2. Once open, V1 stays open until h2(t) reaches the level H2 (the full-tank 
condition). However, when valve V1 is open, the inflow rate is given by 
w1(t) = k h1(t) where k is a constant. The outflow rate from Tank 2, w2(t), is 
given by w2(t) = u(t) h2(t) where u(t) is a control input to valve V2 which 
reflects the external demand for cleaning solution. Because of physical 
limitations of the piping system, u(t) is constrained; that is, 0 < u(t) < umax.

The SUI outlined above clearly has a control system context. The 
conceptual model for the SUI is given by Equation (7.5) together with the 
(algebraic) equations implicit in the control strategy. A likely project goal 
here could be the resolution of the design problem of choosing appropriate 

Tank 1

(area = A1)

Tank 2

(area = A2)

w2(t)

w1(t)

w0(t)

V0

V1

h2(t)

h1(t)

H2

H1

FIGURE 7.3. Fluid level control. 

values for the various parameters within the model (e.g. 
H1,, H2 and K) based on assumptions about the external demand, u(t) and 
some criterion for evaluating performance. 
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7.2.4  Population Dynamics 

Often the model associated with a modelling and simulation project in the 
domain of environmental studies must incorporate a representation of the 
manner in which the population of various species evolves over time. In 
many cases the model must reflect the interdependence of several species. 
Perhaps the best example of the case of interacting populations is given by 
predator/prey (or host/parasite) situations, for example, wolf/caribou or 
lynx/hare populations. The characterisation of the behaviour of such 
populations with a CTDS model implies that the variables representing 
population values will acquire ‘real’ (i.e., fractional) values rather than 
values that are strictly integer. This may appear counterintuitive but with 
the assumption that the populations are ‘large’, the fractional parts of real 
values have little consequence on the general features of the results 
obtained.

based on essentially intuitive arguments. As demonstrated below, a 
credible structure for such models can be formulated in a reasonably 
straightforward manner. However, accommodating the associated data 
requirements (parameter values) can present a challenge. 

We consider first a single population model and let P(t) represent the 
population at time t. A natural assumption is that the rate of change of 
population is dependent on two effects: namely, the birth rate b(t) (births 
per unit time) and the death rate d(t) (deaths per unit time). This yields the 
basic equation: 

P (t) = b(t) – d(t) . (7.6)

It is reasonable to assume that both b(t) and d(t) are dependent on the 
current population. If this dependence is linear, that is, b(t) = kb P(t) and 
d(t) = kd P(t), then the model becomes: 

There is a distinctive aspect of this example that is worth noting. The 
conceptual models for the SUIs outlined in Section 7.2.1 and Section 7.2.2 
were formulated entirely on the basis of basic physical laws. In this exam-

superimposed by the technological artefact of the control policy (see Flow 
Control Specifications above). This latter behaviour can be readily altered 
by the control policy’s developer. In fact, its possible modification is 
likely implicit in the project goals. 

There are no underlying physical laws upon which to base the devel-
opment of such population models (unlike the circumstances in the exam-
ples discussed in Sections 7.2.1, 7.2.2 and 7.2.3). Consequently they are 

,
ple, only part of the conceptual model has such 

,

natural  origins (namely 
Equation (7.5)). The remainder of the model relates to behaviour that is 



256 7.   Modelling of Continuous-Time Dynamic Systems 

P (t) = k P(t) , (7.7)

where k = (kb – kd). The solution to Equation (7.7) can be easily verified to 
be

P(t) = exp(kt) P0  ,

where P0 is the population at some (initial) time t0. Clearly if k > 0, the 
population will grow without bound whereas if k < 0, the population will 
eventually vanish; hence the model is relatively rudimentary. 

A possible refinement is to conjecture that k is indeed positive but that 
there are external effects that prevent the population from exceeding a 
value of Pmax. This behaviour can be achieved with a simple modification to 
the model of Equation (7.7); that is, 

P (t) = k [1 – (P(t)/Pmax)] P(t) . (7.8)

Now as P(t) approaches Pmax the growth rate approaches zero. 
As an alternative, suppose we choose the dependence in the case of b(t)

to be linear but nonlinear in the case of d(t). Specifically, let’s choose: 
b(t) =  P(t)

d(t) = P2(t) ,

where  and  are constants whose values (necessarily positive) remain to 
be determined as part of the data modelling phase. With the substitution of 
these relations in Equation (7.8) and with some straightforward 
manipulation, we obtain: 

P (t) =  P(t) [1 – K P(t)] . (7.9)

Here 1/K = /  plays the role of an equilibrium value for the population, 
P(t). In other words, the solution of Equation (7.8) approaches the value 
1/K from any initial condition P0 = P(t0).

We now extend our considerations to the case of two populations that 
function in a predator/prey framework. We use P1 and P2 to represent the 
predator and the prey populations, respectively. The behaviour of each of 
these populations can be assumed to be represented by an equation of the 
form of Equation (7.9) but suitably augmented by some reflection of the 
mutual interaction. We assume that the interaction can be characterised by 
a term that is proportional to the product of the two population sizes. 
Furthermore, it is reasonable to assume that the interaction is beneficial to 
the predator population growth rate but is detrimental to the growth rate of 
the prey population. Under these circumstances we obtain the following 
CTDS model. 
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P1 (t) = 1 P1(t) [1 – K1 P1(t)] + 1 P1(t) P2(t)

P2 (t) = 2 P2(t) [1 – K2 P2(t)] – 2 P1(t) P2(t)  , 
(7.10)

where the positive constants 1 and 2 reflect the ‘strength’ of the 
interactions.

A common simplification to the model given in Equation (7.10) is to 
ignore the effect of ‘natural’ death rates by setting 1 = 2 = 0, which then 
results in K1 = K2 = 0. This gives: 

P1 (t) = 1 P1(t) + 1 P1(t) P2(t)

P2 (t) = 2 P2(t) – 2 P1(t) P2(t) . 
(7.11)

From a validation point of view it is reasonable to require that the predator 
population P1(t) approach zero if the prey population vanishes (i.e., if P2 = 
0). This requirement can be achieved only if 1 has a negative value. An 
equivalent effect can be achieved by replacing 1 with – 1 (and then taking 
both 1 and 2 to be positive). Our model then becomes: 

P1 (t) = – 1 P1(t) + 1 P1(t) P2(t) = – 1 P1(t) [1 – ( 1/ 1) P2(t)]

P2 (t) = 2 P2(t) – 2 P1(t) P2(t)  = 2 P2(t) [1 – ( 2/ 2) P1(t)].
(7.12)

Equation (7.12) has an equilibrium point given by P1

* = 1/ 1 and P2

* = 

2/ 2. These values correspond to the case where both P1 (t) and P2 (t) are 
zero. The equilibrium point, however, is unstable and any small 
perturbation from it leads to an oscillatory trajectory for both P1(t) and 
P2(t) about their respective equilibrium values. Representative trajectories 
are shown in Figure 7.4. 

The CTDS model of Equation (7.12) has been extensively studied and 

An interesting study of predator/prey behaviour when harvesting is 
the equations are known as the Lotka–Volterra equations (see, e.g., [7.2]). 

introduced can be found in [7.1].
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Prey population

Predator population

t

Population

FIGURE 7.4. Predator/prey population. 

7.3 Safe Ejection Envelope: A Case Study 

Several CTDS models have been presented in the preceding section to 
illustrate the nature of this family of conceptual models. In this section our 
focus is on another SUI which gives rise (via a deductive approach) to a 
CTDS model. However, in this case, we identify a specific goal and, in 
effect, we formulate a modelling and simulation project. 

The problem is one that has been frequently used in the modelling and 
simulation literature relating to continuous-time dynamic systems. It 
concerns the safe ejection of a pilot from the cockpit of a disabled fighter 
aircraft. The specific situation we investigate concerns an aircraft that is 
flying horizontally at an altitude H, with a constant speed of Va, when an 
emergency situation arises and the pilot is obliged to activate the onboard 
ejection mechanism and abandon the aircraft. Figure 7.5 shows the pilot’s 
general trajectory following ejection. 
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FIGURE 7.5. Trajectory of the ejected pilot. 

The ejection mechanism ensures that the pilot safely leaves the cockpit 
and once disconnected from the aircraft, the pilot  follows a ballistic 
trajectory that is governed by two forces. One of these is a drag force and 
the other is the force of gravity which will ultimately return the pilot to the 
surface of the earth. Notice, however, that once the pilot leaves the aircraft, 
the aircraft’s tail section becomes a projectile that can potentially strike the 
pilot and cause serious injury. Our concern is with exploring the 
circumstances that cause such a collision. 

A prerequisite for achieving this objective is a model of the dynamic 
behaviour of the pilot and the aircraft. The modelling perspective which 
we adopt incorporates two important assumptions, namely, 

    The motion is restricted to two dimensions; more specifically the pilot’s 
trajectory stays in the plane defined by the cockpit and tail section (in 
other words, wind forces that might alter this planar motion are 
ignored).

  During a free-flight (ballistic) trajectory any object (in this case the 
pilot) is subjected to a drag force D = D(t) which results from the 
resistance introduced by air friction. This force acts in a direction 
opposite to the velocity vector (see Figure 7.10) and we adopt the usual 
assumption that it can be expressed as 

D(t) = µ V2(t) , (7.13)

                                                     
 For convenience, we usually refer simply to the trajectory of the pilot but it 

should be recognized that upon leaving the aircraft, the pilot remains connected 
to the seat and it is the trajectory of the pilot plus seat that is, in reality, being 
studied. We assume that the seat is jettisoned at some point in time that is 
beyond the observation interval of interest. 

2

2
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where µ = D . Here D is a constant that depends on the physical shape 
of the moving object and  is the local air density which is dependent on 
altitude. This relationship is known only in terms of a number of data 
points as provided in Table 7.1. 

TABLE 7.1. The altitude/air density relationship.

Altitude (feet) Air Density ( ) (lbs/ft3)
0 2.3777 × 10-3

1000 2.208 × 10-3

2000 2.241 × 10-3

4000 2.117 × 10-3

6000 1.987 × 10-3

10,000 1.755 × 10-3

15,000 1.497 × 10-3

20,000 1.267 × 10-3

30,000 0.891 × 10-3

40,000 0.587 × 10-3

50,000 0.364 × 10-3

60,000 0.2238 × 10-3

There is a variety of factors that influence the form of the pilot’s 

example, the orientation r of the ejection rail, the ejection velocity Vr, the 
position of the tail assembly, the velocity Va of the aircraft, and the altitude 
H at which the aircraft is flying. Note that the latter is a consequence of the 
dependence of drag D(t), on air density that, in turn, depends on H.

The specific relationship we undertake to investigate in this project is 
the one that exists between the constant horizontal velocity of the aircraft 
(Va) and a variable we call Hmin. As is apparent from Equation (7.13), the 
drag force D(t) acting on the pilot is dependent on the altitude at which the 

aircraft is flying at an altitude o with horizontal velocity Va = . A 

velocity , the altitude needs to be increased (air density and hence drag 
force, both decrease as altitude increases, see Table 7.1) and the least 
altitude (say ) at which a collision is avoided is the Hmin value associated 
with the velocity . Our project goal is to determine a value of Hmin,
corresponding to each of a selected sequence of values of Va. A graph of 

trajectory and hence the possibility of a collision with the tail section; for 

aircraft is flying (indirectly via the air density relationship). Suppose the 

the data thus acquired. 

collision will result if the drag force is too high. To avoid a collision at the 

the form shown in Figure 7.6 would be a reasonable means for presenting 
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FIGURE 7.6. Generic form of the safe ejection envelope. 

The ejection mechanism, once activated (at time t = 0), propels the pilot 
over a short length of rail at a constant velocity Vr. This rail is inclined at 
an angle r from the vertical (see Figure 7.7). The seat becomes disengaged 
from the rail after it has risen a vertical distance of Yr. At that moment 
(time t = tE) the pilot (and seat) begin a ballistic trajectory that may either 
pass over or strike the tail section. 

Vr

r

y

Yr

Va

FIGURE 7.7. Initial phase of the ejection trajectory. 

There is a variety of ways in which the conceptual model for the 
dynamic behaviour of interest can be formulated. In our approach, we 
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choose Xp(t) and Yp(t) to represent the horizontal and vertical displacement, 
respectively, of the pilot measured relative to a reference point in space Ao

whose location is fixed in time. A convenient choice for the Ao is the point 
on the aircraft where the seat is initially anchored to the aircraft. If we 
assume that the ejection process begins at time t = t0 = 0, then Xp(0) =   
Yp(0) = 0. 

We make the simplifying assumption that the leading edge of the tail 
section is vertical and we let (XT(t), YT(t)) be the co-ordinates of the point at 
the top of the leading edge. This particular point is of interest because it is 
a reference point for our safe ejection study. We assume that the leading 
edge of the tail is located a distance BT units behind the point where the 
seat is anchored. Because the aircraft is moving with a constant horizontal 
velocity of Va, it follows that (relative to the fixed point Ao), XT(t) = (Va t – 
BT) for t  0. Similarly we assume that the top point of the tail section is 
displaced a distance of HT above the anchor point; thus, YT(t) = HT for t
0. Both BT and HT are positive constants yet to be specified. 

We use t* to denote the value of time when the pilot is located at the 
leading edge of the tail section. The value of t* is implicitly defined by the 
relation:

Xp(t
*) = XT(t

*) = Va t
* – BT . (7.14)

At t = t* the pilot is either passing over the leading edge of the tail section 
(Yp(t

*) > YT(t
*) = HT) or is striking it (Yp(t

*) HT). It should also be 
observed that Equation (7.14), in fact, provides an implicit definition of the 
right-hand end of the observation interval.

Although, in principle, the collision boundary corresponds to Yp(t
*) = HT

it is realistic to adopt a more conservative criterion (a ‘safe miss’) which 
we define to be one where the trajectory passes over the tail section with a 
vertical displacement of a least (HT + Sf) where Sf is a ‘safety factor’. The 
intent here is to accommodate inherent uncertainties in many of the 
constants embedded in the dynamic model. Throughout the remaining 
discussion, references to ‘missing the tail’ therefore implies Yp(t

*) > (HT + 
Sf).

If we denote by V(t) the pilot’s velocity vector, then the generic form of 
the pilot’s motion can be represented as shown in Figure 7.8, from which it 
follows that 

Vx(t) = V(t)cos (t)

Vy(t) = V(t)sin (t) .
(7.15)
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FIGURE 7.8. Generic trajectory of the pilot/seat. 

While on the rails, the pilot’s velocity vector V(t) is the sum of the 
constant horizontal velocity of the aircraft Va, and the constant ejection 
velocity Vr. The configuration is shown in Figure 7.9 from which it follows 
directly that 

Xp

’(t) = Vx(t) = Va – Vrsin r

Yp

’(t) = Vy(t) = Vrcos r  .
(7.16)

Furthermore because both the magnitude and the orientation of V(t) are 
constant while the pilot is on the rails, we have that Vx

’(t) = Vy

’(t) = 0. 

FIGURE 7.9. Constrained motion on rails (Yp  Yr).

Suppose we assume that the pilot/seat leaves the rails at time t = tE. It is 
straightforward to establish that 

tE = Yr/(Vrcos r)
Xp(tE) = (Va – Vrsin r) tE

Yp(tE) = Yr

Xp

’(tE) = Vx(tE) = Va – Vrsin r

Yp

’(tE) = Vy (tE) = Vrcos r .

(7.17)

Vy (t)

Vx (t)

V(t)

Trajectory of pilot/seat
(t)

r
r

Vr sin r

Vr Vr

Va

V

Va - Vr sin r
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Once the pilot/seat is ‘disconnected’ from the aircraft (i.e., leaves the 
rails) its motion is governed by two forces, namely, the force of gravity 
and the drag force D(t) as shown in Figure 7.10. Together these forces 
create a trajectory that (from the perspective of an observer moving with 
horizontal velocity of Va) arcs backwards over the rear of the aircraft (see 
Figure 7.5). 

FIGURE 7.10. Free-fall motion (ballistic trajectory). 

Because two forces now act upon the pilot, there are acceleration effects 
introduced as a consequence of Newton’s second law. In other words,  
Vx(t) and Vy(t) are no longer constant. The dynamic model becomes (see 
Figure 7.10): 

Xp

’ (t) = Vx(t)

Yp

’ (t) = Vy(t)

Vx

’(t) = – (D(t)/m)cos (t)

Vy

’(t) = – (D(t)/m)sin (t) – g . 

(7.18a)

(7.18b)

(7.18c)

(7.18d)

The conceptual model we seek is provided, in its most fundamental 
form, by Equation (7.18). One shortcoming, however, is the dependence 
on V(t) (through D(t)) and on (t). Two approaches are possible for dealing 
with this. In the approach we adopt, this explicit dependence is eliminated 
with some algebraic manipulation that incorporates Equation (7.15) and 
the specification for D(t) (see Equation (7.13)). Equations (7.18c) and 
(7.18d) then become: 

Vx

’(t) = – (t) Vx(t)

Vy

’(t) = – (t) Vy (t) – g 

where: (t) = [ D (H + Yp(t)) (Vx

2(t) + Vy

2(t))0.5]/m.

