

Modelling and Simulation

Louis G. Birta and Gilbert Arbez

Modelling and
Simulation
Exploring Dynamic System Behaviour

Louis G. Birta
School of Information Technology

and Engineering
University of Ottawa

Canada

Gilbert Arbez
School of Information Technology

and Engineering
University of Ottawa

Canada

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2007922719

ISBN-10: 1-84628-621-2 e-ISBN-10: 1-84628-622-0
ISBN-13: 978-1-84628-621-6 e-ISBN-13: 978-1-84628-621-2

Printed on acid-free paper

© Springer-Verlag London Limited 2007

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be
sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.

Product liability: The publisher can give no guarantee for information about drug dosage and application
thereof contained in this book. In every individual case the respective user must check its accuracy by
consulting other pharmaceutical literature.

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springer.com

e-mail: lbirta@site.ottawa.in e-mail: garbez@site.uottawa.in

Ottawa, Ontario K1N 6N5 Ottawa, Ontario K1N 6N5

To the next and future generations:

Christine, Jennifer, Alison

 Amanda, Julia, Jamie

 and

 Mika

PREFACE

Overview

Modelling and simulation is a tool that provides support for the planning,
design, and evaluation of systems as well as the evaluation of strategies for
system transformation and change. Its importance continues to grow at a
remarkable rate, in part because its application is not constrained by
discipline boundaries. This growth is also the consequence of the
opportunities provided by the ever-widening availability of significant
computing resources and the expanding pool of human skill that can
effectively harness this computational power. However, the effective use
of any tool and especially a multifaceted tool such as modelling and
simulation involves a learning curve. This book addresses some of the
challenges that lie on the path that ascends that curve.

Consistent with good design practice, the development of this textbook
began with several clearly defined objectives. Perhaps the most
fundamental was the intent that the final product provide a practical (i.e.,
useful) introduction to the main facets of a typical modelling and
simulation project. This objective was, furthermore, to include projects
emerging from both the discrete-event and the continuous-time domains.
In addition, the work was not to evolve into a treatise on any particular
software tool, nor was it to be overly biased towards the statistical notions
that play a key role in handling projects from the discrete-event domain.
To a large extent, these objectives were the product of insights acquired by
the first author over the course of several decades of teaching a wide range
of modelling and simulation topics. Our view is that we have been
successful in achieving these objectives.

Features

We have taken a project-oriented perspective of the modelling and
simulation enterprise. The implication here is that modelling and
simulation is, in fact, a collection of activities that are all focused on one
particular objective, namely, providing a credible resolution to a clearly
stated goal, a goal that is formulated within a specific system context.
There can be no project unless there is a goal. All the constituent
subactivities work in concert to achieve the goal. Furthermore the ‘big
picture’ must always be clearly in focus when dealing with any of the
subactivities. We have striven to reflect this perspective throughout our
presentation.

continuous-time domain inasmuch as the differential equations that define
the system dynamics can be correctly regarded as the conceptual model.
On the other hand, however, this is very significant in the case of projects
from the discrete-event domain because there is no generally accepted
view of what actually constitutes a conceptual model in that context. This
invariably poses a significant hurdle from a pedagogical point of view
because there is no abstract framework in which to discuss the structural
and behavioural features of the system under investigation. The inevitable
(and unfortunate) result is a migration to the semantic and syntactic
formalisms of some programming environment.

We have addressed this problem by presenting a conceptual modelling
environment which we call the ABCmod framework. Its basis is the
identification of ‘units of behaviour’ within the system under investigation
and their subsequent synthesis into individual activities. The approach is a
version of the activity-based world view that is often mentioned in the
modelling and simulation literature as one of three standard approaches for
organising a computer program that captures the time evolution of a
discrete-event dynamic system. In our ABCmod (Activity-Based
Conceptual modelling) framework the underlying notions are elevated
from the programming level to a more abstract and hence more conceptual
level. The inherent implementation difficulty with the notions does not
arise because there is no execution requirement at the conceptual level.
The examples that are presented in the text illustrate conceptual model
development using the ABCmod framework. Furthermore we demonstrate
the utility of the ABCmod framework by showing how its constructs
conveniently map onto those that are required in both the event-scheduling
and the process-oriented programming environments.

Audience

This textbook is intended for students (and indeed, anyone else) interested
in learning about the problem-solving methodology called modelling and
simulation. The book makes no pretence at being a research monograph,
(although our ABCmod conceptual modelling framework is novel and
previously unpublished). A meaningful presentation of the topics involved
necessarily requires a certain level of technical maturity and our reference
in this regard is a science or engineering background at the senior
undergraduate or the junior graduate level.

More specifically our readers are assumed to have a reasonable comfort
level with standard mathematical notation which we frequently use to
concisely express relationships. There are no particular topics from

The notion of a conceptual model plays a central role in our
presentation. This is not especially significant for projects within the

viii Preface

provided in Annex 1). A reasonable level of computer programming skills
is assumed in the discussions of Chapter 5 and 8. We use Java as our
environment of choice in developing event-scheduling simulation models.
The GPSS programming environment is used to illustrate the process-
oriented approach to developing simulation models and we provide a
GPSS primer in Annex 2. Our discussion of the modelling and simulation
enterprise in the continuous-time domain is illustrated using the Open
Desire programming environment and we provide an Open Desire primer
in Annex 3.

Organisation

This book is organised into three parts. The first part has two chapters and
serves to provide an overview of the modelling and simulation discipline.
It provides a context for the subsequent discussions and, as well, the
process that is involved in carrying out a modelling and simulation study is
presented. Important notions such as quality assurance are also discussed.

The four chapters of Part 2 explore the various facets of a modelling and
simulation project within the realm of discrete-event dynamic systems
(DEDS). We begin by pointing out the key role of random (stochastic)
phenomena in modelling and simulation studies in the DEDS realm. This,
in particular, introduces the need to deal with data models as an integral
part of the modelling phase. Furthermore there are significant issues that
must be recognised when handling the output data resulting from
experiments with DEDS models. These topics are explored in some detail
in the discussions of Part 2.

As noted earlier, we introduce in this book an activity-based conceptual
modelling framework that provides a means for formulating a description
of the structure and behaviour of a model that evolves from the DEDS
domain. An outline of this framework is provided in Part 2. A conceptual
model is intended to provide a stepping stone for the development of a
computer program that will serve as the ‘solution engine’ for the project.
We show how this can be accomplished for both the event-scheduling and
the process-oriented program development perspectives (i.e., world views).

There are three chapters in Part 3 of the book and these are devoted to
an examination of various important aspects of the modelling and
simulation activity within the continuous-time dynamic system (CTDS)
domain. We begin by showing how conceptual models for a variety of
relatively simple systems can be formulated. Most of these originate in the
physical world that is governed by familiar laws of physics. However, we

 Preface

mathematics that are essential to the discussion but some familiarity with
the basic notions of probability and statistics plays a key role in the
material in Chapters 3 and 6. (In this regard, a probability primer is

 ix

We explore several options that exist in this regard and provide some
insight into important features of the alternatives. Several properties of
CTDS models that can cause numerical difficulty are also identified.

Determining optimal values for some set of parameters within a CTDS
model is a common project goal in a modelling and simulation study. The
last chapter in Part 3 explores this task in some detail. We outline two
particular numerical procedures that can be applied to optimisation
problems that arise in this context.

Web Resources

supplementary material
 that accompanies this textbook. Included are the following.

1. A set of PowerPoint slides from which presentation material can be
developed

2. An ABCmod tool that supports the development of discrete-event
conceptual models based on the framework

3. A methodology for organising student projects
4. A set of links to other Web sites that provide modelling and simulation

tools and information

This site is dynamic and it is anticipated that material will be updated on
a regular basis.

Acknowledgements

We would, first of all, like to acknowledge the privilege we have enjoyed
over the years in having had the opportunity to introduce so many students
to the fascinating world of modelling and simulation. The publication of
this book is, furthermore, evidence that the impact of this experience was
not strictly unidirectional.

We would also like to acknowledge the contribution made by the
student project group called Luminosoft whose members (Mathieu Jacques
Bertrand, Benoit Lajeunesse, Amélie Lamothe, and Marc-André Lavigne)
worked diligently and capably in developing a software tool that supports
the ABCmod conceptual modelling framework that is presented in this
textbook. Our many discussions with the members of this group fostered
numerous enhancements and refinements that would otherwise not have
taken place. Their work provides the basis for the support tool called
ABCMtool that can be found at the Web site that has been established for
material relating to this textbook.

also show how intuitive arguments can be used to formulate credible

Inasmuch as a conceptual model in the CTDS realm is predominantly a
models of systems that fall outside the realm of classical physics.

set of differential equations, the ‘solution engine’ is a numerical procedure.

x Preface

to provide access to a variety of
A Web site has been established at the URL address http: //modsim book.
site.uottawa.ca

gratitude to our families for their patience and their accommodation of the
disruptions that our preoccupation with this book project has caused on so
many occasions. Thank you all!

science) for Springer-Verlag. His enthusiasm for this project fuelled our

timely completion of our work. Thanks also to Ms Catherine Brett
(editorial assistant, computing) who always provided quick and

 Preface

The development of this book has consumed substantial amounts of
time. To a large extent this has been at the expense of time we would
otherwise have shared with our families. We would like to express our

encouragement provided by Mr Wayne Wheeler, senior editor (computer

determination to meet the various deadlines that were established for the

Finally we would like to express our appreciation for the help and

 xi

comprehensive responses to our concerns and queries. The guidance and
support of
stage, has been most helpful and much appreciated.

Mr Herman Makler through the often exasperating copyediting

Table of Contents

PART 1 FUNDAMENTALS.. 1
Chapter 1 Introduction ... 3

1.1 Opening Perspectives .. 3
1.2 Role of Modelling and Simulation.. 4
1.3 The Nature of a Model .. 6
1.4 An Example (full-service gas station)... 8
1.5 Is There a Downside to the Modelling and Simulation

Paradigm?.. 10
1.6 Monte Carlo Simulation .. 11
1.7 Simulators.. 13
1.8 Historical Overview .. 15
1.9 Exercises and Projects ... 17
1.10 References ... 18

Chapter 2 The Modelling and Simulation Process 21
2.1
2.2 Exploring the Foundations .. 23

2.2.1 The Observation Interval... 23
2.2.2 Entities and Their Interactions ..24
2.2.3 Constants and Parameters.. 28
2.2.4 Time and Other Variables ... 28
2.2.5 An Example – The Bouncing Ball 37

2.3 The Modelling and Simulation Process 40
2.3.1 The Project Description... 40
2.3.2 The Conceptual Model .. 42
2.3.3 The Simulation Model... 43
2.3.4 The Simulation Program.. 44
2.3.5

2.4
2.5 Quality Assurance ... 51
2.6 The Dynamic Model Landscape ... 54
2.7 Exercises and Projects ... 56
2.8 References ... 57

PART 2 DEDS Modelling and Simulation ...59
Chapter 3 DEDS Stochastic Behaviour and Data Modelling 61

3.1 The Stochastic Nature of DEDS ... 61
3.2 DEDS Modelling and Simulation Studies 64
3.3 Data Modeling... 65

Verification and Validation... 46

Some Reflections on Models .. 21

The Operational Phases ... 45

3.3.1 Defining Data Models using Collected Data....................... 66
3.3.2 Does the Collected Data Belong to a Homogeneous

Stochastic Process?.. 67
3.3.3 Fitting a Distribution to Data ...72
3.3.4 Empirical Distributions ... 81
3.3.5

3.4
3.4.1
3.4.2 Random Variate Generation.. 87

3.5 References ... 92
Chapter 4 A Conceptual Modelling Framework for DEDS 95

4.1 Need for a Conceptual Modelling Framework 95
4.2 Constituents of the Conceptual Modelling Framework 95

4.2.1 Overview ... 95
4.2.2 Entities and Model Structure ...96
4.2.3 Characterising the Entity Types100
4.2.4 Activity Constructs and Model Behaviour...........106
4.2.5 Inputs ...114
4.2.6 Outputs ...118
4.2.7 Data Modules ...119
4.2.8 Standard Modules and User-Defined Modules120
4.2.9 Intervention............... ... 121

4.3 Some Examples of Conceptual Model Development in the
ABCmod Framework .. 122

4.3.1 EXAMPLE 1 . ..122
4.3.2 EXAMPLE 2 . ..133
4.3.3 EXAMPLE 3 ... 135

4.4 Exercises and Projects ... 143
4.5 References ... 150

Chapter 5
5.1
5.2 Relationship between the World Views.................................... 152
5.3 Kojo’s Kitchen .. 153
5.4

5.4.1 Event Scheduling Simulation Models 161
5.4.2 Implementing Event Scheduling in Java165
5.4.3 Translating to an Event Scheduling Simulation Model173
5.4.4 Implementing Other Functionality185

5.5

5.5.1 Process-Oriented Simulation Models189
5.5.2 Overview of GPSS ..196

Table of Contents

Process-Oriented Simulation Model ... 189
Transforming an ABCmod Conceptual Model into a

DEDS Simulation Model Development151

Transforming an ABCmod Conceptual Model to an Event

Constructing a Simulation Model ... 151

Scheduling Simulation Model ... 161

Data Modelling with No Data ... 83
Simulating Random Behaviour ... 84

Random Number Generation... 84

xiv

5.5.3 Developing a GPSS Simulation Model from an

5.6 Exercises and Projects ... 212
5.7 References ... 213

Chapter 6 Experimentation and Output Analysis 215
6.1 Overview of the Issue.. 215
6.2 Bounded Horizon Studies.. 219

6.2.1 Point Estimates .. 220
6.2.2 Interval Estimation .. 221
6.2.3 Output Analysis for Kojo’s Kitchen Project 222

6.3 Steady-State Studies .. 225
6.3.1 Determining the Warm-up Period 226
6.3.2 Collection and Analysis of Results 230
6.3.3 Experimentation and Data Analysis for the

Port Project .. 234
6.4 Comparing Alternatives .. 237

6.4.1 Comparing Two Alternatives .. 238
6.4.2 Comparing More than Two Alternatives 242

6.5 Exercises and Projects ... 244
6.6 References ... 245

PART 3 CTDS Modelling and Simulation... 247
Chapter 7 Modelling of Continuous Time Dynamic Systems........... 249

7.1 Introduction ... 249
7.2 Some Examples of CTDS Conceptual Models 250

7.2.1 Simple Electrical Circuit ... 250
7.2.2 Automobile Suspension System.. 251
7.2.3 Fluid Level Control ... 253
7.2.4 Population Dynamics... 255

7.3 Safe Ejection Envelope: A Case Study 258
7.4 State Space Representation ... 266

7.4.1 The Canonical Form .. 266
7.4.2 The Transformation Process.. 268

7.5 References ... 272
Chapter 8 Simulation with CTDS Models ...275

8.1 Overview of the Numerical Solution Process 275
8.1.1 The Initial Value Problem ... 275
8.1.2 Existence Theorem for the IVP ... 276
8.1.3 What is the Numerical Solution to an IVP? 277
8.1.4 Comparison of Two Preliminary Methods........................ 279

8.2 Some Families of Solution Methods ... 282
8.2.1 The Runge-Kutta Family... 282
8.2.2

8.3 The Variable Step-Size Process .. 285

ABCmod Conceptual Model... 199

The Linear Multistep Family... 283.

Table of Contents xv

8.4 Circumstances Requiring Special Care..................................... 288
8.4.1 Stability.. 288
8.4.2 Stiffness ... 291
8.4.3 Discontinuity ... 294
8.4.4 Concluding Remarks ... 299

8.5 Options and Choices in CTDS Simulation Software................ 300
8.6 The Safe Ejection Envelope Project Re-Visited 301
8.7 Exercises and Projects ... 305
8.8 References ... 311

Chapter 9 Optimisation .. 313
9.1 Introduction ... 313
9.2 Problem Statement .. 314
9.3 Methods for Unconstrained Minimisation 318

9.3.1 The Nelder-Mead Simplex Method................................... 318
9.3.2 The Conjugate Gradient Method....................................... 321

9.4 An Application in Optimal Control... 327
9.5 Exercises and Projects ... 329
9.6 References ... 333

Annex 1 Probability Primer ... 335
A1.1 Motivation ... 335
A1.2 Random Experiments and Sample Spaces 335
A1.3 Discrete Sample Spaces .. 336

A1.3.1 Events .. 336
A1.3.2 Assigning Probabilities.. 337
A1.3.3 Conditional Probability and Independent Events.............. 339
A1.3.4 Random Variables ... 341
A1.3.5 Expected Value, Variance and Covariance 343
A1.3.6 Some Discrete Distribution Functions 346

A1.4 Continuous Sample Spaces ... 348
A1.4.1 Background.. 348
A1.4.2 Continuous Random Variables.. 349
A1.4.3 Expected Value and Variance ... 349
A1.4.4 Some Continuous Distribution Functions 350

A1.5 Some Theorems... 363
A1.6 The Sample Mean as an Estimator.. 364
A1.7 Interval Estimation .. 366
A1.8 Stochastic Processes .. 373
A1.9 References ... 376

Annex 2 GPSS Primer.. 377
A2.1 Introduction ... 377

A2.1.1 GPSS Transaction Flow .. 378
A2.1.2 Programmer’s view of Transaction Flow.......................... 384

A2.2 System Numeric Attributes ... 388

Table of Contentsxvi

A2.3 GPSS Standard Output .. 390
A2.4
A2.5
A2.6 GPSS Entities .. 395

A2.6.1 GPSS Entity Categories... 395
A2.6.2 Basic Category... 397
A2.6.3
A2.6.4 Data and Procedure Category.. 408
A2.6.5 Output Category .. 410

Annex 3 Open Desire Primer ... 413
A3.1 Introduction ... 413
A3.2 Programming Perspectives.. 413
A3.3 Solving the Differential Equations.. 415
A3.4 Organising Experiments.. 417

A3.4.1 Programming Constructs ... 419
A3.5 An Example... 423
A3.6 Generating Output ... 426
A3.7 The Example Re-visited .. 431
A3.8 The Example Extended ... 434
A3.9 Collecting and Displaying Non-Trajectory Data 439
A3.10 Editing and Execution ... 444
A3.11 Concluding Remarks ... 448
A3.12 References ... 448

GPSS Commands .. 391
Transaction Chains .. 393

Structural Category.. 401

Table of Contents xvii

Index... 449

PART 1
FUNDAMENTALS

discussions about our topic of interest; namely, modelling and simulation.
It consists of two chapters; that is, Chapter 1 and Chapter 2.

In Chapter 1 we briefly consider a variety of topics that can be
reasonably regarded as background material. A natural beginning is a brief
look at a spectrum of reasons why a modelling and simulation study might
be undertaken. Inasmuch as the notion of a model is fundamental to our

A generic ‘full-service’ gas station is used to illustrate some of the key
ideas. We then acknowledge that modelling and simulation projects can
fail and suggest a number of reasons why this might occur.

Monte Carlo simulation and simulators are two topics which fall within
a broadly interpreted perspective of modelling and simulation. In the
interests of completeness, both of these topics are briefly reviewed. We
conclude Chapter 1 with a brief look at the historical roots of the
modelling and simulation discipline.

Modelling and simulation is a multifaceted, goal-oriented activity and
each of the steps involved must be duly recognized and carefully carried
out. Chapter 2 is concerned with outlining these steps and providing an
appreciation for the modelling and simulation process. The discussion
begins with an examination of the essential features of a dynamic model
and with the abstraction process that is inherent in its construction. The
basic element in this abstraction process is the introduction of variables.

with the goals of the study. Variables fall into three categories: namely,
input variables, output variables, and state variables. The distinctive
features of each of these categories are outlined.

The modelling and simulation process gives rise to a number of artefacts
and these emerge in a natural way as the underlying process evolves.
These various artefacts are outlined together with their interrelationships.
The credibility of the results flowing from a modelling and simulation

facets of this important topic. In particular, we examine the central role of
verification and validation as it relates to the phases of the modelling and
simulation activity.

model and its behaviour properties which must necessarily be consistent

topic of quality assurance and we conclude Part 1 by exploring various

These provide the means for carrying out a meaningful dialogue about the

project is clearly of fundamental importance. This gives rise to the

discussions, some preliminary ideas that relate to this notion are presented.

Part 1 of this book establishes the foundations for our subsequent

Chapter 1 Introduction

1.1 Opening Perspectives

This book explores the use of modelling and simulation as a problem-
solving tool. We undertake this discussion within the framework of a
modelling and simulation project. This project framework embraces two
key notions; first there is the notion of a ‘system context’; that is, there is a
system that has been identified for investigation, and second, there is a
problem relating to the identified system that needs to be solved. Obtaining
an acceptable solution to this problem is the goal of the modelling and
simulation project. We use the term ‘system’ in its broadest possible sense;
it could, for example, include the notions of a process or a phenomenon.
Furthermore, physical existence of the system is not a prerequisite; the
system in question may simply be a concept, idea, or proposal. What is a
prerequisite, however, is the requirement that the system in question
exhibit ‘behaviour over time,’ in other words, that it be a dynamic system.

Systems, or more specifically dynamic systems, are one of the most
pervasive notions of our contemporary world. Broadly speaking, a
dynamic system is a collection of interacting entities that produces some
form of behaviour that can be observed over an interval of time. There are,
for example, physical systems such as transportation systems, power
generating systems, or manufacturing systems. On the other hand, in less
tangible form, we have healthcare systems, social systems, and economic
systems. Systems are inherently complex and tools such as modelling and
simulation are needed to provide the means for gaining insight into
features of their behaviour. Such insight may simply serve to provide the
intellectual satisfaction of deeper understanding or, on the other hand, may
be motivated by a variety of more practical and specific reasons such as
providing a basis for decisions relating to the control, management,
acquisition, or transformation of the system under investigation (the SUI).

The defining feature of the modelling and simulation approach is that it
is founded on a computer-based experimental investigation that utilises an
appropriate model for the SUI. The model is a representation or abstraction
of the system. The use of models (in particular, mathematical models) as a
basis for analysis and reasoning is well established in such disciplines as

4 1. Introduction

engineering and science. It is the emergence and widespread availability of
computing power that has made possible the new dimension of
experimentation with complex models and hence, the emergence of the
modelling and simulation discipline.

It must be emphasised, furthermore, that there is an intimate connection
between the model that is ‘appropriate’ for the study and the nature of the
problem that is to be solved. The important corollary here is that there
rarely exists a ‘universal’ model that will support all modelling and
simulation projects that have a common system context. This is especially
true when the system has some reasonable level of complexity. Consider,
for example, the difference in the nature of a model for an airliner, first in
the case where the model is intended for use in evaluating aerodynamic
properties versus the case where it is simply a revenue-generating object
within a business model. Identification of the most appropriate model for
the project is possibly the most challenging aspect of the modelling and
simulation approach to problem solving.