There now remains the requirement of specifying the observation 
interval IO that is pertinent to the project goal. The right-hand end of IO has, 

mg
D

Vy

V(t)

(t)

(t)

Vx (t)

Trajectory of pilot/seat
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in fact, been established earlier (see Equation (7.14)). The nominal left-
hand end of IO is the moment when the pilot initiates the ejection process 
and we have previously associated this with t = 0. The values of the four 
state variables (Xp, Yp, Vx, Vy) are certainly known at t = 0. Notice, however, 
that values for the state variables are also known at the later time t = tE (see 
Equation (7.17)). The fact that there is a severe discontinuity in the 
derivatives Vx’(t) and Vy’(t) as t passes over the point t = tE suggests that t = 
tE is a more practical choice for the left-hand boundary of IO (see Section 
8.4.2). In view of this, we choose our conceptual model to be the set of 
equations given in Equation (7.19). 

Xp (t) = Vx(t)
Yp (t) = Vy(t)
Vx (t) = – (t) Vx(t)
Vy (t) = – (t) Vy (t) – g 

where:  (t) = [ D (H + Yp(t)) V(t)]/m
  V(t) = (Vx

2(t) + Vy

2(t))0.5  ,

(7.19)

where the corresponding ‘initial’ conditions are at t = tE as prescribed in 
Equation (7.17). A summary of the various constants associated with the 
model is given in Table 7.2. 

TABLE 7.2. Summary of constants. 

It’s interesting to also formulate the alternate elaboration of Equations 
(7.18c) and (7.18d). In this approach we begin with Equation (7.15) from 
which it follows that 

Constant Numerical 
Value 

Units Role 

BT 30 ft 

 
g 32.2 ft/sec2 

HT 12 ft 
m 7 slugs 
Sf 8 ft 

r 15 degrees
from vertical 

Vr 40 ft/sec 
Yr 4 ft 

D

Horizontal displacement of tail section     

5  Drag factor 
Acceleration due to gravity 
Vertical height of tail section 

behind origin   

Displacement angle of ejection rails 

Safety factor for avoiding tail section 

Seat velocity while on rails 

Mass of the pilot/seat combination 

Vertical height of rails 
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y

x (7.20a)

(7.20b)

t t
substitution of Equations (7.18c) and (7.18d) yields: 

V (t) = – (D(t)/m) – g sin (t) . 

Similarly multiplication of (7.20a) by sin (t) and (7.20b) by cos (t),
addition, and again substitution of Equations (7.18c) and (7.18d) yields: 

(t) = – (g cos (t))/V(t) .

Thus, an alternate conceptual model for the ballistic trajectory (t > tE) is: 

Xp’ (t) = V(t)cos (t)
Yp (t) = V(t)sin (t)
V’(t) = – (D(t)/m) – g sin (t)

(t) = – (g cos (t))/V(t)

where: D(t) = D H + Yp(t)) V2(t) . 

The safe ejection envelope project is revisited in Section 8.6 where a 
procedure for its completion is presented together with an Open Desire 
simulation program which carries out the procedure. 

7.4 State Space Representation  

7.4.1  The Canonical Form 

The differential equations that evolve in the development of a conceptual 
model for a CTDS can have a variety of formats; for example, they may be 
linear or nonlinear, they may be a set of first-order equations, they may be 
equations of higher order, they may be autonomous, or may instead have 
input functions that reflect pertinent interaction with their environment. 
Illustrations of these various alternatives can be found in the examples of 
the previous discussion. The model developed for the electric circuit 
(Equation (7.1)) is linear, of second order, and is nonautonomous (the 
voltage source E represents an input). The suspension system model of 
Equation (7.2) is also a second-order equation but is nonlinear; it also is 
nonautonomous (the irregular road surface provides the input). The fluid 
level control model of Equation (7.5) is a pair of first-order equations 
which are nonlinear (because of the nonlinear dependence of w0(t) on h1(t)

(

Multiplication of (7.20a) by cos ( ) and  (7.20b) by sin ( ), addition, and 
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The above discussion illustrates the wide range of formats in which 
CTDS conceptual models can evolve. This same variability is certainly 
present in the realm of DEDS models and it’s not surprising to encounter it 

x (t) = f(x(t), u(t), t)

with:  x(t0) = x0

and y(t) = g(x(t)) . 

(7.21a)

(7.21b)

Here x(t), u(t), and y(t) are vectors of dimension N, p, and q,
respectively, and represent the state, the input, and the output variables, 
respectively, of the CTDS model. The functions f and g are likewise 
vectors with dimensions that are consistent with usage. Equation (7.21a) 
represents a set of N first-order differential equations and, as noted, the 
initial conditions required for the solution of Equation (7.21a) are assumed 
to be given. Equation (7.21b) makes provision for the situation where the 
output variables of the model do not correspond directly to any of the state 
variables but rather are prescribed functions of the state variables. 

The existence of a state space representation for any CTDS model has 
several important consequences. Among these is the fact that a very 
substantial body of knowledge about equations of the form of Equation 
(7.21) has evolved within the domain of applied mathematics. This 
knowledge is therefore applicable for investigating the properties of CTDS 
models. Included here are issues that range from the very fundamental, for 
example, the question of the existence of solutions to the equations that 
comprise the model, to issues that characterise the properties of the 
solution, for example, stability. Exploration of these topics is, however, 
beyond the scope of the considerations in this textbook. The interested 
reader is encouraged to explore these topics in references such as [7.3] and 
[7.4].

and w1 (t) on h2 (t)) and nonautonomous  (the  out flow demand represents 
an input to the model). The population model example presented in Equa-

mous. 

again. However, CTDS models do have a particularly important feature in  
this regard; namely, that it is possible to transform all of these formats into 
a standard (canonical) form. This can be written as 

tion (7.12) is a pair of first order non-linear equations that are autono-

resentation for the particular CTDS model. It has two components, the 

the model. Neither, however, is a unique representation for the particular 

low, there often are natural choices for the state variables, x i(t) which form 
the elements of the state vector, x(t). 

first are the state equations, given by Equation (7.21a) and the second 

CTDS that is under consideration. Nevertheless, as we shall indicate be-

component, given by Equation (7.21b), is called the output equation of 

The representation given in Equation (7.21) is called a state space rep-
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there is one very practical benefit also associated with it. Recall that 

generate the numerical solution of differential equations. This is a problem 
that has been extensively studied in the applied mathematics literature and 
an extensive body of relevant knowledge about the problem exists. But 
with few exceptions, this body of knowledge addresses the problem of 
solving a set of differential equations that are of the form of Equation (7.21 
a) and likewise the available solution methods apply to this case. Thus the 
transformation of a CTDS conceptual model into its state space 
representation is an essential step for purposes of harnessing the numerical 
tools for solution generation or more specifically, for carrying out 
simulation activity. 

7.4.2  The Transformation Process 

If any CTDS conceptual model has a state space representation (i.e., can be 
transformed into the form of Equation (7.21)), then this must certainly be 
true for a linear model of the form: 
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(7.22)

where we assume m N and that u(t) and y(t ), y (t ), . . . , y(N-1)(t ) are 

First we consider the special case where m = 0; that is, the right-hand 
side of Equation (7.22) contains no derivatives of the input function u(t).
(An example of this case is provided by the electrical circuit example, 
specifically Equation (7.1). The transformation here is particularly 
straighforward. Let 

x1(t) = y(t)

x2(t) = y (t)
     . 
     . 
     . 
xN(t) = y(N-1)(t) . 

(7.23)

The state equations are then: 

In addition to important behavioural properties of a CTDS conce- 
ptual model that can be explored via its state space representation, 

experimentation with any CTDS model requires the means to 

given. In the interest of notational convenience, we assume here that the 

This general linear case is used to illustrate some features of the transfor-
mation process. 

model has a single input variable u(t) and a single output variable y(t). 
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The more conventional compact form for Equation (7.24) is:
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The initial conditions for the state equations of (7.24) follow directly 
from the assumptions following Equation (7.22) and the definitions of 
Equation (7.23).

Let’s now consider the case where m > 0 in Equation (7.22). A specific 
example (with m = 1) can be obtained from the automobile suspension 
system model developed earlier if the nonlinear shock absorber is replaced 
with a linear device. In other words, if we replace the earlier specification 
for fb(t) with simply:

fb(t) =  v(t),   where v(t) = y (t) –  u (t) , 

then Equation (7.2) can be written as 

                                                     
 We use the superscript T to denote the transpose of a vector or matrix.3

3
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y (t) + a1 y (t) + a0 y(t) = b1 u (t) + b0 u(t) , (7.25)

where a1 = b1 =  /M, a0 = b0 = k/M.

x1(t) = y(t) and x2(t) = y (t). The state space representation then becomes: 
x1 (t) = x2(t)

  x2 (t) = – a1 x2(t) – a0 x1(t) + b1 u (t) + b0 u(t)
with  y(t) = x1(t) . 

(7.26a)

(7.26b)

(7.26c)

The perplexing outcome here is the explicit reference to the derivative 
of the input function that appears on the right-hand side of Equation 
(7.26b). It is not unreasonable to imagine cases of interest where u(t) is not 
differentiable at all values of t in the observation interval. Recall that for 
the example that is under consideration, u(t) corresponds to the road 
surface over which the automobile is travelling. A discontinuity in the road 
surface could correspond to a hole in the road as shown in Figure 7.11. 
Because of this discontinuity in u(t), the derivative of u (t) does not exist at 
t = tb. Does this mean that Equation (7.25) cannot be solved? Fortunately 
the answer is ‘No’. The dilemma that we have encountered arises because 
of a poor choice of state variables. 

FIGURE 7.11. Discontinuous road surface. 

As an alternative candidate for the state space representation, consider: 

x1 (t) = x2(t)

   x2 (t) = –a0 x1(t) – a1 x2(t) + u(t)

with   y(t) = b0 x1(t) + b1 x2(t) . 

(7.27a)

(7.27b)

(7.27c)

This representation certainly has the desired feature of being 
independent of any derivatives of the input function, u(t). But is it a valid 
representation? To confirm that it is, it must be possible to reconstruct the 
original continuous system model of Equation (7.25) from Equation (7.27) 
and this can, in fact, be achieved. The process involves straightforward 
mathematical manipulation that includes successively differentiating 
Equation (7.27c) and substitutions from Equations (7.27a) and (7.27b) to 
eliminate derivatives of the state variables x1(t) and x2(t).

Suppose the procedure we outlined earlier is applied; that is, we let    

t = to 

Road contour u (t)

ttb  
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There is, however, one further issue that needs to be addressed before 
Equation (7.27) can be accepted as a useful state space representation. This 
is the matter of initial conditions. Values are provided for y(t0) and y (t0)
and these have to be transformed into initial conditions for the state 
variables x1 and x2 so that Equation (7.27a) and Eq. (7.27b) can be solved. 
The necessary transformation can be developed using Equation (7.27c) 
together with the result obtained by differentiating Equation (7.27c) and 
substituting from Equation (7.27b). With t set to t0 in the resulting 
equations, we get: 

y(t0) = b0 x1(t0) + b1 x2(t0)

 y (t0) – b1 u(t0) = –a0 b1 x1(t0) + (b0 – a1 b1) x2(t0).

(7.28a)

(7.28b)

Equation (7.28) provides two linear algebraic equations for the two 
unknowns x1(t0) and x2(t0). A sufficient condition for the existence of a 
solution to these equations is that the determinant det of the coefficient 
matrix on the right-hand side be nonzero. The value of the determinant is:

det = b0

2 – a1 b0 b1 + a0 b1

2 . (7.29)

For the specific case of the (linearised) automobile suspension system, a0,
a1, b0, and b1 have values previously specified (see Equation (7.25)). With 
these values substituted, det = (k/M)2 and hence is nonzero. Consequently 
we can conclude that Equation (7.27) is a satisfactory state space 
representation for Equation (7.25) in that particular context. 

det  as given in 
Equation (7.29) is nonzero which means that there is a possibility that the 
state space representation of Equation (7.25) given by Equation (7.27) may 
not be acceptable. It can, for example, be easily shown that if a1

2 = 4a0 and 
a1 b1 = 2b0 then det is identically zero. It is reasonable therefore to wonder 
about the existence of another state space representation that circumvents 
this possible flaw. Such an alternative does exist and is given by: 

x1 (t) = – a0 x2(t) + b0 u(t)
x2 (t) = x1(t) – a1 x2(t) + b1 u(t)

with  y(t) = x2(t) . 

(7.30a)

(7.30b)
(7.30c)

Using the same procedure outlined earlier, it can be demonstrated that 
Equation (7.25) can be reconstructed from Equation (7.30) and hence 
Equation (7.30) is a valid representation for Equation (7.25). The equations 
for the initial conditions follow from Equation (7.30c) and Equation 
(7.30b) (setting t = t0):

y(t0) = x2(t0)
  y (t0) – b1 u(t0) = x1(t0) – a1 x2(t0) . 

In general, however, there is no guarantee that the value of  
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The determinant of the coefficient matrix for these two algebraic equations 
has the value –1 and consequently a solution for x1(t0) and x2(t0) always 
exists. Specifically: 

x1(t0) = y (t0) + a1 y(t0) – b1 u(t0)
x2(t0) = y(t0) . 

The state space representation given in Equation (7.30) can be extended 
to general case of Equation (7.22). The form of this representation is given 
below.

x (t) = F x(t) + g u(t)
y(t) = hT x(t) + bN u(t) , 

where:
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The vector g is shown for the case where m = N in Equation (7.22). The 
case where m < N is accommodated by setting bk = 0 for k = (m + 1), (m +
2), . . . , N. 

Our discussion in this section about the formulation of state space 

Nevertheless many of the key issues have been pointed out and a 
basis for dealing with them in a broader context has been provided. 
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Chapter 8 Simulation with CTDS Models 

8.1 Overview of the Numerical Solution Process 

8.1.1  The Initial Value Problem 

An implicit requirement associated with modelling and simulation projects 
within the realm of CTDS models is a means for solving the 
differential equations embedded in the conceptual model. In very special 
cases these equations can fall into a category for which closed-form 
analytic solutions can be developed and this certainly has many 
advantages. Far more common, however, is the case where the features of 
the equations preclude such a solution approach. In such situations, 
numerical approximation procedures provide the only solution alternative. 
Our concern in this section is with exploring some of these numerical 
procedures. More specifically, our interest focuses on the means for 
solving the generic Equation (7.21a) of Chapter 7. (The companion equation 
(7.21b) is not relevant here because it simply represents a functional 
relationship defined on the state vector, x(t)).

Our concern, therefore, is with numerical procedures for generating the 
solution of the equation 

x (t) = f(x(t),t) (8.1)

over the observation interval IO = [t0, tf ] where t0 , tf , and x(t0) = x0 are 
assumed to be explicitly given. (Note that the explicit dependence of the 
derivative function f on u(t) that appears in Equation (7.21a) has been 
suppressed in this representation; the role of u(t) has been merged into the 
explicit dependence on t.) In general, x and f in Equation (8.1) are vectors 
of dimension N.

The problem stated above is commonly called the initial value problem 
(IVP). It is distinct from a closely related problem called the boundary 
value problem (BVP). In both problems at least N pieces of data about the 
solution are known. In the case of the IVP these are the N components of 
the N-vector x0. The situation in the case of the BVP is different because 
the known values do not occur at the same value of t. The available data 
could, for example, be: 
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x1(t0 ), x2(t0 ), x3(t0 ), . . . , x (t0 ), x +1(tf ), . . . , xN(tf ) , 

where 1 < N.
Although a CTDS model almost always incorporates more 

than one first-order differential equation (i.e., the dimension of the state 
vector x(t) is greater than 1), this higher dimensionality introduces 
unnecessary notational complexity when examining numerical solution 
methods. Consequently, without loss of generality, we take N = 1 
throughout most of the discussion that follows. 

8.1.2  Existence Theorem for the IVP 

The search for a solution of any problem can be undertaken with 
considerably more confidence when there is assurance that a solution to 
the problem does indeed exist. With respect to the solution of Equation 
(8.1) this issue has been extensively studied and substantial knowledge is 
available. We summarise here some of the most significant results in this 
regard.

As might be expected, it is the characteristics of the derivative function 
f(x,t) which play a pivotal role in identification of existence conditions for 
the solution of Equation (8.1). Our focus therefore is restricted to a 
function f(x,t) that has two particular features. These are: 

a) f(x,t ) is defined and continuous in the strip  – < x < , t0 t tf ,  with 
t0 and tf  finite 

b) There exists a constant L such  that for any t  [t0, tf] and any two 
numbers  and 

| f( , t) –  f( , t) | L |  –  |  . 

[a) and b) are called the Lipschitz conditions and L is called the Lipschitz

Theorem A 
Let f(x t) satisfy (a) and (b) and let x0 be any number. Then there exists 
exactly one function X(t) with the following properties. 

i. X(t) is continuous and differentiable for t   [t0, tf].
ii. X (t) = f(X(t), t) for t  [t0, tf].

iii. X(t0) = x0.

Remark 1 
Theorem A states that under the assumed conditions on the derivative 
function f(x,t), the IVP of Equation (8.1) not only has a solution, but it is 
unique.

constant].
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Remark 2 
Suppose f(x,t) has a continuous derivative with respect to x which is 
bounded in the strip in question (see above); then assumption (a) of 
Theorem A follows directly whereas (b) follows as a consequence of the 
mean value theorem; hence the two assumptions of Theorem A are 
satisfied.

Remark 3 
Unless otherwise noted, we assume throughout the remainder of this 
chapter that the conditions of Theorem A hold. Furthermore we call the 
function X(t) referred to in Theorem A, the ‘true solution’ to the IVP under 
consideration. In some limited circumstances, the true solution may be 
available as an explicit analytic function. In such circumstances, an ‘exact’ 
value can be obtained for the true solution at any value of t within the 
observation interval IO, at least to the extent of the precision limitations 
inherent in the evaluation of the function in question. 