Although the word ‘modelling’ has a meaning that is reasonably
confined in its general usage, the same cannot be said for the word
‘simulation’. Nevertheless, the phrase ‘modelling and simulation’ does
have a generally accepted meaning and implies two distinct activities. The
modelling activity creates an object (i.e., a model) that is subsequently
used as a vehicle for experimentation. This experimentation with the
model is the simulation activity.

The word ‘simulation’ is frequently used alone in a variety of contexts.
For example, it is sometimes used as a noun to imply a specialised
computer program (as in, ‘A simulation has been developed for the
proposed system.’). It is also used frequently as an adjective (as in, ‘The
simulation results indicate that the risk of failure is minimal,’ or ‘Several
extensions have been introduced into the language to increase its
effectiveness for simulation programming’). These wide-ranging and
essentially inconsistent usages of the word ‘simulation’ can cause
regrettable confusion for neophytes to the discipline. As a rule, we avoid
such multiplicity of uses of this word but, as will become apparent, we do
use the word as an adjective in two specific contexts where the implication
is particularly suggestive and natural.

1.2 Role of Modelling and Simulation

There is a wide range of possible reasons for undertaking a modelling and
simulation study. Some of the most common are listed below (the order is
alphabetical and hence should not be interpreted as a reflection of
importance):

1.2 Role of Modelling and Simulation 5

1. Education and training
2. Engineering design
3. Evaluation of decision or action alternatives
4. Evaluation strategies for transformation or change
5. Forecasting
6. Performance evaluation
7. Prototyping and concept evaluation
8. Risk/safety assessment
9. Sensitivity analysis
10. Support for acquisition/procurement decisions

It was noted earlier that the goals of a simulation project have a major
impact on the nature of the model that evolves. However it’s also
important to observe that the goals themselves may be bounded by
constraints. These typically are a consequence of limitations on the level of
knowledge that is available about the SUI. The unavoidable reality is that
the available knowledge about the underlying dynamics of systems varies
considerably from system to system. There are systems whose dynamics
can be confidently characterised in considerable detail and, in contrast,
there are systems whose dynamics are known only in an extremely
tentative fashion. An integrated circuit developed for some
telecommunications application would fall into the first category whereas
the operation of the stock market would reasonably fall into the second.
This inherent range of knowledge level is sometimes reflected in the
terminology used to describe the associated models. For example, an
integrated circuit model might be referred to as a ‘deep’ model and a
model of the stock market would be a ‘shallow’ model. The goals of a
modelling and simulation project are necessarily restricted to being
relatively qualitative when only a shallow model is feasible. Quantitative
goals are feasible only for those situations where deep knowledge is
available. In other words, the available knowledge level significantly
influences the nature of the goals that can be realistically formulated for a
modelling and simulation study.

The centrality of the goals of a modelling and simulation project has
been recognised in terms of a notion called the ‘experimental frame’ (see
References [1.7] and [1.13]). This notion is rather broadly based and
implies a mechanism to ensure an appropriate compatibility among the
SUI, the model, and the project goals. This usually includes such
fundamental issues as the proper identification of the data the model must

environment in which the model functions, its parameters, and its
granularity.

deliver, identification and representation of pertinent features of the

6 1. Introduction

A model plays the role of a surrogate for the system it represents and its
purpose (at least from the perspective of this textbook) is to replace the
system in experimental studies. When the underlying system (i.e., SUI)
does not exist (e.g., it may merely be an idea, concept, or proposal) then
the model is the only option for experimentation. But even when the SUI
does exist there is a variety of reasons why experimentation directly with it
could be inappropriate. For example, such experimentation might be:

 Too costly (determining the performance benefit likely to be achieved
by upgrading the hardware at all the switch nodes of a large data
communications network)

 Too dangerous (exploring alternate strategies for controlling a nuclear
reactor)

 Too time consuming (determining the ecological impact of an extended
deer hunting season, implemented over several consecutive years, on
the excessive deer population in a particular geographical region)

 Too disruptive (evaluating the effectiveness of a proposed grid of one-
way streets within the downtown core of an urban area)

 Morally/ethically unacceptable (assessing the extent of radiation
dispersion following a particular catastrophic failure at some nuclear
generation facility)

 Irreversible (investigating the impact of a fiscal policy change on the
economy of a country)

Behavioural data is almost always easier to acquire from a model than

experimentation with a model. Consider, for example, the challenges
inherent in monitoring the force exerted on the blades of a rotating turbine
by escaping combustion gases. Furthermore, the fact that the platform for
the experimentation is a computer (or more correctly, a computer program)

generally only be approximated when experiments are carried out directly
with an existing system.

1.3 The Nature of a Model

A model is a specification for behaviour generation and the modelling
process is concerned with the development of this specification. It is often
suggested that the task is to ensure that the behaviour of the model is as
indistinguishable as possible from the behaviour of the SUI. This assertion
is only partially correct. A more appropriate statement of the task at hand
is to develop the specification so that it captures the behaviour properties

ensures reproducibility of results which is an essential requirement for

from the system itself and this is another important reason for favouring

establishing credibility of experimental investigations. Such reproducibility can

1.3 The Nature of a Model 7

at a level of granularity that is appropriate to the goals of the study. The
challenge is to capture all relevant detail and to avoid superfluous features.
(One might recall here the quotation from Albert Einstein, ‘Everything
should be made as simple as possible, but not simpler.’) For example,
consider a project concerned with evaluating strategies for improving the
operating efficiency of a fast-food restaurant. Within this context it would
likely be meaningless (and indeed, nonsensical) to incorporate into the
model information about the sequence in which a server prepares the hot
and cold drinks when both are included in a customer’s order.

The notion of ‘behaviour’ is clearly one that is fundamental to these
discussions and in particular, we have suggested that there is usually a
need to evaluate behaviour. But what does this mean and how is it done?
At this point we have to defer addressing these important questions until a
more detailed exploration of the features of models has been completed.

Modelling is a constructive activity and this raises the natural question
of whether the product (i.e., the model) is ‘good enough.’ This question
can be answered only if there is an identified context and as we show in
the discussions to follow, there are many facets to this key issue. One

other words, a key question is always whether the model is good enough
from the point of view of the project goals. The corollary of this assertion
is that it is not meaningful to undertake any modelling study without a
clear understanding of the purpose for which the model will be used.
Perhaps the most fundamental implication of the above discussion is that it
is never meaningful to undertake a study whose goal is simply ‘to develop
a model of ’

There is a variety of ways in which the specification of behaviour can be
formulated. Included here are: natural language, mathematical formalisms,
rule-based formalisms, symbolic/graphical descriptions, and combinations
of these. It is typical for several distinct formulations of the model (or
perhaps only portions of it) to evolve over the course of the study. These
alternatives are generally created in formats that are best suited to
capturing subtleties or providing clarification.

A particular format that plays a very special role is a specification
formulated as a computer program. The importance of such a specification
arises because that computer program provides the means for actually
carrying out the experiments that are central to the modelling and
simulation approach. This illustrates, furthermore, the important fact that
some realisations of the specification (which, after all, is the model) are
actually executable and produce the behaviour we seek to observe. This
legitimises the implications in our frequent use of the phrase ‘the model’s
behaviour.’

facet that is most certainly fundamental is the goal(s) of the project. In

8 1. Introduction

1.4 An Example (Full-Service Gas Station)

To illustrate some facets of the discussion above, we consider a modelling
and simulation project whose system context (SUI) is a ‘full-service’ gas
station with two islands and four service lanes (see Figure 1.1). A
significant portion of the customers at this station drive small trucks and
vans which typically have gas tank capacities that are larger than those of
most passenger vehicles. Often the drivers of passenger cars find
themselves queued behind these large-tank vehicles which introduce
substantially longer wait times when they arrive at the gas pumps. This can
cause aggravation and complaints. The station management is considering
restricting these large-tank vehicles to two designated lanes. The goal of
the modelling and simulation project could be to obtain performance data
that would assist in determining whether such a policy would improve the
flow of vehicles through the station.

Vehicles are obliged (via appropriate signage) to access the pumps from
the east side and after their respective gas purchases they exit on the west
side. Upon arrival, drivers always choose the shortest queue. In the case
where two or more queues have the same shortest length, a random choice
is made. An exception is when it is observed that a customer in one of the
‘shortest queues’ is in the payment phase of the transaction in which case
that queue is selected by the arriving driver.

FIGURE 1.1. Gas station project.

Depending on the time of day, one or two attendants are available to
serve the customers. The service activity has three phases. During the first,
the attendant determines the customer’s requirement and begins the
pumping of gas (the pumps have a preset delivery amount and
automatically shut off when the preset amount has been delivered). In

1.4 An Example (Full-Service Gas Station) 9

addition, any peripheral service such as cleaning of windshields and
checking oil levels are carried out during this first phase. Phase two is the
delivery phase during which the gas is pumped into the customer’s gas
tank. Phase three is the payment phase; the attendant accepts payment
either in the form of cash or credit card. The duration of phase two is
reasonably long and an attendant typically has sufficient time either to
begin serving a newly arrived customer or to return to handle the phase
three (payment) activity for a customer whose gas delivery is complete.
The protocol is to give priority to a payment function before serving a
newly arrived customer. It is standard practice for the payment function to
be carried out by the same attendant who initiated the transaction.

The above text can be regarded as an initial phase in the model building
process for this particular modelling and simulation project. It corresponds
to the notion of a project description which we examine more carefully in
Chapter 2. Notice, however, that much detail remains to be added; for
example, the specification of the arrival rate of vehicles, the proportion of
vehicles that fall into the small truck/van category, service times for each
of the three service phases, and so on (these correspond to data
requirements). Nor should it be assumed that it is entirely complete and
adequately comprehensive.

Refinements to this description are almost certain to be necessary; these
may simply provide clarification (what are the conditions that govern the
attendant’s options during phase two) or may introduce additional detail;
such as what happens when a pump becomes defective or, under what
conditions does an arriving customer ‘balk,’ that is, decide the queues are
too long and leave. Or, in fact, is balking even a relevant occurrence?
What about accommodating the possibility that drivers (or passengers)
may need to use the washroom facilities and thereby ‘hold’ the pump
position longer than is otherwise necessary? The merits of introducing
such refinements must always be weighed against their relevance in terms
of achieving the goals of the modelling and simulation project. (It may be
useful for the reader to dwell on other possible refinements.) In fact, some
refinement of the goals is most certainly necessary. (What exactly are the
performance data that would enable a meaningful decision to be made?)

It is also important to observe that the model’s features as outlined
above have an orientation that is specific to the stated goal of the project.
There is very little in the presentation that would allow a model formulated
from the given description to be useful in, for example, an environmental
assessment of the gas station’s operation or indeed in an analysis of its
financial viability.

10 1. Introduction

1.5 Is There a Downside to the Modelling and Simulation
Paradigm?

The implicit thrust of the presentation in this textbook is that of promoting
the strengths of the modelling and simulation paradigm as a problem-
solving methodology. However, one might reasonably wonder whether
there exist inherent dangers or pitfalls. And the simple answer is that these
do indeed exist! As with most tools (both technological and otherwise)
modelling and simulation must be used with a good measure of care and
wisdom. An appreciation for the limitations and dangers of any tool is a
fundamental prerequisite for its proper use. We examine this issue within
the modelling and simulation context somewhat indirectly by examining
some reasons why modelling and simulation projects can fail.

(a) Inappropriate Statement of Goals
No project can ever be successful unless its objectives are clearly
articulated and fully understood by all the stakeholders. This most
certainly applies to any modelling and simulation project. The goals
effectively drive all stages of the development process. Ambiguity in the
statement of goals can lead to much wasted effort or yield conclusions that
are unrelated to the expectations of the ‘client’ responsible for the
initiation of the project.

A second, but no less important goal-related issue relates to the
feasibility of achieving the stated goals. As suggested earlier, the project
goals have to be consistent with the realities of the depth of knowledge that
characterises the SUI. Any attempt to extract precise knowledge from a
shallow model will most certainly fail. There are other feasibility issues as
well. For example, the available level of resources may simply not be
adequate to achieve the goals. Here resources include time (to complete
the project), talent (skill set; see (d) below), and funding.

(b) Inappropriate Granularity of the Model
The granularity of the model refers to the level of detail with which it
attempts to replicate the SUI. The level of granularity is necessarily
bounded by the goals of the project and care must always be taken to
ensure that the correct level has been achieved. Excessive detail increases
complexity and this can lead to cost overruns and/or completion delays
that usually translate into project failure. Too little detail, on the other
hand, can mask the very effects that have substantial relevance to the
behaviour that is of critical interest. This is particularly serious because the
failure of the project only becomes apparent when undesired consequences
begin to flow from the implementation of incorrect decisions based on the
study.

1.6 Monte Carlo Simulation 11

(c) Ignoring Unexpected Behaviour
Although a validation process is recognised to be an essential stage in any
modelling and simulation project, its main thrust generally is to confirm
that expected behaviour does occur. On the other hand, testing for
unexpected behaviour is never possible. Nevertheless such behaviour can
occur and when it is observed there often is a tendency to dismiss it,
particularly when validation tests have provided satisfactory results.
Ignoring such counterintuitive, or unexpected observations can lay the
foundation for failure.

(d) Inappropriate Mix of Essential Skills
A modelling and simulation project of even modest size can have
substantial requirements in terms of both the range of skills and the effort
needed for its completion. A team environment is therefore common; team
members contribute complementary expertise to the intrinsically multi-
faceted requirements of the project. The range of skills that needs to be
represented among the team members can include: project management,
documentation, transforming domain knowledge into the format of a
credible dynamic model, development of data modules as identified in the
data requirements, experiment design, software development, and analysis
of results. The intensity of coverage of these various areas is very much
dependent on the specific nature of the project. Nevertheless, an
inappropriate mix of skills can seriously impede progress and can
ultimately result in project failure.

(e) Inadequate Flow of Information to the Client
The team that carries out a modelling and simulation project often does so
on behalf of a ‘client’ who is not a member of the team. In such cases, care
must be taken to ensure that the client is fully aware of how the project is
unfolding in order to avoid the occurrence of a ‘disconnect’ that results in
the delivery of a product that falls short of expectations. For example, a
minor misinterpretation of requirements, if left uncorrected, can have
consequences that escalate to the point of jeopardising the project’s
success.

1.6 Monte Carlo Simulation

References to Monte Carlo simulation are often encountered in the
modelling and simulation literature. This somewhat fanciful label refers to
a problem-solving methodology that is loosely related to, but is very
different from, the topic that we explore in this textbook. The term refers
to a family of techniques that are used to find solutions to numerical
problems. The distinctive feature of these techniques is that they proceed

12 1. Introduction

contain the solution of the underlying problem. The origins of the
approach can be traced back to Lord Rayleigh who used it to develop
approximate solutions to simple partial differential equations. The power
of the methodology was exploited by von Neumann and colleagues in
solving complex problems relating to their work in developing a nuclear
arsenal in the latter years of the Second World War. The Monte Carlo label
for the methodology is, in fact, attributed to this group.

Perhaps the simplest example of the method is its application to the
evaluation of the definite integral:

I =
b

a
f(x) dx (1.1)

for the special case where f(x) 0. The value of I is the area under f(x)
between x = a and x = b. Consider now a horizontal line drawn at y = K
such that f(x) K for a x b (see Figure 1.2). The rectangle R, enclosed
by x = a, x = b, y = 0, and y = K has the area K(b– a) and furthermore I
K(b – a). Suppose a sequence of points (xi,yi) is chosen at random within
the rectangle R such that all points within R are equally likely to be chosen
(e.g., by choosing from two uniform distributions oriented along the length
and width of R). It can then be easily appreciated that the ratio of the
number of points that fall either on the curve or under it (say, n) to the total
number of points chosen (say, N) is an approximation of the ratio of I to
the area of the rectangle R. In other words,

n/N I/[K(b – a)] (1.2)

or

I nK(b – a)/N (1.3)

In the procedure, a point (xi,yi) is included in the count n, if yi f(xi). The
accuracy of the approximation improves as N increases.

by constructing an artificial stochastic (probabilistic) system whose properties

The interesting feature in this example is that the original problem is
entirely deterministic and yet the introduction of probabilistic notions can
yield an approximation to its solution.

1.7 Simulators 13

y

x

f(x)

f(x’)

y’

x’

(x’, y’)

K

ba

FIGURE 1.2. Example of Monte Carlo simulation.

The class of problems that can be effectively investigated by Monte
Carlo simulation generally falls within the domain of numerical analysis.
The approach provides an alternate, and often very effective, solution
option for these problems. However, these problems do not fall within the
scope of the modelling and simulation methodology because they lack the
prerequisite of ‘behaviour,’ that is, an evolution over time. The reference
to ‘simulation’ in the label for the approach could be regarded as a
reflection of the dissimilarity between the solution mechanism and the
inherent nature of the problem.

1.7 Simulators

There is frequent reference in the modelling and simulation literature to the
notion of simulators. Most commonly the notion is a reference to a training
device or platform and it is from that perspective that we explore the topic
in the discussion that follows. Within the training context a simulator can
be viewed as a device that replicates those operational features of some
particular system that are deemed to be important for the training of
operators of that system. A characteristic feature of any simulator is the
incorporation of some physical parts of the system itself as a means of
enhancing the realism of the training environment, for example, an actual
control panel layout. Beginning with the development of flight simulators

14 1. Introduction

for training pilots (see Historical Overview which follows), the use of
simulators has spread into a wide range of domains; for example, there
exist power plant simulators (both nuclear and fossil), battlefield
simulators, air traffic control simulators, and (human) patient simulators.
An interesting presentation of contemporary applications of simulators in
the training of health science professionals can be found in the various
papers of the special journal issue of Reference [1.2].

The fundamental requirement of any simulator is the replication of
system behaviour within a physical environment that is as realistic as
possible from the perspective of an operator. Although the simulator
incorporates some physical features of the system, substantial components
of the system necessarily exist only in the form of models. In early
simulators these models were themselves physical in nature but with the
emergence of computing technology the modelled portions of the system
have increasingly exploited the modelling power of this technology.

The development of a simulator can be viewed as a modelling and
simulation project whose goal is to achieve an effective training
environment. This, in particular, implies that the device must operate in
realtime; that is, behaviour, as experienced by the operator, must evolve at
a rate that corresponds exactly to that of the real system. This introduces
additional important constraints on the models for those portions of the
system that are being emulated, such as synchronisation of ‘virtual’ time
within the model with ‘real’ (i.e., clock) time.

Simulators can also contribute in a variety of ways to enhancing the
educational experience of students especially in circumstances where
alternatives are precluded (e.g., by budgetary constraints) or alternately
when the devices being examined are either hypothetical or are no longer
available in the marketplace. The areas of computer organisation and
operating systems are particularly well suited to this application and
relevant discussions can be found in References [1.11] and [1.12].

Apart from their importance as training platforms and educational tools,
it is interesting to observe that simulators also have a lighter side in their
role within the entertainment industry. This is clearly apparent in the
various versions of vehicular-oriented games that populate the
entertainment arcades that have become commonplace in the shopping
malls throughout North America. Less comprehensive versions of these
games are available as well for home computers.

Simulators represent an application area of the modelling and simulation
paradigm. Inasmuch as our intent in this textbook is to avoid a focus on
any particular application area, the topic of simulators is not explicitly
addressed in the sequel apart from one exception. This is a brief
examination of their important role in the history of modelling and
simulation as discussed in the following section.

1.8 Historical Overview 15

1.8 Historical Overview

The birth of the modelling and simulation discipline can reasonably be
associated with the development of the Link Trainer by Edward Link in
the late 1920s. The Link Trainer is generally regarded as the first
successful device designed specifically for the training of pilots and
represents the beginning of an extensive array of training tools called flight
simulators. The initial Link Trainer clearly predates the arrival of the
modern computer and its behaviour-generating features were produced
instead using pneumatic/hydraulic technology. As might be expected,
flight simulators quickly embraced computer technology as it developed in
the 1950s. The sophistication of flight simulators has continuously
expanded and they have become indispensable platforms for training not
only aircraft pilots (both commercial and military) but also the members of
the Apollo Missions and, as well, the various space shuttle teams. In fact,
the technology and methodology demands made by the developers of
flight simulators have had a great impact upon the evolution of the
modelling and simulation discipline itself.

Although the development and evolution of simulators in general
represent the initial (and probably pivotal) application area for modelling
and simulation, it is the analogue computer that represents the initial
computing platform for the discipline. The commercial availability of
these computers began in the early 1950s. The principles upon which this
computing machine was based were originally formulated by Lord Kelvin
in the latter part of the nineteenth century. The electronic realisation of the
concept was developed by Vannevar Bush in the 1930s.

The analogue computer was primarily a tool for the solution of
differential equations. The solution of such equations was obtained by
direct manipulation of voltage signals using active elements called
operational amplifiers. The computing environment was highly interactive
and provided convenient graphical output. Although primarily electronic in
nature, the early machines nevertheless relied on electromechanical
devices to carry out basic nonlinear operations such as multiplication and
division. This often introduced serious constraints in terms of both solution
speed and accuracy.

Programming the analogue computer was a relatively complex and
highly error-prone process inasmuch as it involved physically
interconnecting the collection of processing elements that were required
for solving the problem at hand. The range of processing element types
was relatively narrow but did include one that directly carried out an
integration operation. It was this device that provided the basis for the
straightforward solution of differential equations. As a result the problems

16 1. Introduction

that were best suited for solution emerged from the realm of engineering
(e.g., aerospace flight dynamics and control system design).

By the mid-1960s the speed of general-purpose digital computers and
the software support for their use had improved to a point where it was
apparent that they were going to have important consequences upon the
modelling and simulation discipline. For example, their capabilities
showed promise in providing an alternate solution tool for the same
problem class that had previously fallen exclusively into the domain of the
analogue computer (thereby setting the stage for the demise of the ‘worthy
predecessor’). But perhaps even more significantly it was clear that
computing power was now becoming available to support a class of
modelling and simulation projects that had been beyond the capabilities of
the analogue computer, namely, the class of discrete event problems that
incorporate stochastic phenomena.

Over the next two decades of the 1970s and the 1980s a wide variety of
software support for modelling and simulation applications was developed.
This made possible the initiation of increasingly more ambitious projects
which, by and large, fall into two distinct realms: namely, the continuous
(typically engineering design problems formulated around differential
equation models) and the discrete event (typically process design problems
incorporating stochastic phenomenon and queueing models).