8.1.3  What Is the Numerical Solution to an IVP? 

A numerical solution to an IVP is a finite set of points; that is, 

{(tn, xn); n = 0, 2, . . . , M} , 

where : 

(t0, x0) is the given initial condition.
 xn is a generated numerical approximation for the true solution value at t = 
tn, that is, an approximation to X(tn).
tn+1  = tn + hn  for 0 n M – 1 and tM = tf.

Here hn is called the step size at tn. If hn remains invariant for all values 
of n, then the solution process is said to be of fixed step size, otherwise it is 
of variable step size. As becomes apparent in the discussion below, the 
step size is a critical parameter in the solution process. As might be 
expected, its value plays a central role in the accuracy of the results 
obtained. The issues associated with step-size selection are the following: 
if the step size is to be fixed, then how should the value be selected and if 
it is to be variable, then what is the procedure for making changes? These 
are not easy questions to answer but some insight is provided in the 
discussion that follows. Decisions relating to step-size have to be made by 
the user of most simulation environments for CTDS models; 
consequently some familiarity with the underlying issues is essential. 

The various notions discussed above are illustrated in Figure 8.1. 
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FIGURE 8.1. Numerical solution to an IVP.

An important feature of Figure 8.1 is the implication that the numerical 
solution rarely coincides with the true solution. In fact, it is only at the 
starting point t = t0 where there is certainty that the numerical value is 
identical to the true value. All other numerical values are, in general, 
different from the true value. This difference, that is, the error, has two 
basic origins: 

a) Truncation (or discretisation) error. 

   –This is a property of the solution method. 

b) Round-off error. 

     –This is a property of the computer program used to implement the 
solution method. 

   
It arises because of the finite precision in number

 representation. 

Although not apparent from Figure 8.1, it is important to appreciate that 
with all numerical solution methods, each new solution estimate is 
generated using information from previously generated solution values; in 
other words it is constructed from data that may already have significant 
error. This somewhat disturbing fact sets the stage for the propagation of 
error that, in turn, can lead to instability. In other words, there is the 
possibility that the size of the error will grow, in an unbounded manner, as 
new solution values are generated. 

Stability is one of several important attributes that can be associated 
with any solution method. Others are: 
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    Order (this is closely related to the notion of truncation error introduced 
earlier).

   Accuracy (this is a reference to the correspondence between the true 
solution and the numerical solution). 

    Local efficiency (this is a measure of the computational effort required 
to move the generated solution forward from t = tn to t = tn+1; it is 
typically measured in terms of the number of evaluation of the 
derivative function f).

In the discussion that follows, we explore these various matters that 
have vital importance to the simulation phase of a modelling and 
simulation study within the CTDS realm. 

8.1.4  Comparison of Two Preliminary Methods  

The Euler Method
The Euler method is the most fundamental of the wide range of approaches 
that are available for the numerical solution of the IVP. The underlying 
concept is shown in Figure 8.2.

hn

True solution through (tn, xn)

xn

t0 tn tn+1

t

xn+1

Local truncation error

FIGURE 8.2. The Euler method. 

The assumption in Figure 8.2 is that the solution process has progressed 
to t = tn and the solution value generated at t = tn  is xn. We denote by fn the 
slope of the true solution through the point (tn, xn); that is,
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fn = f(xn, tn) . 

The solution approximation at t = tn+1 = tn + hn associated with the Euler 
method is: 

xn+1  = xn + hn fn  . (8.2) 

Although the approach here is intuitively appealing, it can also be viewed as 
an approximation arising from the definition of a derivative, namely, from the 
definition that: 

x (t) = 
dt

dx
 = 

0
lim

)(-)( txtx
 . 

The update formula of Equation (8.2) is then obtained by ignoring the 
requirement for  to approach zero and by making the following 
associations: t = tn,  = hn, x(tn) = xn, x(tn + hn) = xn+1 and (tn) = fn.

The Modified Euler Method (or Trapezoidal Rule) 
The Euler method ‘moves forward’ on the basis of a single derivative 
function evaluation. This value (namely, f(xn, tn)) is the slope of the true 
solution that passes through the solution estimate (tn ,xn). But because (tn,
xn) is not generally on the desired solution (the one through (t0, x0)) it is 
reasonable to conjecture that some other slope value might be a better 
choice. The Modified Euler method creates such an alternate choice by first 
evaluating the derivative function at the solution estimate produced by the 
Euler method and then taking an average of the two slope values that are 
thus available. More specifically, 

Take an Euler step to produce the value pn+1 = (xn + hn fn) at t = tn+1.
Let Fn+1 = f(pn+1, tn+1).
Choose the solution estimate at t = tn+1 to be: 

xn+1  = xn + hn (fn + Fn+1)/2. (8.3)

One difference between solution estimates from the Euler and the 
Modified Euler methods (given by Equations (8.2) and (8.3), respectively) 
is that the former requires only one derivative function evaluation whereas 
the latter requires two. It is natural, therefore, to expect some advantage 
from the added effort. An advantage is certainly present and it is realised in 
terms of superior error performance, at least at the level of local behaviour. 
This feature can be explored by examining the Taylor series expansion of 
the true solution of Equation (8.1) that goes through the point (tn, xn). As 
earlier, we denote this particular solution by Xn(t). A Taylor series 
expansion gives: 

Xn(tn + ) = Xn(tn) +  Xn (tn) + ½ 2 Xn (tn) + O( 3). (8.4)’’

x
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But:

Xn(tn) = xn

and

Xn (tn) = f(Xn(tn), tn) = f(xn, tn) = fn . 

Then, if we set = hn in Equation (8.4), we get: 

X(tn+1) = nx 1  + O(hn ) , 

where E
nx 1  is the Euler solution estimate of Equation (8.2). This result 

demonstrates that the Euler method has a local truncation error that is of order 
hn

2 which in turn implies that the Euler method is a first-order method. 
A similar analysis with the Modified Euler method gives the result that: 

X(tn+1) = nx 1  + O(hn

3) , 

where ME
nx 1  is the solution estimate provided by Equation (8.3). Thus the 

n

3

method is a second-order method. This, in particular, demonstrates that the 
additional derivative function evaluation required by the Modified Euler 
method provides the benefit of realising a higher-order method. 

The order of a solution method is one of its most important 
characterising features. As illustrated above, this feature relates to the 
nature of the error between the solution value produced by the method over 
a single step relative to the true solution, when both begin at a common 
starting point. This error estimate evolves from the Taylor series expansion 
of the true solution around the starting point and reflects the degree of 
correspondence between the series expansion and the generated solution 
value.

A practical interpretation of the meaning of a solution method of order r
is that such a method generates solution values that have zero error for the 

second-order method will produce
 exact solution values for the IVP: 

x (t) = a1 + 2 a2 (t – t0); x(t0) = a0

because the solution to this equation is the quadratic function: 

x(t) = a0  + a1 (t – t0) + a2 (t – t0)
2 . 

local truncation error of the Modified Euler method is of order h  and the 

case where the true solution is a polynomial of order r or less (provided
 zero round-off error is  assumed). Thus a 

ME

E 2



282 8. Simulation with CTDS Models 

8.2 Some Families of Solution Methods 

The most common numerical solution methods for the IVP fall into two 
broad classes. We examine each of these in turn beginning with the Runge–
Kutta family. 

8.2.1  The Runge–Kutta Family 

There are two representations for the Runge–Kutta family and these are 
referred to as explicit and implicit representations. We restrict our 
considerations to the explicit representation. The explicit s-stage Runge–
Kutta formula is given below:  

xn+1 = xn + h 
i

s

1

bi gi  , (8.5)

where:
g1 = f(xn, tn)
g2 = f(xn +  h a21 g1 n 2 )
g3 = f(xn +  h (a31 g1 + a32 g2), tn + c3 h)
    . 
    . 

gs = f(xn + h (as1 g1 +  as2 g2 + . . .  as s-1 gs-1), tn + cs h) . 

Remarks

    The s-stage formula requires s evaluations of the derivative function f to 
advance one step (of length h) along the t-axis.

   The s-stage formula has S = (s2 + 3s – 2)/2 free parameters, namely, the 
collection of bi s, aij s, and ck s. Numerical values for these parameters 
are determined by a procedure that undertakes to establish an 
equivalence between the computed value xn+1 and the first r terms in a 
Taylor series expansion for the true solution X(t) passing through (tn,
xn). This creates a formula of order r. It is always true that r s. In 
essentially all cases, there are many ways to select values for the S
parameters in order to achieve a formula of order r s.

   The general formula given in Equation (8.5) is explicit because the 
solution value xn+1 evolves directly without the need for the resolution 
for further numerical issues. Observe also that no past solution 
information is needed to generate xn+1. As we show in the discussion 
that follows, these features are not always provided by other methods. 

t  + c  h , 

, , ,
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It is interesting to observe that both methods introduced earlier in 
Section 8.1.4 are members of the Runge–Kutta family. The first-order 
Euler method corresponds to the case where s = 1, and b1 = 1 and the 
second-order Modified Euler method corresponds to the case where s = 2, 
b1 = b2 = 1/2, a21 = c2 = 1. An alternate second-order method, frequently 
called the Heun form, is given by s = 2, b1 = 1/4, b2 = 3/4, a21 = c2 = 2/3. 

Third- and fourth-order Runge–Kutta formulas are often used and a 
representative of each of these classes is provided below. The third-order 
formula given below is often called the Heun form.

xn+1 = xn  + 
4

1
 h [g1 + 3 g3]

g1 = f(xn, tn)

g2 = f(xn +
3

1
 h g1, tn + 

3

1
 h)

g3 = f(xn + 
3

2
 h g2, tn +

3

2
h) . 

The fourth-order formula given below is often called the Kutta (or the 
‘classic’) form. 

xn+1 = xn + 
6

1
 h [g1 + 2 g2 + 2 g3 +g4]

g1 = f(xn , tn)

g2 = f(xn + 
2

1
h g1, tn + 

2

1
 h)

g3 = f(xn + 
2

1
h g2, tn + 

2

1
 h)

g4 = f(xn + h g3, tn + h) . 

8.2.2  The Linear Multistep Family  

Specific methods in this family are constructed from the following generic 
formula,

k

i

k

i
iniinin

1 0
111 fhxx  , (8.6)

where fj = f(xj , tj). Notice that an essential difference from the Runge–Kutta 
family is the reliance on past values of the numerical solution and on the 
slope of the solution at those values, that is, on the derivative function f
evaluated at those past values. Several special cases can be identified: 
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a) If k = 1,  then  we  have  a  single-step  method  (reliance  on  past  values 
is restricted to values at the current time point tn.

0

0  0, then we have an implicit/closed/corrector method. 

The implicit case ( 0  0) gives rise to a ‘circular’ situation where the 
generation of the solution value, that is, xn+1, requires data that directly depend 
on xn+1, namely, fn+1. This introduces an accessory problem that needs to be 
addressed before a practical solution procedure is realised. 

It is important also to observe here that the dependence of linear 
multistep methods on past solution values implies a fundamental 
shorcoming, namely, a ‘start-up’ problem. Past solution values are needed 
to initiate the solution procedure and these can only be obtained by 
reliance on some ancillary method that is not similarly constrained. 
Typically Runge–Kutta methods are used in practice to provide these 
preliminary values. 

8.2.2.1 Predictor–Corrector Methods 

The predictor–corrector methods represent the standard implementation 
approach for the linear multistep family. The underlying idea is to first use an 
explicit formula to project forward (i.e., to predict) a solution value estimate 
and then, as a second refinement (or corrector) step, an implicit formula is 
used to create a tentative solution value. This tentative value may or may not 
be accepted; in the latter case one or more iterations may follow. This 
procedure, in effect, deals with the underlying issue introduced by the 
implicit formula. 

Values for the coefficients in a linear multistep formula of order r are 
established via the same approach used to develop specific members of the 
Runge–Kutta family, namely, by establishing an equivalence between the 
computed value xn+1 and the first r terms in a Taylor series expansion for 
the true solution X(t) passing through (tn, xn). As an example, we give the 
formulas for the Adams fourth-order predictor–corrector process: 

Predictor (Adams–Bashforth)  

xn+1 = xn + h(55 fn – 59 fn-1 + 37 fn-2 – 9 fn-3)/24 . (8.7a) 

Corrector (Adams–Moulton)   

xn+1 = xn + h (9 fn+1 + 19 fn – 5 fn-1 + fn-2)/24 . (8.7b) 

Notice that the predictor is an explicit formula whereas the corrector is 
implicit. The associated procedure is summarised below. 

b) If  = 0, then we have an explicit/open/predictor method; if  
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b) Use Equation (8.7b) to generate: )(
1

c
nx  (with )p(

1+nx  used to compute fn+1).

If | )(
1

c
nx – )(

1
p

nx | <  then xn+1 =
)(
1

c
nx

c) Replace )(
1

p
nx  with )(

1
c

nx  and repeat from step (b). 

Here  is a predefined operational parameter that provides accuracy 
control; its value is usually set by the user. Note also that if the error check 

n+1

is generated after only two derivative function evaluations (assuming past 
derivative values have been stored). This is a significant improvement over 
the four evaluations required by a fourth-order Runge–Kutta method. In 
other words this predictor–corrector method is potentially significantly 
more efficient (in terms of derivative function evaluations) than a Runge–
Kutta method of like order. This can have important consequences in a 
simulation project where the conceptual model has many equations and/or 
the derivative functions are particularly complex. 

8.3 The Variable Step-Size Process 

Thus far our discussion has implicitly assumed that the step-size h used in the 
numerical solution procedure for the IVP remains invariant. Such solution 

and  simulation  projects  that have a CTDS context.
 Such  procedures  can, however,  be  inefficient  because  the  nature of the
 solution may be such that a small value of h is required only over a minor
 portion  of  the  observation interval  whereas  larger  values can be used
 elsewhere  without the danger of compromised solution quality. This gives
 rise to the need for automatic step-size adjustment.

The realisation of such a variable step-size procedure needs to address 
two basic issues: how to determine when a step-size change is needed 
(either increase or decrease) and how to carry out a meaningful change in 
the value of the step-size. It is reasonable to assume that the criterion for 
step-size change ought to be based on the size of the local truncation error 
(or an estimate of this error, say, Eest) relative to some (user-specified) error 
tolerance Etol.

The specification of a variable step-size process within such a context can 
be summarised as shown in Figure 8.3. Each repetition of the process moves 
the solution forward by one time step and each begins with the current 
solution value (tn ,xn) and a nominal step-size hn.

; otherwise do step (c). 

at step (b) is successful on the first iteration then the new solution value x

procedures are certainly widely used in the simulation (i.e. experimentation) 
phase of modelling  

a) Use Equation (8.7a) to generate: )(
1

p
nx .
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FIGURE 8.3. The variable step-size process. 

Several of the steps in Figure 8.3 require some elaboration and this is 
provided below. 

Step 2: Obtaining an estimate for the local truncation error is a key 
aspect of the variable step-size process. A variety of approaches has 
emerged but for the most part their comprehensive development depends 
on the exploration of issues in numerical mathematics that are beyond the 
scope of this textbook (the interested reader can find relevant discussion in 
[8.5, 8.14]). The general nature of a few of these approaches is provided in 
the brief summaries given in the discussion that follows. 

a) The half-step approach
The idea here is to obtain two estimates for the solution at time tn+1: the first 
obtained on a single step with step-size hn and the other obtained using two 
half-steps, each of size hn/2 . If we denote these two solution estimates xn+1

and x*

n+1, respectively, then (with certain assumptions) it can be shown that 
a reasonable estimate of the local truncation error at tn+t is:

Eest = r (x*

n+1 – xn+1)  , 

where r  = 2r /(2r  – 1) and r is the order of the solution method. A notable 
feature of this approach is that it has general applicability inasmuch as it is 
not linked to any particular solution method. Clearly a significant 
disadvantage is a substantial efficiency penalty because there is a threefold 
increase in the number of derivative function evaluations that would 
otherwise be required to advance the solution by one step. 

b) The embedded approach 
A good illustration of this approach is provided by the Runge–Kutta–
Fehlberg method that is given in Equation (8.8). The underlying idea here 
is the development of two Runge–Kutta formulas that differ in order by 

1. Compute a solution estimate xn+1 at tn+1 = tn + hn

2. Compute Eest, an estimate of the magnitude of the local truncation
error at xn+1

3. Compute Etol, the upper bound for the admissible value for Eest

4. If Eest > Etol, then 
4.1  reduce the value of hn

else  
4.2  accept the solution estimate xn+1 and set tn+1 = tn + hn

4.3  compute a “best estimate” for the next step-size, hn+1  

4.4  replace n+1 with n 
5. Repeat from step 1 
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one and can be constructed from a shared collection of derivative function 
evaluations. In the Runge–Kutta–Fehlberg method two solution estimates 
xn+1 and x*

n+1 of order 4 and 5, respectively, are produced at each step. Their 
difference (x*

n+1 – xn+1) provides a good estimate of the local truncation error 
in the lower-order result. Notice that six derivative function evaluations are 
required and if the fourth-order result is used, then there is a 50% overhead 
incurred here in obtaining the error estimate, relative to the ‘classic’ fourth-
order Runge–Kutta formula given earlier. 
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(8.8)

c) A predictor–corrector approach 
As the name suggests, this approach is specific to predictor–corrector 
methods. With suitable assumptions, the underlying analysis shows that a 
reasonable estimate of the local truncation error at tn+t has the form:

Eest = r (xn+1 – x*

n+1) , 

where xn+1 and x*

n+1 are the corrector and predictor values, respectively 
(necessarily of the same order), and the constant r is dependent on the 
order of the method.