Some interesting perspectives on the development of the modelling and
simulation paradigm can be found in Nance and Sargent [1.4]. The
evolution of specialised programming languages for modelling and
simulation is an integral part of the history of the discipline and a
comprehensive examination of such developments within the discrete
event context (up to the year 1986) can be found in Nance [1.5, 1.6]. The
overview given by Bowden [1.1] and the survey results presented by

available software products in this domain. A comprehensive collection of
contemporary simulation software is listed and summarised in the
document [1.3] prepared by the Society for Modeling and Simulation

In spite of the relatively short time span of its history, the modelling and
simulation discipline has given birth to a remarkably large number of
professional organisations and associations that are committed to its
advancement (see: www.site.uottawa.ca/~oren/links-MS-AG.htm where a
comprehensive listing is maintained). These span a broad range of specific
areas of application which is not unexpected because the concepts
involved are not constrained by discipline boundaries.

The impact of decisions that are made on the basis of results that flow
from a modelling and simulation study are often very significant and far

work of Nikoukaran et al. [1.9] can provide
useful guidance in this regard.

Swain [1.10] provide some insight into the wide spectrum of commercially

International. Making correct choices from among the available alternatives
can be a challenging task and the

1.9 Exercises and Projects 17

reaching. In such circumstances it is critical that a high degree of
confidence can be placed on the credibility of the results and this, in turn,
depends on the expertise of the team that carries out the study. This has
given rise to an accreditation process for those individuals who wish to
participate in the discipline at a professional level. The accreditation option
has obvious benefits for both the providers and the consumers of
professional modelling and simulation services which are now widely
available in the marketplace. This accreditation process has been
developed under the auspices of the Modeling and Simulation Professional
Certification Commission (see: www.simprofessional.org).

An integral part of professionalism is ethical behaviour and this has
been addressed by Oren et al. [1.8] who have proposed a code of ethics for
modelling and simulation professionals (see: www.scs.org/ethics/). This
proposed code of ethics has already been adopted by numerous modelling
and simulation professional organisations.

1.9 Exercises and Projects

A new apartment building is being designed. It will have ten floors

be two underground parking levels. The developer needs to make a
decision about the elevator system that is to be installed in the
building. The choice has been reduced to two alternatives: either
two elevators each with a capacity of 15 or three smaller elevators
each with a capacity of 10. A modelling and simulation study is to
be undertaken to provide a basis for making the choice between
the two alternatives.

a) Develop a list of possible performance criteria that could be

(e.g., when does an elevator change its direction of motion,
which of the elevators responds to a particular call for service,
where does an idle elevator ‘park,’ etc.?)

c)
data. Develop a list of input data requirements that would
necessarily become an integral part of a study of the elevator
system, for example, arrival rates of tenants at each of the floors,
velocity of the elevators, and so on.

used to evaluate the relative merits of the two alternative

and will have six apartments on each floor. There will, in addition

designs.
b) Develop a list of behavioural rules that would be incorporated

in the formulation of the model of the elevator system

A model’s behaviour can ‘unfold’ only as a consequence of input

1.1.

18 1. Introduction

suburban area. Both of these roads have two traffic lanes. Because
of the development of the area, the volume of traffic flow in each direction
at this intersection has dramatically increased and so has the number of
accidents. A large proportion of the accidents involve vehicles
making a left turn which suggests that the ‘simple’ traffic lights at
the intersection are no longer adequate because they do not
provide a left-turn priority interval. The city’s traffic department is
evaluating alternatives for upgrading these traffic signals so that
such priority intervals are provided to assist left-turning drivers.
The need is especially urgent for traffic that is flowing in the north
and south directions. If the upgrade is implemented then a
particular parameter value that will need to be determined is the

department has decided to explore solution alternatives for the
problem by undertaking a modelling and simulation study.

a)

b)
of the dynamic model (e.g., how do the queues of cars begin
to empty when the light turns from red of green, how will
right-turning cars be handled, and so on).

c)
process for the model.

1.10 References

1.1. Bowden, R., (1998), The spectrum of simulation software, IEEE Solutions,
30(May): 44–54.

1.2. Endoscopy simulators for training and assessment skills, (2006), J. Cohen
(Ed.), Gastrointestinal Endoscopy Clinics of North America, 16(3): 389–
610 (see also: www.theclinics.com).

1.3. Modeling and Simulation Resource Directory, (2005), Modeling and
Simulation, 4(1) (see also www.scs.org).

1.4.
simulation, Operations Research, 50: 161–172.

1.5. Nance, R.E., (1993), A history of discrete event simulation programming
languages, ACM SIGPLAN Notices, 28(3):149–175.

1.6. Nance, R.E., (1995), Simulation programming languages: An abridged
history, in Proceedings of the 1995 Winter Simulation Conference,
Arlington, VA, pp. 1307–1313.

Nance, R.E. and Sargent, R.G., (2002), Perspectives on the evolution of

Develop a list of possible performance criteria that would be used
for evaluating the traffic flow consequences of the upgraded traffic
signals.

proportion of time allocated to the priority interval. The planning

Formulate the behaviour rules that would be needed in the construction

Develop a list of input data requirements of the behaviour-generating

1.2. Consider the intersection of two roads in a rapidly expanding

1.10 References 19

1.7. Ören, T.I. and Zeigler, B.P., (1979), Concepts for advanced simulation
methodologies, Simulation, 32: 69–82.

1.8. Ören, T.I, Elzas, M.S., Smit, I. and Birta, L.G., (2002), A code of
professional ethics for simulationists, in Proceedings of the 2002 Summer
Computer Simulation Conference, San Diego, pp. 434–435.

1.9. Nikoukaran, J., Hlupic, V., and Paul, R.J., (1999), A hierarchical
framework for evaluating simulation software, Simulation Practice and
Theory, 7: 219–231.

1.10. Swain, J.J., (2005), Seventh biennial survey of discrete event simulation
software tools, OR/MS Today, 32.

1.11. Wolffe, G., Yurcik, W., Osborne, H., and Holloday, M., (2002), Teaching
computer organization/architecture with limited resources using simulators,
in Proceedings of the 33rd Technical Symposium on Computer Science
Education, ACM Press, New York.

1.12. Yurcik, W., (2002), Computer architecture simulators are not as good as
the real thing — They are better!, ACM Journal of Educational Resources
in Computing, 1(4) (guest editorial, Special Issue on General Computer
Architecture Simulators).

1.13. Zeigler, B.P., Praehofer, H., and Kim, T.G., (2000), Theory of Modeling
and Simulation: Integrating Discrete Event and Continuous Complex
Dynamic Systems (2nd edn.), Academic Press, San Diego.

Chapter 2 The Modelling and Simulation Process

2.1 Some Reflections on Models

The use of models as a means of obtaining insight or understanding is by
no means novel. One could reasonably claim, for example, that the pivotal
studies in geometry carried out by Euclid were motivated by the desire to
construct models that would assist in better understanding important
aspects of his physical environment. It could also be observed that it is rare
indeed for the construction of even the most modest of structures to be
undertaken without some documented perspective (i.e., an architectural
plan or drawing) of the intended form. Such a document represents a
legitimate model for the structure and serves the important purpose of
providing guidance for its construction. Many definitions of a model can
be found in the literature. One that we feel is especially noteworthy was
suggested by Shannon [2.16]: ‘A model is a representation of an object,
system or idea in some form other than itself.’

Although outside the scope of our considerations, it is important to
recognise a particular and distinctive class of models called physical
models. These provide the basis for experimentation activity within an
environment that mimics the physical environment in which the problem
originates. An example here is the use of scale models of aircraft or ships
within a wind tunnel to evaluate aerodynamic properties; another is the use
of ‘crash-test dummies’ in the evaluation of automobile safety
characteristics. A noteworthy feature of physical models is that they can, at
least in principle, provide the means for direct acquisition of relevant
experimental data. However, the necessary instrumentation may be
exceedingly difficult to implement.

A fundamental dichotomy among models can be formulated on the basis
of the role of time; more specifically, we note that some models are
dynamic whereas others are static. A linear programming model for
establishing the best operating point for some enterprise under a prescribed
set of conditions is a static model because there is no notion of time
dependence embedded in such a model formulation. Likewise, the use of
tax software to establish the amount of income tax payable by an
individual to the government can be regarded as the process of developing

22 2. The Modelling and Simulation Process

a (static) model of one aspect of that individual’s financial affairs for the
particular taxation year in question. The essential extension in the case of a
dynamic model is the fact that it incorporates the notion of ‘evolution over
time’. The difference between static and dynamic models can be likened to
the difference between viewing a photograph and viewing a video clip.
Our considerations throughout this book are concerned exclusively with
dynamic models.

Another important attribute of any model is the collection of
assumptions that are incorporated into its formulation. These assumptions
usually relate to simplifications and their purpose is to provide a means for
managing the complexity of the model. Assumptions are invariably present
but often they are not explicitly acknowledged and this can have very
serious consequences. The assumptions embedded in a model place
boundaries around its domain of applicability and hence upon its relevance
not only to the project for which it is being developed but also to any other
project for which its reuse is being considered.

Making the most appropriate choices from among possible assumptions
can be one of the most difficult aspects of model development. The
underlying issue here is identifying the correct balance between
complexity and credibility where credibility must always be interpreted in
terms of the goals of the project. It’s worth observing that an extreme, but
not unreasonable, view in this regard is that the development of any model
is simply a matter of making the correct selection of assumptions from
among the available options (often a collection of substantial size).

The assumptions embedded in a model are rarely transparent. It is
therefore of paramount importance to ensure, via the documentation for the
project, that all users of the model are cognisant of its limitations as
reflected in the assumptions that underlie its development.

As might be expected, the inherent restricted applicability of any
particular model as suggested above has direct and significant
consequences upon the simulation activity. The implication is simply that
restrictions necessarily emerge upon the scope of the experiments that can
be meaningfully carried out with the model. This is not to suggest that
certain experiments are impossible to carry out but rather that the value of
the results that are generated is questionable. The phenomenon at play here
parallels the extrapolation of a linear approximation of a complex function
beyond its region of validity. The need to incorporate in simulation
software environments a means for ensuring that experimentation remains
within the model’s range of credibility has been observed. Realisation of
this desirable objective, however, has proved to be elusive.

2.2 Exploring the Foundations 23

2.2 Exploring the Foundations

The discussion in this section provides some essential background for the
development of the modelling and simulation process that is explored in
Section 2.3.

2.2.1 The Observation Interval

In Chapter 1 we indicated that a modelling and simulation project has two
main constituents. The most fundamental is the underlying ‘system
context’, namely, the dynamic system whose behaviour is to be
investigated (i.e., the SUI or system under investigation). The second
essential constituent is the goals for the project which generally correspond
to means for obtaining the solution to a problem that has been formulated
around the SUI. A subordinate, but nonetheless important, third constituent
is the observation interval which is the interval of time over which the
behaviour of the SUI is of interest. Often the specification of this interval,
which we denote IO, is clearly apparent in the statement of the project
goals. There are, however, many important circumstances where this does
not occur simply because of the nature of the output data requirements.
Nevertheless it is essential that information about the observation interval
be properly documented in the project description.

The starting point of this interval (its left boundary) almost always has
an explicitly specified value. The endpoint (the right boundary) may
likewise be explicitly specified, but it is not uncommon for the right
boundary to be only implicitly specified. The case where a service facility
(e.g., a grocery store) closes at a prescribed time (say 9:00 PM) provides an
example of an explicitly specified right boundary. Similarly a study of the
morning peak-period traffic in an urban area may be required, by
definition, to terminate at 10:00 AM. Consider, on the other hand a study of
a manufacturing facility that ends when 5000 widgets have been produced.
Here the right-hand boundary of the observation interval is known only
implicitly. Likewise consider a study of the performance of a dragster that
necessarily ends when the vehicle crosses the finish line of the racing
track. In these examples the right boundary is implicitly determined by
conditions defined on the state variables of the model; that is, it is not
known when the experiment begins.

Another case of implicit determination occurs when the right-hand
boundary is dependent on some integrity condition on the data that is being
generated by the model’s execution. The most typical such situation occurs
when there is a need to wait for the dissipation of undesired transient
effects. Data collection cannot begin until this occurs. As a result, what

24 2. The Modelling and Simulation Process

might be called the ‘data collection interval’ has an uncertain beginning.
The situation is further complicated by the fact that the duration of the data
collection interval (once it begins) is likewise uncertain because of the
difficulty in predicting when sufficient data of suitable ‘quality’ have been
accumulated. Both these effects contribute to an uncertain right boundary
for IO. For example, consider a requirement for the steady-state average
throughput for a communications network model following the upgrade of
several key nodes with faster technology. The initial transient period
following the upgrade needs to be excluded from the acquired data because
of the distortion which the transient data would introduce. These are
important issues that relate to the design of simulation experiments and
they are examined in detail in Chapter 6.

Nevertheless a basic point here is simply that only portions of the data
that are available over the course of the observation interval may have
relevance to the project goals. Consider, for example, a requirement for the
final velocity achieved by a dragster when it crosses the finish line. The
velocity values prior to the final value are not of any particular
significance. The point illustrated here is that the observation interval and
data collection interval are not necessarily the same. It is not uncommon
for IO to be substantially larger than the data collection interval.

Figure 2.1 illustrates some of the various possibilities relating to the
observation interval that have been discussed above.

Start Time

(explicit)

End Time

(Explicit or implicit)

Grocery Store: 9:00 am 9:00 pm (explicit)

Traffic Study: 7:00 am 10 :00 am (explicit)

Widget Manufacturing: t=0 5000 widgets

 completed (implicit)

Dragster: t=0 Cross finish line (implicit)

Observation Interval

Communications Network: t=0 Accumulation of adequate data

 with required integrity (implicit)

FIGURE 2.1. The observation interval.

2.2.2 Entities and Their Interactions

We have emphasised that a model is a specification of dynamic behaviour.
This is a very general assertion and certainly provides no particular insight
into the model building process itself. A useful beginning is an
examination of some components that can be used as building blocks for

2.2 Exploring the Foundations 25

the specification that we seek to develop. It is a dialogue about these
components that begins the synthesis of a model.

Within the modelling and simulation context, dynamic behaviour is
described in terms of the interactions (over time) among some collection of
entities that populates the space that the SUI embraces. The feature about
these interactions that is of particular interest is the fact that they produce
change. The entities in question typically fall into two broad categories,
one endogenous (intrinsic to the SUI itself) and the other exogenous.

With respect to the latter, it needs to be recognised that the SUI, like all
systems, is a piece of a larger ‘universe’; in other words, it functions
within an environment. However, not every aspect of this environment has
an impact upon the behaviour that is of interest. Those aspects that do have
an influence need to be identified and these become the exogenous entities.
Examples here are the ships that arrive at a maritime port within the
context of a port model developed to evaluate strategies for improving the
port’s operating efficiency or alternately, the features of a roadway
(curves, bumps) within the context of an automobile model being used to
evaluate high-speed handling and stability properties. Note that any
particular ship that arrives at the port usually exists as an integral part of
the model only over some portion of the observation interval. When the
service which it seeks has been provided the ship moves outside the realm
of the model’s behaviour.

More generally (and without regard to category) the entities within the
specification fall into classes; for example, sets of customers, messages,
orders, machines, vehicles, manufactured widgets, shipments, predators,
bacteria, pollutants, forces, and so on. Interaction among entities can occur
in many ways. Frequently this interaction occurs because the entities
compete for some set of limited resources (a type of entity) such as servers
(in banks, gas stations, restaurants, call-centres), transport services (cranes,
trucks, tugboats), or health services (ambulances, operating rooms,
doctors/nurses). This competition can give rise to yet another class of
entity (called queues) in which some entities are obliged to wait for their
respective turns to access the resources (sometimes there are priorities that
need to be accommodated). On the other hand, entities may exert influence
upon other entities in a manner that alters such things as acceleration,
direction of motion, energy loss, and so on. Some examples of this breadth
of possible entity types are provided in Table 2.1.

26 2. The Modelling and Simulation Process

TABLE 2.1. Examples of entities.

Special Entities System Under
Investigation
(SUI)

General Entities Resource Entities Queue Entities

Gas station Cars
Trucks

Pumps
Attendants

Queue of cars at each pump

Widget
manufacturing

Parts
Broken
machines

Machines
Repair technicians

List of component parts
List of broken machines

Restaurant Customers Tables
Servers
Kitchen
Cooks

Queue of customers waiting
for tables
Customers at tables waiting
for service

Hospital
emergency room

Patients
Ambulances

Doctors
Nurses
Examination rooms

Waiting room queue
Critical patient queue
List of patients in
examination rooms waiting
for doctor

Ecological
system

Predator
population
Prey population

We have indicated above that the specification of dynamic behaviour
that we seek to develop begins with a description of the change-producing
interactions among some set of entities within the SUI. The nature of these
interactions is unrestricted and this ‘inclusiveness’ is one of the
outstanding features of the modelling and simulation approach to problem
solving. In fact, because of the complexity of the interactions that often
need to be accommodated, alternate solution procedures (e.g., analytic) are
usually infeasible.

Some entities within the formulation are distinctive inasmuch as they
give rise to data requirements. Although these naturally enter into the
dialogue about the interactions that need to be identified in model
formulation, this occurs only at a relatively generic level. This abstract
view is adequate up to a point, but actual behaviour generation cannot take
place until the data requirements are accommodated. In effect the data
serve to ‘energise’ the overall model specification.

Such data requirements can exist in a variety of forms. Consider, for
example, a customer entity. Typically the data requirement here is the
characterisation of the customer arrival rate or equivalently, the time
between successive arrivals. This commonly is a random phenomenon and
consequently gives rise to the need to identify an appropriate probability
distribution function. A similar example can be found in a manufacturing
process where a machine entity is subject to failure. The characterisation
of such failure is typically in terms of rate of occurrence and repair

2.2 Exploring the Foundations 27

duration which are again random phenomena and hence require
appropriate specification in terms of statistical distributions. Or,
alternately, consider the characterisation of the flow through an entity
called ‘pipe’ in a chemical process. A data requirement here could be a
single scalar value representing the coefficient of friction associated with
the flow. As yet another alternative, consider the two-dimensional array of
intercity flight times that would likely be necessary in a study of an
airline’s operational efficiency. In this case this data object would probably
be shared by all ‘flight‘ entities. These examples demonstrate that data
requirements can be associated with both exogenous entities (e.g., the
customers) and endogenous entities (e.g., the machines).

The detailed specifications for each such data requirement can be
viewed as a data model. Each of these plays the role of a specialised
submodel that has localised relevance. Their elaboration can be separately
undertaken and even temporarily deferred without compromising the main
thread of model development. In this sense, their development can be
associated with the software engineering notion of ‘encapsulation’. Each
data model is an accessory to the bigger picture of characterising the
relevant interactions that exist within the SUI.

The correct formulation of a data model can be a challenging task and
its correctness is essential to the quality of the results flowing from the
modelling and simulation project. The task is of particular relevance in the
context of DEDS (discrete event dynamic system) models because of the
central role that is played by the random phenomena that are always
present in such models. We explore the topic in Chapter 3.

To illustrate the various notions introduced above, let’s return to the gas
station example introduced in Chapter 1. The endogenous entities include
the attendants and the queue in front of each of the four pumps. There is
only one exogenous entity, namely, the vehicles that enter the gas station.
Notice that a customer entity is redundant because its role would be
indistinguishable from the vehicle entity. Notice also that the pumps
themselves are likely of no consequence. They would have to be included
among the entities only if it were deemed that the possibility of failure was
sufficiently high to have relevance to the credibility of the model. Data
models would have to be developed to deal with the characterisation of the
arrival rate of the vehicles and their separation into vehicle types and also
the service times for each of the three phases of the service function.

The vehicles that enter (and subsequently leave) the gas station, as
discussed above, provide an example of a distinctive and important feature
of most models that emerge from the DEDS domain. Associated with
almost all such models is at least one set of exogenous entities whose
members have a transient existence within the scope of the model’s
behaviour, for example, the vehicles in the gas station model or the ships

28 2. The Modelling and Simulation Process

entering the port in an earlier example. Such entities introduce a variety of
specialised requirements upon the way the model is formulated as will become
apparent in the discussions that follow. We refer to any such set of
exogenous entities which flow through the model as an ‘input entity
stream’.

2.2.3 Constants and Parameters

particular, constants and parameters both serve simply as names for the
values of features or properties within a model which remain invariant
over the course of any particular experiment with the model; for example,
g could represent the force of gravity or NCkOut could represent the
number of checkout counters in a supermarket. In the case of a constant,
the assigned value remains invariant over all experiments associated with
the modelling and simulation project. On the other hand, in the case of a
parameter, there normally is an intent (usually embedded in the project
goals) to explore the effect upon behaviour of a range of different values
for the parameter, for example, the parameter Cf that represents the friction
coefficient associated with a tire rolling over a road surface.

Often a parameter serves to characterise some ‘size attribute’ of the SUI,
such as the number of berths at a seaport or the number of (identical)
generators at a hydroelectric power generating station. In many cases such
a size parameter might be associated with a facet of a design goal and the
determination of the most appropriate value for it may be one of the
reasons for the modelling and simulation project. Consider, for example, a
parameter denoted C

project could be to determine a ‘best’ value for LC that is consistent with
specified requirements on the performance of the elevator system.

2.2.4 Time and Other Variables

The endpoint of the modelling process is a computer program that
embraces the specification of the dynamic behaviour that we seek to
study, that is, the simulation program. A prerequisite for the correct
development of any computer program is a high degree of precision in the
statement of the requirements that the program must meet. Generally
speaking, this corresponds to raising the level of abstraction of the
presentation of these requirements. A variety of means is available but
perhaps the most fundamental is the incorporation of carefully defined

by L

The constants and parameters of a model have much in common. In

 which represents the passenger load capacity of
each elevator in a proposed elevator system for an office tower. A goal of the

2.2 Exploring the Foundations 29

variables that enable the formulation of the requirements in a precise and
unambiguous way.

Within the modelling and simulation context, the particular purpose of
these variables is to facilitate the formulation of those facets of the SUI’s
behaviour that are relevant to the goals of the project. In fact, meaningful
dialogue about most aspects of a modelling and simulation project is

behaviour that is of interest but, as well, the goals of the project.
Variables provide an abstraction for features of the model whose values

typically change as the model evolves over the course of the observation
interval. Variables fall into a number of broad categories and each of these

2.2.4.1 Time

Because our interest is exclusively with dynamic systems, there is one
variable that is common to all models that we consider, namely, time
(which we generally denote with the symbol t). Apart from its
pervasiveness, time is a special variable for two additional reasons. First of
all, it is a ‘primitive’ variable in the sense that its value is never dependent
upon any other variable. Secondly, and in direct contrast, most other
variables are dependent on time; that is, they are functions of time.