Step 3: A standard format for the bound on the local truncation error is: 
Etol = (K1 + K2 |xn+1|) where K1 and K2 are user-specified parameters. The 
first term (K1) provides an ‘absolute’ contribution to the tolerance bound 
and the second term (K2 |xn+1|) provides a relative contribution; that is, if the 
solution value itself is large, then the error tolerance increases. 
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Step 4.1: The result of the analysis leading to a meaningful formula for 
reducing the value of hn is surprising simple (the analysis itself, however, 
is outside the scope of our present interest; relevant discussion can be 
found in [8.14]). The general form of the update formula is: 

n
r

est

tol
n h

E

E
ch 1

1

)(  , (8.9)

where r is the order of the solution value xn+1 and c is a ‘safety factor’ that 
is typically incorporated (a common value is 0.9). A reduction in size 
results because Eest > Etol at Step 4.1. 

Step 4.3: The situation represented at this step corresponds to the case 
where Eest Etol. This can be interpreted as reflecting a step-size that is 
overly conservative and therefore could possibly be increased on the 
subsequent phase of the solution process. The underlying analysis shows 

n

8.4 Circumstances Requiring Special Care 

Thus far in this chapter we have explored features of the most important 
numerical tools commonly used to solve the IVP and hence to carry out 
simulation studies with CTDS models. As with all tools these likewise have 
inherent limitations and restrictions on their applicability and it is prudent for 
tool users to be aware of these. Our goal in this section is to provide some 
insight into this important topic. 

8.4.1  Stability 

The notion of stability is concerned with the existence of upper bounds on the 
magnitude of the step-size h used in the solution-generating process. In-depth 
investigation of this important feature is, of necessity, carried out in the 
context of linear systems because extensive analysis is possible only in this 
restricted context. Nevertheless these results can often be extended to the 
general case of nonlinear models by observing that linear approximations can 
be constructed for nonlinear models around any particular point on the 
solution trajectory. Although relevance of such approximations is restricted to 
a small region about the chosen point, useful insights into behaviour can 
nevertheless be obtained. 

that the appropriate update formula for h  is again given by Equation (8.9). 
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The essential point can be illustrated by considering the following 
simple linear IVP.

u (t) = – c1 u(t) + v(t); u(0) = 1

v (t) =  –c2 v(t);    v(0) = 2   , 
(8.10)

where c1 and c2 are positive constants. It can be easily verified (e.g., by direct 
substitution) that the true solution of Equation (8.10) is: 

u(t) = ( 1+ )exp(–c1t) –  exp(–c2t)

v(t) = – 2exp(–c2t)  , 

where  = 2/(c1 + c2). Observe that both u(t)and v(t) approach 0 as t
independent of the specific values chosen for c1, c2, 1, and 2.

Suppose now that a fixed step-size Euler method is applied to generate a 
numerical solution to Equation (8.10). The iterative process that results can 
be expressed as 

un+1 = un + h (– c1 un + vn) = (1 – c1h) un + h vn

vn+1 = vn + h (– c2 vn) = (1 – c2h) vn  . 

Clearly if the numerical solution is to have any credibility whatsoever, a 
fundamental requirement is that both un  0 and vn  0 as n . The 
necessary and sufficient conditions for this to occur are: 

 |1 – c1h| < 1;    that is, –1 < (1 – c1h) < 1 

and |1 – c2h| < 1;   that is,  –1 < (1 – c2h) < 1  , 

which, in turn, implies: h < min[2/c1, 2/c2]. In other words, there is a very 
practical constraint on how large a value can be assigned to the step-size h. If 
this upper bound is exceeded, then the numerical solution is simply unstable 
and has no relationship to the true solution. 

This result clearly raises several important questions; for example, are 
all solution methods subject to such step-size constraints and is there 
anything special (generalisable) about the nature of the specific constraint 
obtained above? With respect to the first of these questions, it is certainly 
true that such a constraint does exist for all members of the Runge–Kutta 
family. However, the constraint does not apply to all solution methods. 
This can be illustrated by considering a method called the backward Euler 
method which is a special case of the linear multistep family given in Eq. 
(8.6). This method is a single-step implicit method (k = 1 and 0  0). The 
updating formula for the backward Euler method is: 

xn+1 = xn + f(xn+1, tn+1)  . 
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When this formula is applied to our test case of Equation (8.10), the 
iterative process that results is: 
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It is easy to conclude here that the necessary and sufficient conditions to 
ensure that both un  0 and vn  0 as n  are: 

|1 + c1h| > 1   and   |1 + c2h| > 1. 

Both these conditions are satisfied for any (positive) value of h (recall our 
original assumption that both c1 and c2 are positive). Hence we have an 
example of a method that does not place a bound on the size of the step-size 
h.

Let’s return now to our earlier observation of the instability that results 
when an unacceptably large value of step-size is used to solve Equation 
(8.10) with the Euler method. Are there more general conclusions that can 
be identified? The answer most certainly is ‘Yes’. To proceed, we 
generalise our test case to an IVP that is the set of N linear first equations; 
that is, 

x (t) = A x(t) (8.11)

with x(t0) = x0. We assume here the simplest case where the N × N coefficient 
matrix A has real, distinct, and negative eigenvalues.1 In this circumstance, it 
can be shown that the true solution of Equation (8.11) approaches zero 
independent of the initial value x0. If the Euler method is used to generate the 
solution of Equation (8.11) then it can be demonstrated that the stability 
requirement (namely, the requirement that the computed solution likewise 
approaches zero), is h < 2/| max| where max is the largest (in absolute value) of 
the eigenvalues of A. We leave as an exercise for the reader to confirm that 
our earlier stability conclusion for the special case of Equation (8.10) is 
entirely consistent with this general result. (Hint: show that the eigenvalues of 
the coefficient matrix in Equation (8.10) are –c1 and –c2.)

The general result above is restricted to the most fundamental of the 
methods in the Runge–Kutta family. One might reasonably wonder about 
the nature of the stability requirement for other members of this family. 

                                                          
1 The eigenvalues of the N × N matrix A are the N solutions, 1, 2, . . . , N

to the equation det( I – A) = 0, where det( ) represents the determinant. 
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This is a topic that has been extensively investigated in the numerical 
mathematics literature and information can be found in textbooks such as 
[8.8], [8.9], and [8.12]. In this regard, we note that the stability bound for 
the fourth-order Kutta form given earlier is h < 2.78/| max| under the 
assumed conditions on the coefficient matrix A in Equation (8.11). 

8.4.2  Stiffness 

Stiffness is a property of some CTDS models. It is of particular importance 
because it interacts with the step-size constraint that is intrinsic to many 
numerical solution methods in a manner that seriously deteriorates the 
efficiency of the solution process. The background prerequisites for a 
comprehensive presentation of the topic are substantial and hence its 
treatment is beyond the scope of this textbook. Nevertheless, the essential 
nature of the problem can be readily illustrated by examining a 
straightforward example. (The interested reader is encouraged to explore the 
issue in the numerical mathematics literature, e.g., [8.5].) 

Consider the following two simple linear CTDS models. 

Model A: 
u’(t) = – u(t) + 2; u(0) = 0  

v’(t) = – v(t) + 2; v(0) = 0 . (8.12)

Model B: 
p’(t) = – 500.5 p(t) + 499.5 q(t) + 2;   p(0) = –0.1 

q’(t) = – 499.5 p(t) – 500.5 q(t) + 2; q(0) = 1  . 
(8.13)

It is easy to confirm (e.g., by direct substitution) that the solution to Equation 
(8.12) is: 

u(t) = v(t) = 2 (1 – exp(– t)) (8.14) 

and that the solution to Equation (8.13) is: 

p(t) = u(t) – (t)

q(t) = v(t) + (t)  , 

where (t) = 0.1 exp(–1000 t). Observe that the solutions to Equations 
(8.12) and (8.13) are essentially identical for t > 0.02 because (t) has 
almost vanished. 

It’s now important to consider what might constitute a reasonable value 
for the right boundary of the observation interval IO for these two simple 
models (the left boundary has already been set to 0). This can easily be 
inferred from Equation (8.14) from which it is apparent that the solution in 
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increases. Inasmuch as this term has effectively vanished after t = 10, a 
reasonable choice for the right boundary of IO is 10. In other words, it is 
unlikely that an interest in the behaviour of either of these models would 
extend beyond t = 10.

Let’s now examine what impact the stability constraint of a numerical 
solution method would have. On the basis of our earlier considerations, 
let’s assume a constraint of the form h < K/| max| where K could be in the 
range between 2 and 3. To proceed we require the eigenvalues of the two 
linear models given in Equations (8.12) and (8.13). For model A it is easily 
seen that the two eigenvalues of the coefficient matrix are both equal to –1. 
For model B it can be demonstrated that the eigenvalues are –1 and –1000. 
The surprising result that now flows from the stability constraint is that 
even though the true solutions for both models are ‘almost’ identical (at 
least for t > 0.02) a maximum step-size of K would be permitted in 
studying model A whereas the step-size would have to be restricted to less 
than K/1000 when studying model B! Apart from the computational 
burden that is thus imposed upon the investigation of model B, the 
unavoidable roundoff errors that could accumulate during the relatively 
large number of steps needed to traverse the observation interval could 
seriously deteriorate solution quality. The study of model A would not 
encounter either of these difficulties. 

This rather unexpected result has its origins in the wide separation 
between the largest and smallest eigenvalues of model B. This property is 
called stiffness. As might be expected, it has been extensively studied in 
the numerical mathematics literature and a considerable body of 
knowledge about it has emerged, for example, [8.7] and [8.5]. These 
studies are often in the context of linear systems because of the 
convenience of analysis that linearity provides. The phenomenon 
nevertheless does arise in nonlinear systems which can always be linearly 
approximated in suitably small regions. The underlying difficulty arises 
simply because the smallest (in magnitude) eigenvalue generally 
determines the right boundary of the observation interval whereas the 
largest (in magnitude) eigenvalue can introduce a size constraint on the 
step-size h. As we have illustrated above, these two effects have 
conflicting and undesirable impacts on the numerical solution process.

It needs to be stressed, however, that solution methods specifically 
designed to accommodate stiffness have been developed and should be 
used in any simulation experiment where there is a possibility that the 
CTDS model may exhibit stiffness (see, e.g., [8.5]). These methods do 
involve additional computational overhead and are not recommended for 
general usage. 

both cases is dominated by the term exp(–t) which tends towards zero as t
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curiosities intended mainly to provide a platform for mathematical 
analysis. It is easy to demonstrate that this is not the case. Consider, for 
example, the automobile suspension system that was introduced in Section 

y (t) + 2 y (t) + y(t) = 2 u (t) + u(t)  , 

where  (kg/sec) is the stiffness parameter of the shock absorber. The state 
variable representation of Equation (7.17) becomes: 

x1 (t) =  – x2(t) + u(t)
x2 (t) = x1(t) – 2 x2(t) + 2 u(t)

with y(t)  = x2(t)  . 

It can be easily established that the two eigenvalues 1 and 2 of the 
coefficient matrix are the solutions to the algebraic equation: 

 2  + 2  + 1 = 0  ; 

that is, 1 = –  + sqrt( 2 – 1) and 2 = –  – sqrt( 2 – 1). Now assume that 
is large; in particular, that it is much greater than 1. With this assumption the 
value –2  is a reasonable approximation for 2. To obtain a helpful 
approximation for 1 we note that for small , a first-order Taylor series 
approximation for the function R z z

R(z + ) = R(z) + 0.5  /R(z)  . 

Consequently (bearing in mind the assumption that  is much larger than 1): 

sqrt( 2 – 1) =  sqrt(1 – 1/ 2) [sqrt (1) – 0.5/( 2 sqrt(1))] =  – (0.5/ )

and so an approximate value for 1 is –0.5/ . Thus when the shock 
absorber constant  is large (relative to the spring constant k), there is a 
significant spread between the two eigenvalues; in particular, | 2/ 1| = 4 2

 = 15). 
In practical terms, a large value for  (relative to k) means that a ride over 

an uneven road surface would be very bumpy for the passengers in the 
automobile because the suspension system would appear to be very stiff. The 
need to investigate such a circumstance could very well arise if the project 
goals included assessment of an automobile’s dynamic behaviour in extreme 
conditions, such as evaluation of the impact of a shock absorber failure which 
could correspond to  becoming very large, hence the need to deal with a 
CTDS model that has the stiffness property. 

One might be tempted to conjecture that stiff systems are no more than 

7.2.2 and subsequently linearised in Equation (7.25). Suppose we assign 

and the mass, respectively; then Equation (7.25) becomes:  constant 
the specific  values  k = 0.5 (newtons/m) and M  = 0.5 (kg)  to the spring

( ) = sqrt( ) is: 

(which, for exampLe  equals 900 when  
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A meaningful and generally accepted formal definition of stiffness has 
proved to be elusive. Instead it is simply regarded as a property of CTDS 
models that imposes upon some numerical solution procedures the 
requirement for an unusually small step-size over a substantial portion of 
the observation interval. As we have demonstrated above, in the special 
case of a linear system whose coefficient matrix has distinct real 
eigenvalues, this property is present when there is a significant spread 
between the smallest and the largest eigenvalues. 

8.4.3  Discontinuity 

CTDS models frequently contain discontinuities. Unless special precautions 
are taken in handling these, it is almost certain that the solution trajectories 
that are obtained will be flawed. In some cases these flawed solutions may 
still be adequate within the context of the goals of the modelling and 
simulation project whereas in other cases these flaws cannot be tolerated and 
specialised numerical procedures need to be used.

Two of the examples previously considered have embedded 
discontinuities: namely the bouncing ball project (Section 2.2.4) and the 
pilot ejection project (Section 7.3). In the case of the bouncing ball, the 
discontinuity occurs each time the ball strikes the ice surface and bounces. 
The bounce really corresponds to an instantaneous change in both the 
horizontal and the vertical velocities of the ball. The latter case is 
especially severe inasmuch as both the direction and magnitude of the 
ball’s vertical velocity changes. In the case of the model for the pilot 
ejection project, the discontinuity occurs at the moment when the pilot/seat 
leaves the rails. At that moment there is an instantaneous change in the rate 
of change of both the horizontal and vertical velocities of the pilot/seat 
(while on the rails both Vx

’(t) and Vy

’(t) are zero but this changes 
instantaneously at the moment when the pilot/seat leaves the rails).

A discontinuity occurs when one or more state variables or the 
derivatives of state variables undergo an instantaneous change. Such an 
occurrence is usually called an ‘event’. Events fall into two categories, 
namely, time events and state events. The distinguishing feature of a time 
event is that the time at which it occurs is explicitly known. The time of 
occurrence of a state event is known only implicitly through some 
functional specification that involves the state variables. For example, in 
the case of the bouncing ball there is a sequence of state events and the 
time of occurrence of each corresponds to the condition y = 0 (vertical 
displacement is zero; i.e., the ball is striking the ice surface).
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difficulty that, as we outline below, is otherwise present. More specifically, 
if it is known that a time event occurs at t = t* then the obvious practical 
approach is simply to execute the solution procedure up to t = t*, carry out 
the change(s) associated with the event, and then continue the solution 
either to the next time event or to the right boundary of the observation 
interval, whichever occurs first. This approach preserves the integrity of 
the solution and requires only a minor disruption in the normal flow of the 
solution procedure. Handling time events, therefore, is relatively 
straightforward.

It is interesting to observe that in the case of the pilot/seat model, the 
simple analysis that yields Equation (7.19) effectively transforms the 
apparent state event into a time event. Because of the constant velocities 
that prevail while the seat is on the rails, the time when the seat leaves the 
rails is easily determined to be tE = Yr/(Vrcos r). Furthermore  there is 
nothing in the goals of the project that necessitates trajectory information 
prior to tE and consequently the situation becomes even more 
straightforward; that is, simply initiate the numerical solution at the event 
time tE  (or more precisely, incrementally beyond the event time).

The circumstances in the case of the bouncing ball are quite different; 
the state events that occur at the bounces cannot be circumvented. What 
then is the numerical issue that emerges? To address this question we need 
to reflect on the program code requirements that are necessitated by the 
discontinuity. As the following discussion points out, to deal with the state 
event the simulation model itself must now acquire a facet that is beyond 
the simple programming of the algebraic expressions that constitute the 
derivative functions of the model.

The basic requirement here is clearly a means for locating the 
occurrence of the state event so that the changes associated with it can be 
carried out. This is usually achieved by the introduction of switch
functions. One such function is created for each state event that needs to be 
accommodated in the CTDS model. The key requirement in defining these 
switch functions is to capture, in a simple way, the implicit specification of 
the time of occurrence of the state event. A standard approach is to define 
the switch function so that its algebraic sign changes when the state event 
occurs. In other words the zero of the switch function signals the 
occurrence of the state event. For example, in the case of the bouncing ball 
model, an appropriate switch function is 1(t) = y1(t) (recall that y1(t)
represents the vertical position of the ball above the ice surface). In the 

The fact that the time of occurrence of a time event is known is very 
significant because it enables a simple circumvention of the numerical 
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detection procedure (which resolves the detection problem) is to identify 
an interval in which it is certain that at least one zero crossing of a switch 
function occurs. With this interval as its input, the location procedure then 
has the task of locating the time of the leftmost of these crossings; this 
constitutes the solution of the location problem.  