It needs to be emphasised here that the variable t represents ‘virtual
time’ as it evolves within the model. This (except for certain special cases)
has no relation to ‘wall clock’ (i.e., real) time

2.2.4.2 Time Variables

As indicated above many of the variables within the context of our
discussion of dynamic models are functions of time; that is, they are time-
dependent variables or simply time variables. If V is designated as a time
variable then this is usually made explicit by writing V (t) rather than
simply V . Within the context of our modelling and simulation
discussions, time variables are frequently regarded as representing ‘time
trajectories’. Standard mathematical convention associates with V (t) a
statement about the set of values of t for which there is a defined value for
V . This set is called the domain of V and we denote it [V]. In our case,
the most comprehensive domain for any time variable is the observation
interval IO, and often the time variables that we discuss have this domain.

However, because of the underlying nature of the computational
process, a time variable V (t), which is the outgrowth of behaviour
generation, will have defined values at only a finite subset of IO; that is, the
domain set [V] has finite size. The underlying implication here is that

is examined in the discussion below. Time itself is a very special

means for elaborating, clarifying, and abstracting not only the dynamic

variable that is common to all dynamic models.

severely hampered without the introduction of variables. They provide the

30 2. The Modelling and Simulation Process

from the perspective of observed behaviour, the value of a time variable
V (t) can be associated with a finite set of ordered pairs; that is,

[V] = {(t̂ , v̂): t̂ [V] } (2.1)

where v̂ = V (t̂). We call the set [V] the trajectory set for V . The
reader is cautioned not to attempt an incorrect generalisation of the above.
The assertion is simply that time variables reflected in the observed
behaviour of a dynamic model have a finite domain set or can be
represented with a finite domain set. We do not claim that all time
variables have a finite domain set.

2.2.4.3 Input, State, and Output Variables

There are three important categories of variables normally associated with
any model. We examine each in turn.

Input Variables: Earlier we introduced the notion of exogenous entities
being associated with the model to reflect the impact of the SUI’s
environment upon its behaviour. This environmental impact can be viewed
as the input to the model. The representation of the input is provided by
some suitably defined set of input variables. It follows therefore that a
model’s behaviour cannot be generated without a specification for the
values of its input variables.

It is important to appreciate that there can be a relatively subtle but
nevertheless fundamental difference between the generic notion of an
‘input’ to a model and the variable chosen to characterise it. Consider, for
example, an input variable fa = fa(t), which represents the force of air
friction upon the motion of a high-performance aircraft. The magnitude of
this force necessarily depends on the aircraft’s altitude because the origin
of the force is air density, which in turn varies with altitude. This example
illustrates that it is possible for an aspect of the model’s behaviour (in this
case, the aircraft’s altitude) to directly influence the value of an input
variable (the air friction). Such a mutual interrelationship is, in fact, not
uncommon. On the other hand, we need to recognise that in this example
the input (i.e., environmental influence itself) is the force that air density
exerts on any object that moves through it. This property is fundamental to
the environment in which the aircraft is operating and certainly cannot be
altered by the aircraft’s behaviour. The fact that its value varies with
altitude (as reflected in the value acquired by fa(t)) is an essential aspect of
this fundamental physical property.

The notion of an ‘input entity stream’ was introduced earlier. Such a
collection of exogenous entities flowing into a DEDS model most certainly
corresponds to an input and consequently needs to have a characterisation
in terms of an input variable. The two key features of any input entity
stream are the time of the first arrival and the interarrival times, or more

2.2 Exploring the Foundations 31

simply, the arrival times of the entities within the stream. The formulation
of a suitable input variable that captures these features is explored in
Chapter 4.

State Variables: The set of state variables for a dynamic model is very
special for three reasons. One of these relates to a ‘constructive property’
which is intrinsic to the state variables. This property simply means that
the model’s dynamic behaviour can be entirely defined in terms of the
state variables together with (not surprisingly) the model’s input variables
and parameters. We note also that the ‘state of the model’ at time t is a
reference to the value of its state variables at time t.

The state variables for a model are not unique; that is, many alternate
sets of variables that have this constructive property can usually be
identified. Strictly speaking, the selection of any set of state variables
includes the condition that it is a minimal set in the sense that no variable
can be removed without destroying the constructive property. In our
discussions we are generally very flexible with this requirement and this
may result in acceptance of a degree of redundancy among the variables
designated as the set of state variables. In such situations, it is possible to
infer the values of one or more variables within this set from the values of
other variables. Achievement of enhanced clarity is usually the motivation
for allowing such redundancy.

A second reason why the set of state variables of a dynamic model is
very special is that this collection of variables completely captures the
effects of ‘past’ behaviour insofar as it affects future behaviour (both
observed and unobserved, that is, from the perspective of model output). A
characterisation of this important property can be developed in the
following way: suppose X(t), U(t), and P,1 respectively, denote the state
variables, the input variables, and the parameters of a model , whose
behaviour is to be observed over the observation interval IO = [TA, TB]. Let
T be a point in time between TA and TB and suppose the behaviour of the
model has evolved up to t = T and is stopped. Restarting the model with
knowledge of only X(T), U(t), for t T, and P would produce the same
observed behaviour over [T, TB] as if the behaviour generating process had

t T. In fact this property, which we call Property ,
has very special relevance because it provides the basis for identifying a

X(t) qualifies as a set of state variables for a model if and only if it has
 Property

1 A collection of variables organized as a linear array is called a vector variable.

We use bold font to indicate vector variables. The number of variables
represented is called the dimension of the vector. Sometimes the actual size of
the vector is not germane to the discussion and is omitted.

set of state variables; in particular, the set of variables represented by the vector

not been stopped at =

.

32 2. The Modelling and Simulation Process

In the highly structured models that typically arise from the realm of
continuous-time dynamic systems (CTDS), the state variables can usually
be readily identified. In general however, identification of the state
variables is not always an easy task. It is therefore useful to observe here
that Property , provides a useful means for testing whether a particular set
of variables qualifies as a set of state variables. The fact that values must
be specified for all state variables before a unique experiment with the
model can be initiated provides a key identification criterion. Viewed from
an inverse perspective, if an experiment can be duplicated without any
need to record the initial value of some variable, then that variable is not a
state variable.

Typically there is some collection of entities that flows within the scope
of the behaviour of those models that have their origin within the DEDS
domain. Consider, in particular, the ‘transient entities’ associated with an
input entity stream. Linked to these entities are attributes and some of
these condition the way in which interaction with other components of the
model takes place. At any point in time both the existence of these flowing
entities as well as their attribute values must be captured within the state
variables of the model in order that the requirements of Property be duly
respected. Particular care must therefore be taken in identifying the
model’s state variables in these situations.

Note also that these transient entities typically contribute to data that are
relevant to output requirements, and hence to observed behaviour.
Assurance of the integrity of this particular category of data is clearly
essential and this task is usually reflected in the formulation of state
variables for the model. More specifically, this task must be duly
recognised when any candidate set of state variables is assessed with
respect to the requirements of Property .

Our discussion here of the essential features of state variables has been
carried out with the tacit assumption that state variables are simply time
functions. In many circumstances this is indeed the case. However, as
becomes apparent in the discussions of Chapter 3, the requirements of
Property can give rise to the need to formulate state variables as more
complex data structures, for example, lists whose entries are themselves
lists.

The third reason why the set of state variables of a dynamic model is
special relates to the output variables of the model and we defer the
examination of that relationship to the discussion of output variables that
follows.

Output Variables: The requirements that are embedded within the
project goals give rise to the model’s output variables. The output
variables of a model typically reflect those features of the SUI’s behaviour
that originally motivated the modelling and simulation project. Because of

2.2 Exploring the Foundations 33

this, it is not unreasonable to even regard a model as simply an outgrowth
of its output variables.

In effect therefore, an output variable serves as a conduit for transferring
information about the model’s behaviour that is of interest from the
perspective of the project goals. The output variable Y could, for example,
represent the velocity of a missile over the course of its trajectory from the
moment of firing to the moment of impact with its target or Y might
represent the number of messages waiting to be processed at a node of a
communications network viewed over the duration of the observation
interval.

Output variables fall into various categories that have relevance at
different stages of the discussion. The initial separation is into two groups
called point-set output variables (PSOVs) and derived scalar output
variables (DSOVs), respectively. PSOVs, in turn, can be separated into
two subcategories called time variables and sample variables. An output
variable Y that is a time variable is, in fact, simply a function of time; that
is, Y = Y(t). The need to recognise output variables of this type should not
be surprising inasmuch as any dynamic model evolves over time and
consequently it is reasonable to expect behaviours of interest that are
functions of time. Any output variable that is a time variable is always
expressible in terms of the model’s state variables. This represents the
third reason why the state variables of a model are special.

An important issue that needs to be examined relates to the manner in
which the values of a time variable are recorded. In this regard we make
the simple assumption that these are recorded as they become available (at
least from the conceptual perspective of our present discussion). We refer
to this assumption in the sequel as Assumption R. It is important because it
eliminates the need for concern about the data recovery issue that is the
focus of Property . It is interesting nevertheless to observe that
Assumption R imposes no particular constraint because there really is no
other option available except to record relevant data as they become
available over the course of the behaviour-generating process.

that Y(t) is an output variable. As was pointed out earlier, because Y
is a time variable, an essential aspect of its specification is its domain set

[Y]. Furthermore, the ‘value of Y’ can be regarded as a set of ordered
pairs given by the trajectory set:

[Y] = {(t̂ , ŷ): t̂ [Y] }, (2.2)

where ŷ = Y(t̂). The behaviour-generating process ensures that as the
time variable t traverses the observation interval the successive pairs
(t̂ , ŷ) are generated. The consequence of Assumption R is that these pairs
are immediately deposited into [Y].

,By way of illustrating the implications of Assumption R, let s suppose

34 2. The Modelling and Simulation Process

The second subcategory of PSOVs is called sample variables. These are

conceptual modelling framework for such models that includes the notion

which are inherited by each instance of the class. A sample variable
corresponds to such an attribute, that is, to an attribute of a consumer entity
class. The entity instances that flow within the model typically leave a
‘data trail’ that is comprised of the acquired values for one or more
designated attributes. The value of a sample variable is associated with
those data.

Consider, for example, the messages that flow through a communica-
tions network. Suppose mk is a particular message (an instance of a class
that might be called Message). At each of the switching nodes through
which mk passes, it generally encounters a delay and the total delay dk,
encountered by mk during its existence within the realm of the model
would likely be stored in an attribute for this entity class, possibly called
D. We regard the ‘value of D’ at the end of the experiment to be the
collection of values {d1, d2, . . . , dN} (where N is the total number of
messages passing through the network over the course of the observation
interval). The attribute D is an example of a sample variable and its value
is a sample set which we denote [D]; that is,

[D] = {d1, d2, . . . , dN}.

In general, then, a sample set is a set of data values that are ‘deposited’
by a particular collection of entity instances flowing in a DEDS model.
Each such deposited value is the value of a specific attribute (the sample
variable) that is common to each instance of the class.

We need to acknowledge here an inherent ambiguity in our presentation
of a sample variable. Although we have referred to its ‘value’ as a
collection of values (as contained in a sample set) it is, in general, a
random variable and the sample set is simply a collection of samples
(observations) of that random variable.2 The specific observations
contained in a sample set [] are rarely of interest. Generally they serve
only as a means for acquiring information for determining the parameters of the
probability distribution of the sample variable in question. This small
anomaly in terminology provides the benefit of permitting a parallel
treatment of trajectory sets and sample sets in our discussions. However, in
some circumstances, this irregularity is relevant and needs to be
recognised.