To correctly deal with known discontinuities, a CTDS simulation model 
should incorporate, in some form or another, the equivalent of the 
following pseudocode. Step 1 in this code corresponds to the detection 
procedure and steps 2 and 3 correspond to the location procedure. This 
code needs to be executed at the completion of each successive time-step 
over the course of the underlying solution procedure. For definiteness, let’s 
assume that the current solution step has moved the solution from t = ta to 
t= tb.

1. For each i in the range 1 through m, determine if i signals the 
occurrence of event i and if so place i in .

2. For each i  determine ti

* such that i(ti

*) = 0 and place ti

*  in .
3. Determine t**, the least value in .
4. Restart the solution process at t = ta and solve to t**.
5. Carry out the changes required at the event(s) occurring at t**.
6. Continue the solution process from t**.

Correct and robust implementation of the pseudocode outlined above is 
not a trivial undertaking because the resolution of both the detection 
problem and the location problem requires considerable care. Various 
approximations are typically accepted but these can introduce substantial 
error and/or numerical misbehaviour.

Consider, for example, the bouncing ball model; in this case m = 1 
because there is only one state event that needs to be monitored and 1(t) =
y1(t). It is reasonable to conjecture that in the neighbourhood of an event 
time t*, 1(t) would have the form shown in Figure 8.3 where we assume 
that ta and tb are adjacent solution points resulting from a fixed step-size 
solution process. The signal for the occurrence of the state event (the 
bounce) could be taken simply to be the observation that 1(ta) and 1(tb)
have opposite algebraic signs. Having thus established that a state event 
has occurred, we now need to identify t*, the time of its occurrence. A 
gross, but very convenient, assumption is simply to take t* = tb. Because the 
solution process is currently at tb, it is very straightforward to modify the 

general case, we assume the existence of m such switch functions 

1 2

m

There are in fact two distinct problems that need to be solved. These are 
called the detection problem and the location problem. The task of the 

associated with the CTDS model being studied; for example, (t), (t), . . . , 
(t).
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specification’ included with the project description and possibly some 
latitude is permitted. Note, in fact, that the experiments with the bouncing 
ball carried out in Annex A3 are undertaken with these same rough 
approximations.

The approach taken above in handling the location problem is certainly 
primitive (namely, taking t* = tb). In the case where the switch function  

1(t) can safely be assumed to have the form shown in Figure 8.4, (i.e., a 
single crossing between ta and tb) a relatively simple bisection procedure 
can be used to solve the location problem in a more credible manner. The 
idea is simply to half the length of the interval that is known to contain the 
point of zero crossing on each of a sequence of iterations. This sequence 
ends either when the interval length is reduced to a sufficiently small size 
or until the value of 1 at the midpoint of the current interval is sufficiently 
close to zero. A specification of this bisection procedure based on the latter 
termination criterion is given below: 

tc = (ta + tb)/2
while (| 1(tc)| > )

if ( 1(ta)* 1(tc) < 0) tb = tc

else ta = tc

tc = (ta + tb)/2
endwhile
t* = tc .

Here  is a parameter that controls the accuracy of the final result that is 
generated. It should also be appreciated that each evaluation of 1, (at time 
tc) requires that the underlying solution procedure re-solve the model 
equations from time ta to time tc. Computational overhead has clearly 
increased!

The procedure outlined above significantly compromises the accuracy 
of the solutions for the ball’s trajectory and hence the accuracy of the 
results obtained for the underlying modelling and simulation project. But 
this is not to say that the results are unacceptable. There was no ‘accuracy 

values of horizontal velocity (x2) and vertical velocity (y2) to reflect the 
changes required by the state event. As a final and entirely artificial change 
to reflect the intended reality, y1 can also be set to zero. 
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ta

tbt*
t

1(t)=y1(t)

FIGURE  8.4. Locating the state event for the bouncing ball. 

Note also that in general, there is no assurance that there is only a single 
zero crossing in the interval identified by the detection procedure. For 
example, the behaviour of a switch function (but not the one we have been 
discussing for the bouncing ball) might have the form shown in Figure 8.5. 
Because there are multiple zeros in the interval the bisection method 
outlined above would be an inappropriate choice for the location 

The situation in handling discontinuities acquires a different (but 
nonetheless challenging) perspective when a variable step-size procedure 
is used as the equation-solving tool.

Some interesting investigations of this challenging numerical problem in 

provided). A current and comprehensive discussion can be found in Cellier 
and Kofman [8.2]. 

procedure. A more robust approach would need to be formulated.

handling CTDS models  with discontinuities can be found in [8.1], [8.3], 
[8.6], and [8.13] (a variety of interesting example problems is likewise 
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t

(t)

ta tb

FIGURE 8.5. A switch function with multiple crossings. 

8.4.4  Concluding Remarks 

The main purpose of the discussion in Section 8.4 has been to demonstrate 
that the numerical tools required to carry out the simulation phase of a 
modelling and simulation project in the CTDS domain need to be used with 
some degree of caution. There are potential pitfalls and these are not always 
made clear to the users of the many simulation software products that are 
available in the marketplace. What may appear to be interesting dynamic 
behaviour in a CTDS model may simply be the reflection of numerical 
anomalies.

Mechanisms to detect such anomalies and bring them to the attention of 
the user are rarely provided. Thus it is important for the user to be alert and to 
have reasonable background knowledge and insight in order to be able to 
assess curious behaviour that may arise. Unfortunately there are very few 
guaranteed checks that can be applied to reveal the existence of problems. 
Nevertheless, one simple option that is always worth considering is the use of 
an alternate solution method whenever there is some reason to suspect that 
the numerical solution process is being compromised. Large inconsistencies 
in the results obtained provide a reasonable signal of underlying difficulty. 
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It is appropriate finally to stress also that robust solution methods for 
efficiently handling the differential equation of a CTDS conceptual model 
continue to evolve, especially in a modelling and simulation context. 
Readers interested in exploring such developments will find relevant topics 
in the recent work of Cellier and Kofman [8.2]. 

In this regard it is particularly interesting to note the work described by 
Kofman and Junco [8.10] and further elaborated in [8.2]. Traditional 
numerical methods for ODEs discretise the time axis as the underlying 
mechanism for driving the solution forward. The work referenced above 
takes the alternate approach of discretising the state space. This introduces 
an entirely new landscape which is, in particular, well suited to a unified 
treatment (at the computational level) of models that have DEDS and 
CTDS components. 

8.5 Options and Choices in CTDS Simulation Software 

A wide variety of software products/environments is available for carrying 

CTDS  realm.  Some  of these  are  commercial
 products (e.g., Dymola  [8.4]) whereas  others  are in the public  domain
 (e.g., Open Desire [8.11])). By and large, each has a relatively distinctive
 manner for specifying the conceptual model that is to be studied and
 often  has,  as  well,  many distinctive  capabilities.  Such  distinctive
 capabilities (e.g., matrix inversion,  eigenvalue calculation, discontinuity
 handling,  animation,  etc.)  can  be especially  relevant to a particular
 project  and  thus provide a  basis  for making  a  selection  from  among
 available alternatives.

From the discussion in Sections 8.2 through 8.4 it is reasonable to 
suggest that a practical requirement for any CTDS simulation product is a 
solution engine that provides a variety of numerical solution methods. This 
is especially important when the conceptual model is large (many 
differential equations) and/or complex (i.e., derivative function evaluation 
is time consuming) because in such cases solution efficiency can become a 
matter of concern. The availability of solution method alternatives gives 
the user the option of making tradeoffs between computational overhead 
and accuracy. 

Quite apart from a choice from among solution methods, there are still 
decisions to be made with respect to embedded parameters. The most 
fundamental, of course, is the step-size h. In the absence of other 
guidelines or insights, a rule-of-thumb often used when the solution 
method is of fourth-order, is to assign h the value 10-3|I0| (where |I0| is the 
length of the observation interval). In the case where a predictor–corrector 

 simulation  project  in  the 
out the simulation (i.e. experimentation) phase of any modelling and
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method has been selected, the parameter  that provides some accuracy 
control (see Section 8.2.2.1) may be available for assignment by the user. 
When a variable step-size method is selected, several associated 
parameters typically emerge (e.g., the error tolerance parameters K1 and K2

introduced in Section 8.3) and these must be assigned meaningful values 
by the user. 

Making prudent value choices for these various embedded parameters is 
not an easy matter for a novice because very little guidance is available. 
Fortunately, with ‘well-behaved’ conceptual models it is usually a 
noncritical task. However with ill-behaved situations these value 
assignments can have a significant impact and improper assignments may 
even jeopardise the success of the modelling and simulation project. 

8.6 The Safe Ejection Envelope Project Revisited 

In Chapter 7 a CTDS conceptual model was formulated to provide the data 
required to establish the safe ejection envelope for a pilot forced to 

horizontal aircraft velocities, the least altitude at
 which the ejection mechanism will yield an ejection trajectory that avoids
 the aircraft’s tail assembly by a suitable margin of safety.  The  conceptual
 model is given by Equation (7.19) with initial conditions given by Equation
 (7.17).

The envelope we seek is, in fact, a graph of (Va, H* )  pairs where H* is
the least ‘safe altitude’ associated with the horizontal velocity Va. The 
procedure makes use of the fact that if ejection at a particular altitude is 
unsafe (i.e., results in a trajectory that does not clear the tail assembly by a 
sufficient distance) then increasing the altitude will eventually locate a safe 
value. This is a consequence of the fact that the drag force due to air 
density diminishes as altitude increases.

A procedure for generating the data required to create a graph of the 
form shown in Figure 7.6 is given in Figure 8.6. This procedure assumes 

of Equation (7.19). Several parameters have been introduced to define the 
boundaries of the study; these are summarised in Table 8.1. 

abandon a disabled fighter aircraft.  Briefly, the objective is to determine 
for each of a range of 

the existence of a verified simulation program based on the conceptual model  
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An Open Desire simulation program that carries out this task is given in 
Figure 8.7. The resulting safe ejection envelope is given in Figure 8.8 
(however, some enhancement of the original Open Desire presentation has 
been carried out). 

FIGURE 8.6. Generating the envelope data.

Va  Vstart

H Hstart 

repeat
    while (miss < Sf)

* H  H + h

* solve ode’s of the model from t=tE to t=t* where
     t*  is first occurrence of  Xp(t

*)  Va t
* – BT 

* miss = Yp(t
*) – HT 

    endwhile
a

Va  Va + v

until (Va > Vlimit)
Plot the collected (Va, H ) pairs 

TABLE 8.1. Parameters used in the safe ejection envelope study. 

Parameter Interpretation Value 
Vstart Initial horizontal velocity 100 ft/sec
Hstart Initial altitude 0 ft 
Vlimit Largest horizontal velocity 950 ft/sec

Increment in altitude 500 ft 
Increment in velocity 50 ft/sec 

h

v

2

                              
2 An overview of this  particular simulation environment can be found in 
Annex 3. Readers unfamiliar with Open Desire are urged to review Annex 
3 in order to better appreciate the simulation program in Figure 8.7. 

*

*record (V , with H        )H*H



8.6  The Safe Ejection Envelope Project Revisited 303

---Safe Ejection Envelope Project

----------------------------------------------------------

---CONSTANTS

g=32.2 |  ---acceleration due to gravity (ft/sec^2)

m=7 |  ---mass of pilot and seat (slugs) 

BT=30 |  ---horizontal displacement of tail section (ft) 

HT=12 |  ---vertical height of tail section (ft) 

Cdhat=5 |  ---drag coefficient (ft-sec^2) 

Sf=8 |  ---safety factor for avoiding tail (ft) 

thetaD=15 |  ---angle of ejection rails (degrees) 

thetaR=thetaD*(PI/180) |  ---angle of ejection rails

       (radians) 

Vr=40 |  ---seat velocity while on rails (ft/sec) 

Yr=4 |  ---vertical height of rails (ft) 

Va=100 |  ---initial aircraft (horizontal)velocity

       (ft/sec) 

H=0 |  ---initial aircraft altitude (ft) 

---TABLE: Relative Air Density, RHO, versus altitude 

dimension RHO[24] 

data 0,1E+3,2E+3,4E+3,6E+3,1E+4,1.5E+4,2E+4,3E+4,4E+4

data 5E+4,6E+4, 2.377E-3,2.308E-3,2.241E-3

data 2.117E-3,1.987E-3,1.755E-3,1.497E-3, 1.267E-3 

data 0.891E-3,0.587E-3,0.364E-3,0.2238E-3

---Storage Arrays for crossplot data 

dimension VaV[20],HV[20] 

---EXPERIMENT

read RHO 

t=Yr/(Vr*cos(thetaR))

                  ---left hand end of observation interval 

TMAX=3 |  ---right-hand end of observation interval 

irule=3 |  ---fixed stepsize RK4 

DT=0.004 |  ---integration step size 

Xp=(Va-(Vr*sin(thetaR)))*t

---horizontal position when leaving rails 

Yp=Yr |  ---vertical position when leaving rails 

Vx=Va-Vr*sin(thetaR)

---horizontal velocity when leaving rails 

Vy=Vr*cos(thetaR) |---vertical velocity when leaving rails 

---setup display for pilot trajectories 

display W300,80 

display 2 |  display A |  display R

display C17 |  display N11 

NN=1000 |  scale=1 

knt=0

FIGURE  8.7. Open Desire simulation program for safe ejection envelope. 
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FIGURE 8.7. Open Desire program for safe ejection envelope (continued).

---main loop follows

write "Va     ";"H  ";"Miss     "¡"Time" 

repeat

  drun  |  miss=(Yp-HT) |  stop=t |  reset 

  while miss<Sf 

    H=H+500 

    drun  |  miss=(Yp-HT) |  stop=t |  reset 

   end while 

  write Va;"  ";H;"  ";miss;"  ";stop 

  knt=knt+1 |  VaV[knt]=Va |  HV[knt]=H 

  Va=Va+50 |  Vx=Vx+50 |  Xp=Xp+50*t 

  until Va>950 

write '>>>type "go" to continue' |  STOP 

----------------------------------------------------

---OUTPUT(the safe ejection envelope (H vs Va)) 

----------------------------------------------------

display F |  NN=knt 

drun ENVELOPE 

----------------------------------------------------------

DYNAMIC

----------------------------------------------------------

HplusYp=H+Yp |  func rho=RHO(HplusYp |  ---compute air 

       density 

PSI=(Cdhat*rho*sqrt(Vx*Vx+Vy*Vy))/m

d/dt Xp=Vx |  d/dt Yp=Vy 

d/dt Vx=-PSI*Vx | d/dt Vy=-PSI*Vy-g 

----------------------------------------------------------

OUT

XTail=Va*t-BT

term XTail-Xp 

term -Yp 

----------------------------------------------------------

---OUTPUT(pilot trajectories)

SQ=((XTail-Xp)+15)/15 |  SYp=0.075*Yp-1 

          ---scaling for trajectories 

dispxy SQ,SYp 

----------------------------------------------------------

label ENVELOPE 

get Va=VaV 

get H=HV 

SVa=0.002*Va-1 |  SH=0.000025*H-0.999 |  ---scaling for 

       envelope 

dispxy SVa,SH 
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FIGURE 8.8. The safe ejection envelope. 

8.7 Exercises and Projects 

means of demonstrating the earth’s rotation. Implementations of the 
Foucault pendulum can be found in science museums throughout the 
world. The special feature of this pendulum is that the pivot point can 
turn and consequently the plane in which the swinging bob moves can 

rotation, the plane of the swing will continuously change. Because of a 
complex interaction of forces, the rate at which the plane of the swing 
changes is dependent on the latitude  where the observer is located. 

hours for a complete rotation of 360 degrees (i.e., angular rate of 2
radians per hour) and this period decreases as the observer moves 

8.1 The Foucault pendulum was proposed in 1851 by Léon Foucault as a 

For example, at either of the poles (  = ±90 degrees), it requires 24 

change in both the x- and y-directions. In fact, because of the earth’s 

/24  
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toward the equator (  =  0) where the angular rate is zero. The 
equations that govern this behaviour (with the assumption that air 
friction effects can be ignored) are: 

x (t) - 2  sin( ) y (t) + K2 x(t) = 0 

y (t) + 2  sin( ) x (t) + K2 y(t) = 0  , 

where  represents the earth’s rotational velocity (7.3 radian/sec) and 
K = g/L where g is the acceleration due to gravity and L is the 
pendulum length (necessarily large, e.g., 50 meters) and  is the 
latitude of the observer. 

a) Formulate a modelling and simulation project based on the 
conceptual model given above, to determine the angular velocity 
(radians per hour) of the pendulum’s plane of swing for each of the 
following values of latitude, :  5, 10, 15, . . . , 80 and 85 degrees. 
(Hint: Observe the graph that results when x(t) is plotted against 
y(t)).

b) Determine from a search in the available literature (e.g., the Web), 
what the relation should be and confirm the validity of the results 
obtained in part (a). 

8.2 A bumblebee colony represents an example of a ‘stratified population’, 
that is, one in which the total population is made up of different forms 
of the same species. Only impregnated females survive the winter to 
found a new colony in the spring. She prepares a simple nest and 
begins laying eggs at the rate of 12 eggs per day. The lifecycle is as 
follows.

a) An egg takes 3 days to hatch and what emerges is a larva. 
b) The larva grows for 5 days and then turns into a pupa. 
c) The pupa exists for 14 days and then turns into an adult/worker. 
d) The adult lives for 5 weeks. 

Formulate a modelling and simulation project whose goal is to 
obtain insight into how the population of the colony reacts to the 
death of the queen bee. Suppose, in particular, that the queen dies 
after T0 days. As a result the population of the colony will eventually 
diminish to zero. Suppose this happens T1 days after the death of the 
queen. The value of T1 depends on the size of the population at the 
time T0 which in turn depends on T0 itself. Using an appropriate CTDS 
model, obtain sufficient data to produce a graph of T1 versus T0 with 
T0  in some suitable range that adequately illustrates the pertinent 
aspects of the behaviour of interest.
Note that there are four state variables associated with the colony; 

namely,
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b) Nr(t), the larva population at time t
c) Np(t), the pupa population at time t
d) Na(t), the adult population at time t.

In formulating the model, assume that t has the units of days. The fact that 
an egg exists for 3 days means that 1/3 of the egg population moves from 
the egg population to the larva population each day. Similarly 1/5 of the 
larva population moves out of the larva population each day. As a 
consequence, two of the four equations of the conceptual model are: 
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8.3 In this project we consider the motion of two masses moving 
horizontally on frictionless surfaces as shown in Figure 8.9. Mass m1 is 
a block that rolls (without friction) on a horizontal surface and mass m2

is a wheel that rolls on top of mass m1 (again without friction). Each of 
these masses is individually connected with a spring to a vertical wall. 
The spring that connects m1 has a spring constant of k1 and the spring 
that connects m2 has a spring constant of k2.  We  assume  that  up  until 
t = 0 this system has been resting in an equilibrium state. The lengths of 
the two springs are such that at equilibrium the wheel rests at the 
midpoint of the block whose width is 2w. We take m1 = m2 = 5 kg, k1 = 
k2 = 15 Newton/meter and w = 1.6 meter.

If we let x1(t) and x2(t) represent the horizontal positions  of  the two 
masses relative to their respective equilibrium positions, then the 
CTDS conceptual model for the system is: 

)()(5.1)(5.0

)()()5.0()(5.0

221222

1112122

txkixmixm

txkixmmixm

At t = 0 the block is moved to the right by a distance  = 1.5 meters 
and then released (the wheel on the other hand remains at its 
equilibrium  position);  thus, x1(0) = , x2(0) = 0, 0tx0,tx )()( 21 .
The goal of this modeling and simulation project is to gain insight into 
the circumstances that cause the wheel to fall off the surface of the 
block.

a) Ne(t), the egg population at time t
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values for the various parameters). Carry out experiments to 
determine these regions. 

c) Determine how the regions found in part (b) are affected by 
changes in the value of .

FIGURE 8.9. Rolling masses. 

a) Determine if the wheel will fall off the block for the parameter 
values and the initial conditions that are given.

b) It is reasonable to assume that there are regions in the (positive) 
k1–k2 plane for which the ball will fall off the block and conversely 
regions where the wheel will not fall off the block (with the given 

8.4 In this study a proposed system for halting an aircraft that might 
otherwise overshoot the runway during its landing manoeuvre is to be 
investigated. The system has particular utility in the context of an 
aircraft carrier. The configuration of the upper half of the system is 

below the center line. 

shown in Figure 8.10. The complete system is symmetric about the center 
line; that is, an identical configuration to that shown in Figure 8.10 exists 

m1

k1

k2

2w

x2(t)

x1(t)

m2
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FIGURE 8.10. Schematic representation of aircraft arresting mechanism. 

The springs shown as k1 and k2 are fictitious. They are intended to 
represent the elastic properties of the steel cables which are the 
connecting members. In particular, this means that these springs 
cannot be compressed. If, for example, y2 becomes less than y3 the 
cable connecting the piston and the moving carriage simply goes 
limp.

An appropriate analysis of the elements of the system yields the 
following conceptual model. 
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The force fd(t) is a consequence of the shock absorber effect of the 
piston which is moving through a cylinder filled with water. Its value 
is dependent on the square of the velocity )(3 ty ; that is, fd(t) = k3

)(2

3 ty . The drag coefficient k3 furthermore is dependent on y3 and its 

value, as established from experimental data, is given in Table 8.2.

TABLE 8.2. Drag coefficient of the piston. 

y3 (Meters) k3 (Newtons/(m/sec)2)

0 1720 
9 1340 
18 1100 
37 1480 
46 1480 
55 1480 
64 1720 
73 1960 
82 2500 
86 3000 
90 3650 
93 4650 
95 5400 
100 7800 

The values of the various constants in the model are summarized in 
Table 8.3. 

TABLE

Constant Value 

m1 25,000 kg 
m2 1300 kg 
m3 350 kg 
k1 115,000 Newtons/m
k2 430,000 Newtons/m
h 30 m 
L 15 m 
D 300 m 

8.3. Summary of constants. 
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The specific system to be investigated has a relatively solid 
barricade located D = 300 meters from the contact point (x = 0) which 

than 5 m/sec when it strikes the barricade. There are two specific 
issues that need to be investigated. The first is to determine V*, where 
V* is the largest initial velocity of the aircraft such that its velocity, 
when the front of the aircraft strikes the barrier will not exceed 5 
m/sec. In addition, it is of interest to obtain some insight into the 
relationship between this maximum initial velocity and the mass of 

*

versus aircraft mass (m1) for m1 in the range 20,000 kg to 30,000 kg. 

8.8 References 

8.1. Birta, L.G., Ören, T.I., and Kettenis, D.L., (1985), A robust procedure for 
discontinuity handling in continuous system simulation, Transactions of the 
Society for Computer Simulation, 2: 189–205. 

8.2. Cellier, F.E. and Kofman, E., (2006), Continuous System Simulation,
Springer-Verlag, New York. 

8.3. Ellison, D., (1981), Efficient automatic integration of ordinary differential 
equations with discontinuities, Mathematics and Computation in Simulation,
23: 12–20. 

8.4. Elmquist, H., (2004), Dymola – Dynamic modeling language, user’s manual, 
Version 5.3, DynaSim AB, Research Park Ideon, Lund, Sweden. 

8.5. Gear, C.W., (1971), Numerical Initial Value Problems in Ordinary 
Differential Equations, Prentice-Hall, Englewood Cliffs, NJ. 

8.6. Gear, C.W. and Osterby, O., (1984), Solving ordinary differential equations 
with discontinuities, ACM Transactions on Mathematical Software, 10: 23–
44.

8.7. Hairer, E. and Wanner, G., (1996), Solving Ordinary Differential Equations 
II: Stiff and Differential-Algebraic Problems, 2nd edn., Springer-Verlag, 
Berlin.

8.8. Iserles, A., (1996), A First Course in the Numerical Analysis of Differential 
Equations, Cambridge University Press, Cambridge, UK. 

8.9. Kincaid, D. and Cheng, W., (2002), Numerical Analysis: Mathematics of 
Scientific Computing, 3rd edn., Brooks/Cole, Pacific Grove, CA. 

8.10. Kofman, E. and Junco, S., (2001), Quantized state systems: A DEVS 
approach for continuous system simulation, Transactions of the SCS, 18(3):
123–132.

8.11. Korn, G.A., (1998), Interactive Dynamic-system Simulation Under Windows 
95 and NT, Gordon Breach ,  London. 

will bring the aircraft to a full stop provided it is not traveling faster 

the aircraft. For this purpose, it is required to obtain a graph of V

8.12. Lambert, J.D., (1991), Numerical Methods for Ordinary Differential 
Equations, Wiley, London. 



312 8. Simulation with CTDS Models 

8.13. Shampine, L.F., Gladwell, I., and Brankin, R.W., (1991), Reliable solutions 
of special event location problems for ODEs, ACM Transactions on 
Mathematical Software, 17: 11–25. 

8.14. Watts, H.A., (1984), Step-size control in ordinary differential equation 
solvers, Transactions of the Society for Computer Simulation, 1: 15–25. 



Chapter 9 Optimisation 

9.1  Introduction 

Optimisation studies are frequently embedded within the goals of a 
modelling and simulation project. In some cases this optimisation aspect 
may simply be a preliminary requirement in the development of the model 
that is to be subsequently used in the simulation study. In other cases it 
may constitute the main aspect of the project goals. We refer to these two 
alternatives as the model refinement problem and the strategy formulation 
problem, respectively. 

As an example of the model refinement problem, consider a situation 
where there exists a general model of how a particular drug that is required 
in the treatment of some illness, dissipates through the human body. 
However, before the model can be used it must be adapted (‘calibrated’) to 
the particular patient undergoing treatment. In other words, the values for 
various parameters within the model have to be established so that it ‘best 
fits’ the patient. This could be achieved by minimising the difference 
between one or more of the model’s output variables and clinical data 
obtained from the patient. Once optimised in this sense, the model is 
available for use by the physician to assist in establishing a proper 
continuing dosage level for the drug. 

As an example of the strategy formulation problem, consider a model of 
a chemical process which has been developed using known properties of 
the chemical kinetics that are involved in the process. Suppose one of the 
model’s outputs represents the cost of production over the period defined 
by the observation interval. A goal of a modelling and simulation project 
might be to determine a minimum value for this output by the optimum 
selection of parameters embedded within an operating policy that is 
represented by one of the inputs to the model. 

It can be reasonably assumed that in both these examples the system 
under investigation is a continuous-time dynamic system. In fact, our 
considerations throughout this chapter are restricted to this domain. This is 
not to suggest that optimisation studies cannot be undertaken with models 
from the DEDS domain. However, the tools required for handling the 
optimisation task in that domain need to deal with the inherent stochastic 
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nature of DEDS models. This superimposes another level of complexity 
that is beyond the scope of our considerations in this textbook. 
Nevertheless, a variety of approaches for handling the problem has been 
developed and descriptions can be found in the literature (e.g., [9.4],   
[9.16], [9.23], and [9.28]). A comprehensive overview of a range of 

heuristic search procedures that they use, can be found in [9.12]. 

obtained from the optimisation process generally need to be treated with 
some caution. For example, they are rarely precise enough to permit 
decisions to be confidently made at a detailed design level. Nevertheless 

essential aspects of the modelling and simulation activity. 

9.2 Problem Statement 

There exist two groups of relevant variables when an optimisation problem 
is superimposed on a model of a continuous-time dynamic system. As in 
our previous considerations with the CTDS domain, there is the N-vector x

in fact, is the set of first-order differential equations: 

x (t) = f(x(t), t)

with x(t0) = x0 and, as well, with a specified observation interval I0 = [t0, tf].

optimally selected. The presence of the parameter vector p, needs to be 
reflected in the specification of the model and this can be simply achieved 
by rewriting our model as:

x (t) = f(x(t), t; p)  . 

To guide the selection of the best value for the parameter vector p, there 
is necessarily associated with the problem a scalar, real-valued criterion 
function which we denote J = J(p). The objective, then, is to find a value 
p* for p which yields an extreme value for J. This may be either a 
maximum or a minimum but for definiteness in our discussions, we 
assume the latter (note that the maximisation of J is equivalent to the 
minimisation of –J). Thus we seek to find p* (the minimising argument) 
such that: 

the results obtained can provide valuable insight which, after all, is an 

= x(t) which we use to represent the state vector for the model. The model, 

We now introduce the m-vector of parameters p, whose values are to be 

It is frequently convenient to explicitly indicate the dependence of the 
state vector x on the parameter vector p by  writing it as x(t;p).

It is also fair to suggest that in the DEDS environment, the results 

commercially available optimisation packages, their vendors, and the 
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J(p*) J(p)     for all p   . 

In general, not all possible m-vectors are permitted candidates for p*
and consequently the minimisation of J could be restricted to a particular 
subset of admissible values which is denoted . Such restrictions may be 
explicit; for example, the first component p1, of p must be positive. 
Alternately, the restrictions may be implicitly defined via a collection of 
functional constraints; for example, j(x(t; p))  0 for j = 1, 2, . . . , c1 and 

j(x(t; p)) = 0 for j = c1 + 1, c1 + 2, . . . , c2. Such a functional constraint 
would arise, for example, in the case of a manufacturing process where the 
tensile strength of a plastic material that is being produced is compromised 
if the rate of cooling at a particular phase of the process is excessive. In 
such a circumstance only those values of p that do not create the 
unacceptable cooling conditions would be allowed.

As might be expected, the existence of restrictions on the permitted 
values for p (the constrained problem) introduces additional complexity 
upon the solution task. One approach that can be effectively used is called 
the penalty function method. Here the constraints are manipulated into a 
special form and appended to the criterion function to produce an 
‘augmented’ criterion function whose basic feature is that it penalises 
violation of the constraints. The minimisation of this augmented criterion 
function is therefore undertaken without the burden of having to explicitly 
restrict the search space. The constrained problem is thus transformed into 
an unconstrained problem (more correctly, there is a requirement for the 
solution of a sequence of unconstrained problems). In other words, this 
approach allows the constrained problem to be treated with the same 
numerical tools as the unconstrained problem. Elaboration of this approach 
as well as other methods for handling the constrained optimisation 

The specific form of the criterion function J evolves from the nature of 
the problem to be solved. The only requirement is that J(p) have a real 
scalar value for each value of the m-vector p. Note, however, that because 
the parameter vector p is embedded in a CTDS conceptual
model the evaluation of J, for any given p, requires the 
solution of a set of differential equations. This is, in principle, 
of no particular consequence for any optimisation process, however, it can 
have significant practical consequences in terms of computational 
overhead.

problem can be found in [9.3], [9.8], and [9.10].
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Some typical forms for the criterion function J are: 

(a) J = g(x(tf; p))

(b) J = ));t((
1

j px
s

j

g

(c) J = dttg
ft

t0

));(( px  . 

In each of these cases g is some scalar function of its argument x. An 
example where (a) would be an appropriate choice is provided by the 
bouncing ball problem that was considered earlier (see Section 2.2.4). 
Recall that the task is to find an initial release angle which results in the 
ball falling through a hole in the ice surface. The release angle represents 
the parameter (there is only one) and g could be selected to be the square 
of the distance between the point where the ball strikes the surface and the 
location of the hole. The implicit assumption that the problem has a 
solution means that g has a minimum value of zero; that is, the ball falls 
through the hole. A successful search for the release angle that minimises g
will therefore provide the solution to the problem.

A criterion function of the form shown in (b) could have relevance to 
the model refinement problem outlined earlier. The calibration process in 
question could, for example, be based on the manner in which blood sugar 
is absorbed following an injection of insulin. In this case, the s time points, 
tj, j = 1, 2, . . . , s that are referenced could be the points in time where 
blood sugar measurements are taken from the patient and the function g
could be the absolute value of the difference between the measured 
data
variable of the model. Finding values for the set of model parameters that 
yield a minimum value for J would then correspond to the calibration 
process.

The criterion function form shown in (c) maps directly onto a classic 
control system design problem. The feedback controller for a continuous 
time dynamic system (e.g., an aircraft autopilot) typically has several 
parameters whose values need to be chosen in a way that, in some sense, 
optimises system performance. A frequently used performance measure is 
‘integral-square-error’, that is, the integral of the square of the deviation 
between a desired system output and the output that actually occurs

of finding best values for the controller parameters would be based on 
using the model in the minimisation of a criterion function of the form 
shown in (c). In this case g = (y – ŷ )2 where y is the output of interest 

when the system has a prescribed input. Assuming that a CTDS concep- 
tual model is available for the system and its controller, the goal 

from the patient and the value acquired by some particular output 
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(some function of the model’s state vector x) and ŷ  is the desired value  
for y.

As might be expected, the difficulty of the minimisation task is very 
much dependent of the geometric nature of the criterion function J(p). In 
particular, there is the very serious issue of multiple local minima. 
Most minimisation procedures are unable to distinguish such ‘false’ 
minima and consequently may converge upon such a point, thereby 
yielding an erroneous result. Another geometric feature that is poorly 
accommodated by most procedures is the existence of a ‘long’ gently 
sloping valley. Such a situation can cause premature termination of a 
minimisation procedure and the presentation of an inferior result. 
Unfortunately these difficult circumstances are not uncommon. 

By way of illustration we show in Figure 9.1 a representative criterion 
function that is dependent on two parameters.1 The multiplicity of local 
extreme values and the existence of sloping valleys are apparent.  

FIGURE 9.1. A response surface for a two-dimensional criterion function. 

                                                     
1 Figure 9.1 has been taken from Pinter et al. [9.19] with the permission of the 

authors.



318    9. Optimisation 

9.3  Methods for Unconstrained Minimisation 

The discussion in Section 9.2 has stressed that optimisation problems 
embedded in the goals of a modelling and simulation project in the CTDS 
domain are essentially the same as the ‘classical’ problem that is treated in 
the numerical optimisation literature. There is, however, one important 
distinctive feature, namely, that the evaluation of the criterion function at 
any particular argument value p requires the solution of a set of differential 
equations (i.e., the conceptual model). This can, at least in principle, simply 
be regarded as part of the computational overhead. 

A wide range of methods for dealing with the unconstrained function 
minimisation problem have been developed. A comprehensive review of 
these is well beyond the scope of our interest in this textbook. Our intent 
here is simply to provide an introduction to some of the basic ideas upon 
which these methods are based. It is strongly recommended that the reader 
who needs to carry out an optimisation study probe deeper into the topics 
that are introduced in the discussion that follows. Relevant information can 
be found in the numerous textbooks that deal specifically with numerical 

There is a variety of ways for categorising the relatively large number of 
available function minimisation methods. Perhaps the most fundamental is 
whether gradient information is required by the procedure. Methods not 
requiring gradient information are often referred to as heuristic methods 
because their basis of operation is primarily based on intuitive notions. In 
the two sections that follow, we outline a representative member of both 
the heuristic and the gradient-dependent categories. 

9.3.1  The Nelder–Mead Simplex Method  

The Nelder–Mead method first appeared in the optimisation literature in 
1965 (see [9.14]) and continues to be of practical value and of theoretical 

need for gradient information hence it can be classed as a heuristic method. 
In a modeling and simulation context, this is especially significant as becomes 
apparent in our discussion in Section 9.3.2. 

The process begins with the specification of a regular simplex which is 
defined in terms of (m + 1) points in m-space (recall that our parameter 
vector p is a vector of m dimensions). When m = 2, the simplex is a 
triangle. The defining points for the initial simplex are part of the 
initialisation procedure. Generally a (priming) point p0 which represents a 
‘best’ solution estimate is prescribed; the remaining m points of the initial 
simplex are generated by a simple procedure that uses the priming point.

optimisation (e.g., [9.5], [9.8], [9.15], [9.18]). 

interest [9.11], [9.24]. One of its features is the absence of any  
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The minimisation procedure consists of a sequence of operations 
referred to as reflection, expansion, and contraction. Each step begins with 
a reflection operation which is then followed by either an expansion 
operation or a contraction operation. These operations produce a sequence 
of simplexes that change shape and move through the m-dimensional
parameter space until (one hopes) they encompass, and then contact upon, 
the minimising argument p*.

Let {p0, p1, p2, . . . , pm} be the vertices of the current simplex. Let pL be 
the vertex that yields the largest value for J, pG be the vertex that yields the 
next largest value for J, and pS be the vertex that yields the smallest value 
for J. Correspondingly, let JL = J(pL), JG = J(pG), and JS = J(pS). The 
centroid of the simplex with pL excluded is given by: 

pC = 
m

1
])[(

0

L
m

k

k
pp  . 

A reflection step (Figure 9.2a) is carried out by reflecting the worst 
point pL about the centroid, to produce a new point pR , where 

pR = pC +  (pC – pL)  . 

Here  is one of three user-assigned parameters associated with the 
procedure; the requirement is that  > 1 and it is typically chosen to be 1. 
One of three possible actions now take place depending on the value of JR

= J(pR). These are: 

i. If JG > JR > JS, then pR replaces pL and the step is completed. 
ii. If JR < JS then a new ‘least  point’  has been uncovered and it  is 

possible that  further  movement  in the same direction could be 
advantageous.  Consequently  an  expansion  step  (Figure 9.2b) is 
carried out to produce pE where 

pE = pC +  (pR – pC)  (  > 1 and is typically 2)  . 

E J E

S

L E L

with pR. In either case, the step is completed. 

R > JG then a contraction step is made to produce the point pD

where

pD = pC +  ( p~  – pC)   ( 0 <  < 1 and is typically 0.5)  . 

Here p~ is either pR or pL depending on whether JR is smaller or larger 
than JL (see Figures 9.2c and d). If JD = J(pD) < JG then the step ends. 
Otherwise the simplex is shrunk about pS by halving the distances of 
all vertices from this point and then the step ends.

Either of two conditions can termination the search procedure. One is 
based on the relative position of the vertices of the current simplex; that is, 

 If J  = (p ) < J  then p  is replaced with p ;  otherwise p  is  replaced 

iii. If  J
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if they are sufficiently closely clustered then pS can be taken as a 
reasonable approximation of the minimising argument p*. Alternately, the 
termination can be based on the variation among the values of the criterion 
function J at the vertices of the simplex. If these values are all within a 
prescribed tolerance, then again pS can be taken as a reasonable 
approximation of the minimising argument p*. 

p
S

p
L

p
G

p
R

pC

FIGURE 9.2a. Reflection step.
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FIGURE  9.2b. Expansion step.
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FIGURE  9.2c. Contraction step (JL < JR).
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FIGURE  9.2d. Contraction step (JR < JL).

9.3.2  The Conjugate Gradient Method 

We begin this section with a brief review of the notion of the gradient, 
specifically, the gradient of the criterion function J = J(p). Inasmuch as p
is a vector of dimension m, the gradient of J is likewise a vector of 
dimension m. The kth component of this vector is the partial derivative of J
with respect to pk, that is, with respect to the kth component of p. The 
gradient of J(p) is denoted Jp(p). Suppose, for example, that J(p) = 10(p2 –
p1

2)2 + (1 – p1)
2. Then,

)(20

))1(2)(40(

J

J

)(
2
12

1
2
121

2

1

pp

pppp

dp

p
pJp   . 

two reasons: 

a) If p  is  a  point  in m-space,  then  the  negative  gradient  vector 

evaluated at p  has  the  property 
greatest  decrease  in  the  function J.  In  other  words,  for  suitably 
small but fixed , J( p + v) is smallest when 

b) When J  is  continuously  differentiable,  a  necessary  (but  not 
sufficient) condition for p* to be a local minimum for the function 
J(p) is that Jp(p*) = 0. 

v = – J ( p ).      p

that  it  points  in  the  direction  of 

The gradient vector is especially relevant in function minimisation for 
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A concept that has played an important role in the development of 
numerical minimisation procedures is that of conjugate directions. The 
concept relates to a specified symmetric positive definite matrix A of 
dimension m. Specifically, a set of  (  m) nonzero m-vectors (or 
equivalently, ‘directions’) r0, r1, . . . , r -1 is A-conjugate if (rj)T A rk = 0 for j

k and j, k = 0, 1, . . . , ( – 1).
A-conjugate directions have a variety of interesting properties which 

include the feature that any such collection of directions is linearly 
independent. There is one property that is especially relevant from the 
point of view of function minimisation but before outlining it, the notion of 
a linear or line search needs to be introduced. 

Suppose p is a given point in m-space and r  is a given m-vector
(direction). For any positive value of the scalar , the m-vector ( p  + r )
can be regarded as a point in m-space reached by moving a distance of
away from p  in the direction r

-. Suppose now that J is a given scalar 
valued criterion function whose value depends on the m-vector p, that is, J
= J(p) and suppose we substitute ( p  + r ) for p. Because both p and r

are fixed, J becomes simply a function of the scalar  and consequently we 
can write J = J( ). Furthermore, it is reasonable to assume that there is a 
value of  (which we denote *) that yields a minimum value for J( ).
Finding the value of * is called the line (or linear) search problem. In 
effect, the line search problem corresponds to locating a minimum of J in a 
specific plane (or ‘slice’) of the parameter space. This is illustrated in 
Figure 9.3. Note the possible existence of multiple local minima.

α

J(α)

α∗

FIGURE  9.3. Illustration of the line (linear) search problem. 
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The following result is the essential property of conjugate directions 
from the point of view of function minimisation. 

The CD Lemma 

namely, when  = m, there must exist an index K  m such that pK = p*, the 
minimising argument of J. This follows from the linear independence of 
the m-vectors r0, r1, . . . , rm-1  and outcome  (i) of the CD Lemma. More 
specifically, (i) states that the gradient of J at pK  (i.e., Jp(p

K)) is  orthogonal
 to each of a set of m linearly independent m-vectors which,  in turn,  implies 
that Jp(p

K) must be zero (recall that the zero  m-vector  is  the only  one
 that can be simultaneously 

of the assumed special structure of  J, the
 condition Jp(p

K) = 0 is  both  necessary  and sufficient  for pK = p*,  the 
minimising argument of J. Note that the case where K = m is a ‘worst’ 
case; for certain choices of the initial point p0, it can occur that K < m. In
 other words, the minimising argument of J  will  be  located  in  at  most  m  steps
 of the procedure.

The fundamental prerequisite for implementing any function 
minimisation method that is based on conjugate directions is, of course, the 
availability of the necessary set of directions. Furthermore it must be borne 

Let:  

J(p) = ½  pT A p + bT p  + c  with A symmetric and positive definite 
and p an m-vector 
p0 be a given initial point 

0 1 -1,   ( m)  be  a  set of  A-conjugate 
directions 
the kth k 1

 

2

k-1 along rk-1 pk

 = pk-1 + * rk-1 

where J(pk) = min J(pk-1 +  rk-1).  

Then: 

i) p

k

p

k T j

ii) the same point pk is reached independent of the order  in which the 
directions rj  are used in the sequence of line searches. 

important because any criterion function has a quadratic approximation in 
a sufficiently small neighbourhood around its minimum. Consequently any 
implications flowing from this Lemma are relevant in such a 

There is, in fact, one especially important consequence of the Lemma, 

orthogonal to each of a  set  of  m linearly inde-  
pendent m-vectors). Because 

neighbourhood.  

 -

the  m-vectors  r , r ,    . . .  r

point,  p  in  the  sequence  p , p ,    . . . p  be  generated  by 
;  that  is,  

J (p ) has the property that (J (p ))  r  = 0 for j = 0, 1, . . .  (k--1) 

The general quadratic form for the criterion function, J(p), considered in 

carrying out a line search from p

the CD Lemma is clearly very specialised. Nevertheless the Lemma is 



324    9. Optimisation 

in mind that any such approach is, at least in principal, relevant only to the 
minimisation of a quadratic function because the directions are, after all, 
‘A-conjugate’ where A is the matrix that defines (at least in part) the 
specific quadratic function of interest. Thus the whole undertaking may 
appear somewhat pointless inasmuch as the minimum of a quadratic 
function can easily be obtained without the need for a numerical search 
process. (For the quadratic criterion function assumed in the CD Lemma 
above, the minimising argument is given by p* = –A-1 b.)

The escape from this apparent dilemma is via the observation made 
earlier that any criterion function has a quadratic approximation in some 
suitably small region around its minimising argument p*. Thus if a 
minimisation process can move into this region then the properties of the 
conjugate directions will result in rapid convergence upon p*. But it needs 
to be appreciated that in the general case, the specific quadratic function is 
never known hence any practical conjugate directions method needs to 
internally generate directions that will ultimately be A-conjugate even 
though there is no knowledge of the characterising matrix, A. Although 
this may appear to be a formidable task, numerous such procedures have 
been developed. The family of conjugate gradient methods is included 
among these procedures.

The original function minimisation procedure in the conjugate gradient 
family was proposed by Fletcher and Reeves [9.7]. The kth step in the 
procedure (k  1) begins with the current estimate of the minimising 
argument pk-1 and a search direction rk-1. There are two tasks carried out 
during the step. The first generates a new estimate for the minimising 
argument denoted pk, where  

pk = pk-1 + * rk-1   and J(pk) = min J(pk-1 + rk-1).

In  other  words,  pk is  the  result  of  a line search from pk-1 in the direction 
rk-1.

The second task carried out on the kth step is the generation of a new 
search direction, denoted rk, where 

rk =  – Jp(p
k) + k-1 rk-1     with k-1 = 

||)(||

||)(||
1k

k

pJ

pJ

p

p  . 

Euclidean length of v which is given by vT v).
For the first step in this procedure, (i.e., when k = 1), p0 is an initial 

‘best’ estimate of the minimising argument and r0 = – Jp(p
0). The sequence 

of steps ends when some predefined termination criterion is satisfied (e.g., 

(In the above, for an m-vector v we use || v || to represent the square of the 
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a point pk is located at which the length of the gradient vector; i.e., 
sqrt(||Jp(p

k

The significant feature of this procedure is that when the criterion 
function J(p) is quadratic then the search directions r0, r1, . . . , rk that are 
generated are A-conjugate. Consequently it follows from the CD Lemma 
that the minimising argument of J will be located in at most m steps (or m
line searches).

A number of variations on this original procedure have been proposed. 
Several of these have suggested alternate values for k-1 and others have 
tried to better accommodate the reality of nonquadratic criterion functions. 
For example, Polack and Ribière [9.20] have proposed 

k-1 = 
||)(||

))()(())((

1

1

k

kkTk

pJ

pJpJpJ

p

ppp   , 

and Sorenson [9.25] recommends 

k-1 = 
))()(()(

))()())((

11

1

kkTk

kkTk

pJpJp

pJp(JpJ

pp

ppp   . 

It’s perhaps worth observing that if k-1 is set to zero, then the procedure 
outlined above becomes the classic steepest descent process. The practical 
performance of that approach, however, is poor and its selection is not 
recommended, especially in view of the far superior alternatives that are 
conveniently available.

Suggestions have also been made for ‘restarting’ the conjugate gradient 
procedure in some cyclic fashion, in other words, abandoning the 
collection of search directions that have been generated and reinitiating the 
procedure (which usually means choosing the negative gradient as the 
search direction). The procedure’s m-step property when applied to a 
quadratic function suggests that after a cycle of m-steps (or line searches), 
the procedure could be reinitialised. Although the natural choice for the 
restart direction is the negative gradient, Beale [9.1] has shown that the 
finite termination property on the quadratic function can be maintained 
even when the first search direction is not the negative gradient. Based on 
this observation, a restart strategy that incorporates a novel specification 
for the search directions was proposed. The approach suggested by Beale 
was further developed by Powell [9.21].

The line search problem is one which, on first glance, appears 
deceptively simple to resolve (see Figure 9.3). After all, there is only a 
single parameter  that needs to be considered and it is usually known that 
the minimising value of  is positive. There is even an easily established 
orthogonality condition that the minimizing argument  * must satisfy;

 namely,

)||), is sufficiently small. 
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 (Jp(p
k-1 + * rk-1))T rk-1 = 0  . 

Nevertheless, obtaining an accurate solution to the problem can be a 
challenging numerical task. Note also that there is an implicit requirement 
for efficiency because a line search problem needs to be solved on each 
step of the procedure and indeed, the solution of these subproblems 
consumes a substantial part of the computational effort in solving the 
underlying criterion function minimisation problem.

A variety of approaches can be considered for solving the line search 
problem. The first that usually comes to mind is a polynomial fitting 
process. For example, by evaluating J( ) at three ‘test’ values of , it is 
possible to obtain a quadratic approximation for J whose minimum can be 
readily determined. That value can be taken as an approximation (albeit 
rather crude) for *. Various refinements of this approach are clearly 
possible, for example, obtaining a new quadratic approximation using ‘test 
points’ that are in the region of the previous minimum or incorporating a 
higher order polynomial (possibly cubic). 

If it can be assumed that there is available a known interval Î which 
contains * and that J( ) is unimodal in Î2 then an interval reduction 
technique can be used. This involves the judicious placement of points in a 
sequence of intervals of decreasing length where decisions to discard 
portions of each interval in the sequence are made on the basis of the 
relative size of J( ) at the selected points. The decisions that are made 
ensure that the retained interval segment contains *. The process ends 
when the current interval length is sufficiently small and then its midpoint 
is typically chosen to be *. Arguments based on maximising the 
usefulness of each evaluation of J give rise to the placement of points in a 
manner that is related either to the golden section ratio or to the Fibonacci 
sequence. A discussion of the underlying ideas can be found in [9.6]. 

The significance and practical value of carrying out exact line searches 
is a topic that has received considerable attention in the optimisation 

when the line search is not exact the Fletcher–Reeves formula could generate a 
search direction rk that is not a descent direction. A variety of conditions 
has been proposed for terminating the line search when a sufficient 
decrease has occurred in the value of the criterion function (e.g., the Wolfe 
conditions [9.27]). Many of these are outlined in [9.17].

important feature of the optimisation problem that has specific relevance 

                                                     
2 Within the present context, this implies that while  is in Î, J( ) always increases 

as  moves to the right from * and likewise J( ) always increases as  moves to 
the left from *.

literature (e.g. [9.2] and [9.3]). It can, for example, be easily shown that

We end the discussion in this Section by addressing a distinctive and 

to the CTDS realm that is of interest in this textbook.
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The conjugate gradient method (and indeed a large number of other 
powerful numerical optimisation methods) requires the gradient of the 
criterion function. In our case the criterion function J is not an analytic 
function for which required derivative information can be obtained simply 

Recall that the kth component of the gradient vector Jp, evaluated at the 

)()(
lim

0

e

p

JJ

p

J
k

k

  ,

where ek is the kth column of the m × m identity matrix. The obvious 
numerical approximation to this formal definition is: 

)()( e

p

JJ

p

J k

k

 ,

where  is a suitably small positive scalar. With this approach, each of the 
m components of the gradient vector can be individually approximated. 
Determination of Jp( ) requires m J
evaluation corresponds to a small perturbation in one of the components of 
the reference point . (We assume here that the value of J at the reference 
point , i.e., J( ), is already known.) Selecting the most appropriate value 
for the perturbation  requires careful consideration because ‘small’ is a 
highly ambiguous notion. If, for example,  is ‘too small’ then the result 
obtained can become hopelessly corrupted by numerical noise. 
Nevertheless, with proper care the approach can usually be sufficiently 
accurate to enable an effective implementation of a conjugate gradient 
minimisation procedure or, indeed, the implementation of any procedure 
requiring gradient information. 

We note nevertheless that one particular case that would merit special 
caution in this respect is the circumstance where a discontinuity is known 
to exist in the conceptual model. As pointed out in the discussion in 
Section 8.4.3, dealing with such models has inherent numerical difficulties 
and the errors introduced could undermine the success of the gradient 
approximation outlined above. 

9.4 An Application in Optimal Control 

Typically an optimal control problem involves the determination of the 
time trajectory for one or more control inputs to a continuous-time 

by differentiation. Consequently some alternate approach is required. 

specific point p = , is (by definition) given by:

 evaluations of  where each such 
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dynamic system in a manner that minimises a prescribed criterion function. 
This problem appears, on first glance, to be beyond the scope of our 
interest in this chapter because the determination of entire time trajectories 
was never part of the intended considerations. We note, however, that a 
substantial body of literature relating to the solution of this generic 

results that have emerged is the Pontriagin minimum principle. This, in 
particular, provides a basis for transforming the optimal control problem 
into a boundary value problem which can then be reformulated as a 
function minimisation problem. In this section we illustrate this process 
with a straightforward example.

Our concern in this example is with the control of a first-order 
irreversible exothermic chemical reaction carried out in a stirred tank 
reactor. Control of the process is achieved by injecting coolant through a 
valve into a cooling coil inserted into the reactor. The conceptual model is 
based on characterising the perturbations around a steady-state condition. 
It is relatively simple but highly nonlinear. The model is given in Equation 
(9.1):

)()(1)(

)()())(21()(

22

11

tRtxtx

t StRtxtx
(9.1)

where
R(t) = 0.5 + (x2(t) + 0.5)exp(y(t))

y(t) = 
2)(

)(25

1

1

tx

tx

S(t) = u(t) (x1(t) + 0.25)  . 

Here x1(t) and x2(t) represent deviations from steady-state temperature 
and concentration, respectively, and u(t) is the control input. We take x1(t0)
= 0.05 and x2(t0) = 0 and for convenience we assume that t0 = 0. The 
objective is to rapidly return the reactor to steady-state conditions (x1 = x2 =
0) while at the same time avoiding excessive usage of coolant. Choosing 
u(t) to minimise the following function reflects these objectives: 

P = dttutxtx ))(1.0)()(( 22
2

1

0

2
1  . 

The application of the minimum principle gives rise to an auxiliary set 
of differential equations; namely, 

)(1 tv  = v1(t) (2 + u(t)) – Q(t) (v1(t) – v2(t)) – 2 x1(t)

)(2 tv  = v2(t) – (v1(t) – v2(t))exp(y(t)) – 2 x2(t)  , 
(9.2)

problem is available (see, e.g., [9.13], [9.26]) and among the important 
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where

Q(t) = 
2

1

2

)2)((

))(()5.0)((50

tx

tyexptx

and

u(t) = 5 v1(t) (x1(t) + 0.25)  . 

1

2

The difficulty that arises here is that initial conditions are given for x1(t)
and x2 t t v1(t)
and v2(t) are specified at t = 1. In other words there is a need to solve a 
two-point boundary value problem. Such problems have been extensively 
studied in the numerical mathematics literature and a variety of methods is 
available. One approach is to recast the problem as a criterion function 
minimisation problem within the class considered in this chapter.

In this reformulation, the CTDS model of interest is the group of four 

conditions:

x1(0) = 0.05, x2(0) = 0, v1(0) = p1, v2(0) = p2  , 

where p1 and p2 are parameters. The values of we seek for p1 and p2 are 

J(p1, p2) = )1()1( 2
2

2
1 vv   . 

Then, provided that the minimisation process yields a minimum value of 

The approach which is illustrated in this example has general 
applicability to a wide range of optimal control problems and is, at least in 
principle, equally applicable to boundary value problems in general. 

9.5 Exercises and Projects 

9.1 The general quadratic function of dimension m can be written as: 

J(p) = ½ pT A p + bT p + c  , 

where p is an m-vector, A is an m × m positive definite symmetric matrix, 
and b is a m-vector. Consider the point po and a search direction r. Show 

( )9.3a

( )

( ) (i.e., conditions at  = 0) whereas the boundary conditions on 

9.3b

 v (1) = The solution to Equations (9.1)  and (9.2)  (for the case where
v (1) = 0) provides  the necessary conditions  for  the optimality of  u(t)  as
prescribed in Equation (9.3b).

differential equations given by Equations (9.1) and (9.2) together with 
Equation (9.3). We assume the set of initial 

the solution to the original optimal control problem.

those which yield a minimum value for the criterion function: 

zero for J (implying v1 2(1)), the value of u(t) which results will be  (1) = 0 = v
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that if * solves the line search problem in the direction r from the point po,
that is, * has the property that 

J(po + *r) = min J(po + r)  , 

then

rAr

pr

T

p
T J )( 0

*   . 

9.2 Develop a computer program that implements an efficient line search 
procedure which is based on the golden section search. Details about this 

//en.wikipedia.org/wiki/Golden_section_search). Test your program on a 
variety of quadratic functions by comparing your results with the analytic 
result given in Problem 9.1. 

9.3 The bouncing ball project was introduced in Chapter 2 (Section 
2.2.5). The goal is to find a release angle 0 that results in the ball’s 
trajectory entering the hole in the ice surface. This task can be formulated 
as a line search problem in the following way. Consider the criterion 
function J( 0) = (H – kx̂ )2 where H is the location of the hole and kx is the 
ball’s  horizontal  position when the k th collision with the ice surface 
occurs. J has a minimum value of zero when kx̂  = H, that is, when the ball 

 bounce . Because the criterion function J  

0

The solution requirements also stipulate that there must be at least one 
bounce before the ball passes through the hole; that is, k > 1. This can be 
handled (somewhat inelegantly) by first finding a value for 0 for which 
the second and third bounces straddle the hole. This value can then be used 
as the starting point for the line search process. 

Embed a syntactically compatible version of the program developed in 
Problem 9.2 into the Open Desire simulation model for the bouncing ball 
given in Figure A3.6 and make appropriate changes in the Experiment segment 
of the program so that it finds a suitable value for 0.

9.4 Probably the most intuitively appealing approach for locating the 
minimising argument of a criterion function J(p) is a succession of line 
searches along the co-ordinate axes. This implies that the searches are 
along the directions e1, e2, . . . , em where ek is the kth column of the m × m
identity matrix (ek is an m-vector whose entries are all 0 except for the 
entry in the kth position which is 1). One notable feature of this procedure 

 depends only on a scalar parameter (namely
problem is one-dimensional (hence a line search problem).

ˆ

, ), the minimisation 
falls through the hole on the k th

approach can be found in [9.10] or [9.22] or at the Wikipedia site: 

,   

 

 ,
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(usually called the univariate search) is that it does not require gradient 
information. It can be viewed as a series of iterations where each iteration 
begins at the point po and ends at the point pm which is the point that is 
reached after a sequence of m line searches along the co-ordinate axes. The 
procedure is illustrated in Figure 9.4 for the two-dimensional case. 

p
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p
1

p2(p0)

p
1

*
2

*
2

*
1

*
1

p1

p2

End of first iteration : 

this point becomes p
0

for the next iteration

End of second iteration

p
2
(p

0
)

FIGURE  9.4. The univariate search in two dimensions. 

The procedure for the univariate search can be written in the following 
way. Choose a value for the termination parameter  and an initial estimate 
p̂  for the minimising argument of J and set pm = p̂ .  

m termination of the  repeat/until  loop  is
 

the  accepted
 estimate for the 

repeat
k = 0 
po pm

while (k < m)
k k + 1 
Find *

k

k-1 + *

k ek ) = min J(pk-1 + ek )

pk pk-1 + *

k ek

endwhile

Jmax  max(|J(po)|, |J(pm)|))

until
max

0 )()(

J

JJ m
pp

minimising argument. 
 value  of p  upon 

 such that J(p

The
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Show that the univariate procedure will converge to the minimising 
argument of the general quadratic function given in Problem 9.1 if exact 
line searches are carried out. 

HINT: Consider what must be true if the procedure makes no progress 
on some particular iteration and then use the fact that the only m-vector
that can be simultaneously orthogonal to m orthogonal m-vectors is the 
zero vector.

In many situations the performance of the univariate procedure outlined 
in Problem 9.4 can be significantly improved by incorporating a slight 
modification. This simply involves an additional line search in the 
direction s = (pm – po). This modified procedure (which we call the 
extended univariate search) is illustrated in Figure 9.5. 
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p
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FIGURE

a)  Modify the procedure given in Problem 9.4 so that it represents the 
extended univariate search as described above. 

b)   Formulate an argument that demonstrates that the extended univariate 
search will also locate the minimising argument of the general
quadratic function. 

9.5  a)      Write a program that implements the univariate search procedure as 

     b)   Test the effectiveness of the program using the following two test 
problems.

i. J(p) = 100(p2 – p1

2)2 + (1 – p1)
2.

ii. J(p) = (p1 + 10p2)
2 + 5(p3 – p4)

2 + (p2 – 2p3)
4 + 10(p1 – p4)

4 . 

that was developed in Problem 9.2. 

  9.5. The extended univariate serach in two dimensions. 

presented in Problem 9.4. Incorporate the line search program 
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Use initial estimates (0,1) and (1,0) for test problem (i) and initial 
estimates (1, 0, 1, 0) and (–1, 0, 0, 1) for test problem (ii). The minimum 
value of the criterion function for both test problems is zero. The 
termination parameter  should be set to a value no larger than 10-5.

9.6 Repeat Problem 9.5 for the case of the extended univariate search. 

9.7 Develop an Open Desire simulation program to solve the optimal 
control problem that is outlined in Section 9.4. Use a syntactically 
compatible version of the extended univariate search program developed 
for Problem 9.6 to solve the criterion function minimisation problem. Use 
(2, 2) as an initial estimate of the minimising argument of the criterion 
function.
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add, ConcurrentLinkedQueue, 181 
add, HashSet, 179, 184, 187 
peek, ConcurrentLinkedQueue, 182, 

184 
poll, ConcurrentLinkedQueue, 182, 184 
poll, PriorityQueue, 171, 173 
remove, HashSet, 179, 184 
size, ConcurrentLinkedQueue, 188 
size, HashSet, 179, 184, 187 

Java methods, cern.colt 
nextDouble, Empirical, 82 
nextDouble, Exponential, 182 
nextDouble, Uniform, 184, 187 

Java methods, event scheduling 
addEventNotice, EvSched, 167-169, 

181-184, 185, 187, 188 
clearSet, ESOutput, 169-170, 236 
computeTrjDSOV, ESOutput, 169-170, 

172, 235-236 
computePhiDSOV, ESOutput, 169-170, 

172, 235-236 
doubleValue, ESAttributeList, 169, 

184, 188 
esAttributeListValue, ESAttributeList, 

169, 187 
get, ESOutput, 169-170 
implicitStopCondition, EvSched, 167-

169, 171, 173 
indexOfName, ESAttributeList, 169-

170 
initEvSched, EvSched, 167-169, 171 
intValue, ESAttributeList, 169-170, 

187, 188 
processEvent, EvSched, 167-169, 171, 

173, 180-182, 187 
put, ESOutput, 169-170, 183-184, 185 
removeEventNotice, EvSched, 167-

169, 188 
rewindSet, ESOutput, 169-170 
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runSimulation, EvSched, 167-169, 171, 
173, 180, 182, 223, 236 

setIntValue, ESAttributeList, 169-170, 
187, 188 

setTimef, EvSched, 167-169, 235-236 
Java methods, JMX 

add, AttributeList, 182 
indexOf, AttributeList, 170 

Java methods, lang 
compareTo, Comparable, 169-170 

K 

Kojo’s Kitchen, 153-161, 178-184, 222-
225 

L 

Lipschitz condition, 276 
Lotka-Volterra equations, 257 

M 

Mean: see Ouput analysis, point estimate 
Method of batch means, 234 
Minimisation: see Optimisation 
Model, 6-7, 21-22, 54-56 

conceptual model, 42-43, 249-266, see 
also: ABCmod framework 

data model, 27, 50, 55, 59, 62, 65-84, 
98, 104, 109, 114, 117, 119-120, 
128, 130, 138, 158, 159, see also: 
Random variate generation 

deterministic model, 54, 250 
dynamic model, 22, 29-33, 54-56 
simulation model, 43-45 
simulation model, event scheduling, 

152, 173-189 
simulation model, process oriented, 

152, 189, 199-212 
stochastic model, 12, 54 

Module 
data module, 81, 119-120, 130, 159, 

174 
standard module, 119-120, 174 
user-defined module, 120-121, 131, 

160, 174 
Monte Carlo simulation, 11-13 
 
 
 
 

N 

Numerical integration 
Euler method, 279-280 
Heun form, 283 
linear multi-step family, 283-285 
modified Euler method, 280-281 
predictor-corrector methods, 284-285 
Runge-Kutta family, 282-283 
variable step-size, 285-288 

O 

Observation interval, 23-24, 130, 159, 226 
Open Desire, 248, 303-305, 414-448 

CYGWIN, 413, 444 
emacs editor, 445-447 

Operational phases, 45-46 
Optimal control, 327-329 
Optimisation, 53, 313-314 

A-conjugate directions, 322-325 
conjugate directions, 322-324 
conjugate gradient method, 321-327 
gradient, 321, 323, 327 
line search, 322, 325-326 
Nelder-Mead simplex method, 318-321 
unimodal function, 326 

Output variable, 33 
derived scalar output variable (DSOV), 

33, 35-36, 119, 129, 159, 216-219 
output set, 35 
point set output variable (PSOV), 33-

36, 217-218 
sample set, 34-36, 63, 119, 129, 159, 

217 
sample variable, 33-35, 119, 129, 217 
time variable, 29-30, 33, 119, 128-129, 

217 
trajectory set, 30, 33, 63, 119, 129, 217 

Output analysis 
bounded horizon study, 219-222 
comparing alternatives, 237-244 
confidence interval, 219, 221-222, 225, 

226, 233-234 
example, Kojo's Kitchen, 222-225 
example, Port Project, 234-237 
point estimate, 219, 220, 233-234 
steady state study, 225-234 
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P 

Paired-t confidence interval method, 238, 
242 

Parameter, distribution, 34, 75, 218, 344 
Parameter, estimation, 35, 69, 71-72, 75-

79, 218-222, 365-370, 374 
Parameter, model, 28, 31, 36, 37, 39, 42, 

45, 126, 156, 250, 254 
Path reflectors, 101 
Performance measure, 35, 60, 62, 155, 

238, 316 
Pilot ejection project: see Safe ejection 

envelope project 
Point estimate: see Output Analysis 
Pontriagin Minimum Principle, 328 
Population dynamics, 255-258 
Port project, 122-143, 185-189, 192-196, 

199-211, 234-237 
Precondition, 107-110 
Precondition routine, 177-178, 181-182, 

184 
Precondition, interrupt, 113, 189, 210 
Preditor-prey model: see Population 

dynamics 
Pre-emption: see Intervention 
Process diagram, 190-196, 199, 201 
Process oriented simulation model, 151-

152, 189-190, 199 
Professional accreditation, 17 
Project description, 9, 40-42, 96, 122, 133, 

135, 154 
Project goals, 1, 5, 7-8, 10, 22, 37, 123, 

155 
Property reflectors, 101 
Property Σ: see State 
Pseudorandom numbers: see Random 

number generation 
PSOV: see Output 

Q 

Quality assurance, 46, 51-54 
Queue: see Entity, queue entity, see also 

GPSS, chain, see also Java classes, 
collections framework 

 
 
 
 
 

R 

Random number generation, 84-87 
linear congruential method, 85-86 
mixed congruential method, 85 
multiplicative congruential method, 85-

86 
Random variate generation, 87-92 

inverse transform method, 81, 88-90 
rejection-acceptance method, 90-92 

Range sequence: see Input 
Rejection-acceptance method: see Random 

variate generation 
Replicated simulation runs, 218-221 
Replication-deletion method, 230, 233 

S 

Safe ejection envelope project, 258-266, 
301-305 

Sample set: see Output 
Sample mean, see Output analysis, point 

estimate 
Sample variable: see Output 
Scatter plot, 67-68 
SCS: see Status Change Specification 
Simulation model: see Model 
Simulation program, 44-45 
Simulation program, event scheduling, 

165-172  
Simulation program, process-oriented 196, 

382 
Simulation program, CTDS 301-305, 423-

426, 431-433 
Simulation software, 16, 43-44 
Simulators, 13-14 
Stability, 278, 288-292 
State, 31, 55 

property Σ, 32-32 
State space representation, 267-272 
State variables, 31-33, 37, 38, 97, 106, 

251, 267, 415 
Status Change Specification (SCS), 108, 

109, 152 
Steady-state behaviour, 65, 227-229, 375 
Steady-state study, 65, 225-237 
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Stiffness, 291-294 
Stochastic model: see Model 
Stochastic process, 61-63, 373-375 

autonomous, 61-64 
continuous, 61-62, 375 
dependent, 62-63 
discrete, 373-375 
homogeneous, 63-64, 123, 154, 373-

374 
Strong law of large numbers, 363 
Structure diagram: see GPSS  
System Under Investigation (SUI), 3, 26 

T 

Testing, 11, 52 
regression testing, 52 
stress testing, 52 

Tests 
chi-squared test, 75-78 
frequency test, 87 
goodness-of-fit test, 75 
poker test, 87 

runs test, 87 
Time advance algorithm, 162-163, 166, 

171 
Timing map: see Input 
Trajectory set: see Output 
Transient behaviour, 63, 65, 375 

V 

Validation, 11, 41, 43, 46-51, 257 
behaviour validation, 49 
face validation, 49 
replicative validation, 50 

Verification, 41, 43, 46-51 

W 

Warm-up period, 226, 229, 234 
Welch’s method, 226-232, 234 
World views, 59, 151-152 

activity scanning, 59, 96, 151 
event scheduling, 59, 151-152 
process oriented, 59, 151-152 
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