2 In the terminology of stochastic processes (see Section A1.8 of Annex 1) a

sample set can be viewed as an observation of a stochastic process.

restricted to the family of DEDS models. In Chapter 4 we introduce a

are instances of a class and the class has an assigned collection of attributes
of consumer entities flowing within (and often, through) the model. These entities

2.2 Exploring the Foundations 35

The anomaly in question is readily apparent in our communications
example. The sample variable D is, in fact, a random variable that
represents the waiting time of messages. The specific observations of D as
contained in the sample set [D] are rarely of interest. Generally they
serve only as a means for acquiring information needed for the estimation
of probability distribution parameters relating to D. It is these parameters
that are typically relevant to resolving the project goals.

It is not always the case that the values in an output set (i.e., a trajectory
set [] or a sample set []) are of direct relevance to the resolution of the
project goals. Often it is some feature of the data in such an output set that
is of primary interest. This gives rise to another category of output variable
that we call a derived scalar output variable (DSOV) that is derived from
the data in an output set (either [] or []). For example we could have ya

= AVG([]) or ymx = MAX([]) where AVG and MAX are set operators
that yield the average and maximum values, respectively, of the data
within the referenced set. Many such operators can be identified, for
example, MIN, NUMBER, AREA, and so on. Notice that the values of
DSOVs such as ya and ymx may be established either by a postprocessing
step at the end of a simulation experiment or possibly concurrently with
the execution of the simulation experiment.

DSOVs play an especially significant role in modelling and simulation
projects in the discrete event dynamic system domain. In that context they
are often referred to as performance measures and they are always random
variables. This, in particular, means that a specific trajectory set or a
sample set has no particular significance except to the extent that it serves
to help determine the properties of the random phenomenon that underlies
the behaviour that is being observed. It is those parameters that are usually
important to the project goals. This important topic is explored in detail in
the discussions of Chapters 3 and 6.

Our perspective is that data are deposited into a sample set as they
become available. This perspective is consistent with Assumption R and
also parallels the manner in which time variable data are accumulated. The
value of the DSOV that is linked to a particular sample set can be obtained
as a separate step at the completion of the model execution or concurrently
during the model’s execution.

Various DSOVs can be associated any particular sample set. For
example, in our communications network there may be a requirement for
the value of the scalar variable Ad which represents the average delay taken
over all the messages processed over the course of the observation interval.
More specifically:

Ad = AVG([D]) = [
N

k 1

dk] / N . (2.3)

36 2. The Modelling and Simulation Process

Or consider the scalar variable maxd that represents the maximum delay
encountered by the set of messages mk.,k = 1, 2, . . . , N. Then:

maxd = MAX([D]) , (2.4)

where MAX is an operator that provides the largest value contained in a
set of numerical values. Clearly the both scalar variables Ad and maxd are
derived from the same sample set. Note also that both Ad and maxd are in

We conclude this section by including Figure 2.2 that illustrates how the
parameters and the various types of variables interact to generate
behaviour and how the observation of behaviour is provided via the output
variables of the model.

Parameters

State Variables

F()

Output

Variables

and Values

Input

Variables

Behaviour

Generation

Rules

Behaviour

Observation

Model M

Inputs

FIGURE 2.2. Interaction among the various types of variables.

fact random variables and any experiment with the model simply yields
a single observation of those random variables.

2.2 Exploring the Foundations 37

2.2.5 An Example – The Bouncing Ball

The example we consider in the discussion that follows illustrates how the
notions of parameters and variables play a crucial role in enabling a clear
and succinct formulation of a model for dynamic system.

A boy is standing on the ice surface of a frozen pond and (at t = 0)
throws a ball into the air with an initial velocity of V0. When the ball leaves
the boy’s hand it is a distance of y0 above the ice surface. The initial
velocity vector makes an angle of 0 with the horizontal. The boy’s
objective is to have the ball bounce at least once and then fall through a
hole that has been cut in the ice. The hole is located at a distance H from
the point where the boy is standing. There is a wind blowing horizontally.
The general configuration is shown in Figure 2.3.

V0

w(t)
mg

x = 0 x = H

y0

x

y

0

FIGURE 2.3. The bouncing ball.

The goal of our modelling and simulation project is to determine a value
for the release angle 0 which will result in a trajectory for the ball that
satisfies the boy’s objective.

A model for the underlying dynamic system can be formulated by a
straightforward application of Newton’s second law (the familiar F = ma).
We begin by introducing four state variables to characterise the ball’s
flight trajectory; namely:
x1(t): The ball’s horizontal position at time t
x2(t): The ball’s horizontal velocity at time t
y1(t): The ball’s vertical position at time t
y2(t): The ball’s vertical velocity at time t

38 2. The Modelling and Simulation Process

There are two forces acting on the ball. The first is gravity and the
second is the force resulting from the wind. In order to proceed to a next
level of refinement, two assumptions are in order:

 We assume that when the ball is released from the boy’s hand, the
velocity vector V0 lies in a vertical plane that passes through the
boy’s position and the location of the hole in the ice (this ensures
that the ball is heading, at least initially, in the direction of the
hole).

 We assume that the horizontal wind velocity is parallel to the
plane specified above (this ensures that the wind will not alter the
‘correct’ direction of the ball’s initial motion, i.e., towards the
hole).

With these two assumptions the ball’s initial motion can be described by
the following set of differential equations:

g
dt

tdy

ty
dt

tdy

mtW
dt

tdx

tx
dt

tdx

-
)(

)(
)(

/)(-
)(

)(
)(

2

2
1

2

2
1

(2.5)

where W(t) represents the force of the wind acting on the ball’s horizontal
motion and g represents the gravity force acting on the ball. Each of these
four first order differential equations needs to have a specified initial
condition. These are: x1(0) = 0, x2(0) = V0 * cos(0), y1(0) = y0, y2(0) = V0 *
sin(0) where y0 is the height above the ice surface of the boy’s hand when
he releases the ball. (The value assigned to x1(0) is arbitrary and zero is a
convenient choice.)

In view of the boy’s objective, it is reasonable to assume that the ball
leaves the boy’s hand with an upward trajectory (in other words, 0 > 0).
Sooner or later, however, gravity will cause the ball to arc downwards and
strike the ice surface (hence y1 = 0). At this moment (let’s denote it TC) the
ball ‘bounces’ and this represents a significant discontinuity in the ball’s
trajectory. A number of additional assumptions must now be introduced to
deal with the subsidiary modelling requirement that characterises this
bounce. These are as follows.

 We assume that the bounce takes place in a symmetric way in the
sense that if the angle of the velocity vector (with respect to the

2.2 Exploring the Foundations 39

C

 of – C.

in a reduction in the magnitude of the velocity vector (loss in
kinetic energy). More specifically, if |VC| is the magnitude of the
velocity vector immediately prior to the collision, then we assume
that |VC | is the magnitude after the collision, where 0 < < 1.

In effect, the two above assumptions provide a specification for the
behaviour that characterises the dynamics of the ball at the point of
collision with the ice surface. More specifically, we have formulated a

C

+ = – C

| CV
+ | = |VC| .

(2.6)

Here +
C is the angle of the velocity vector at time

+

CT which is the moment

of time that is incrementally beyond the moment of contact, TC. Similarly

| CV
+ | is the magnitude of the velocity vector at time +

CT .

Although the underlying equations of motion remain unchanged
following the bounce, there is a requirement to initiate a new trajectory
segment that reflects the changes that occur due to the collision. This new
segment of the ball’s trajectory begins with ‘initial’ conditions that
incorporate the assumptions outlined above; namely,

x1(
+

CT) = x1(TC)

x2(
+

CT) = x2(TC)

y1(
+

CT) = 0

y2(
+

CT) = - y2(TC) .

(2.7)

input variable and could be regarded as a parameter if, for example, a
secondary project goal were to explore the relationship between and the
problem solution 0

*. The state variables are x1, x2, y1, and y2. This is clearly
reflected in their essential role in reinitialising the ball’s trajectory
following each collision with the ice surface.

Before leaving this example, it is of some interest to revisit the stated

fundamental issue of whether the underlying problem has a solution. It is
important to recognise here that the existence of an initial release angle of
the ball (0) that will cause the ball to fall through the hole in the ice is not

(2.7). In this model, W(t) (the force exerted by the wind) represents an
Our model for the trajectory of the ball is given by Equations (2.5) and

goal of this modelling and simulation project. In particular, consider the

, then

Energy is lost during the collision and we take this to be reflected

model of the bounce dynamics which is:

horizontal) at the moment prior to the collision is
immediately after the collision the velocity vector has an orientation

40 2. The Modelling and Simulation Process

guaranteed. This is not a deficiency in the model but is simply a
consequence of the underlying physics. The boy’s throwing action gives
the ball kinetic energy which is dependent on the release velocity (V0).
This energy may simply be insufficient to accommodate the energy losses
encountered by the ball over the course of its trajectory and the ball may
not even be able to travel the distance H where the hole is located.

2.3 The Modelling and Simulation Process

An outline of the essential steps involved in carrying out a modelling and
simulation study is provided in the discussion that follows. Although the
initial steps can be effectively presented using various notions that have
been previously introduced, there are several aspects of the latter stages
that require extensive elaboration. This is provided in the discussions that
follow. An overview of the process is provided in Figure 2.4.

The overview of Figure 2.4 does not include a preliminary phase during
which solution alternatives for the problem are explored and a decision is
made to adopt a modelling and simulation approach. We note that the

entirely reasonable and is often prudent for some portions of the problem.
Although this preliminary phase is not explicitly represented in Figure 2.4
its existence and importance must nevertheless be recognised.

It should be emphasised that a modelling and simulation project of even
modest size is often carried out by a team of professionals where each
member of the team typically contributes some special expertise. There is,
therefore, a need for communication among team members. Some facets of
the discussion have their basis in this communication requirement.

2.3.1 The Project Description

The process begins with the preparation of a document called the project
description. This document includes a statement of the project goal(s) and
a description of those behavioural features of the SUI that have relevance
to the goals. These behaviour features are typically formulated in terms of
the various entities that populate the space that the SUI embraces with
particular focus on the interactions among these entities. It is, more or less,
an informal description inasmuch as it relies mainly on the descriptive
power of natural language. The language is, furthermore, often heavily
coloured with jargon associated with the SUI. This jargon may not be fully
transparent to all members of the project team and this can contribute to
both an inherent lack of precision and, as well, to communication
problems.

option of also carrying out other complementary approaches is

2.3 The Modelling and Simulation Process 41

Project

Description

Conceptual

Model

Simulation

Model

Simulation

Program

Goal

Resolution

Database

Conclusions

Validation

database

Credibility

Established

Database

Sufficiently

Comprehensive

Flawed Model

Detected

Refinement/Verification

Transformation/Verification

Elaboration/Verification

Experimentation

for Goal

Resolution

Analysis

Experimentation for

Validation

Final

Analysis

Analysis

Modification

YN

Y N

N

Y

Clarification

FIGURE 2.4. The modelling and simulation process.

With few exceptions, the SUI also has structural features that provide
the context for the interactions among the entities (e.g., the layout of the
pumps at a gas station or the topology of the network of streets being
serviced by a taxi company). Informal sketches are often the best means of
representing these structural features (see, e.g., Figure 2.3). These are an
important part of the presentation because they provide a contextual
elaboration that can both facilitate a more precise statement of the project

42 2. The Modelling and Simulation Process

goals and as well, help to clarify the nature of the interaction among the
entities. Because of these contributions to understanding, such sketches are

2.3.2 The Conceptual Model

The information provided by the project description is, for the most part,
unstructured and relatively informal. Because of this informality it is
generally inadequate to support the high degree of precision that is
required in achieving the objective of a credible model embedded within a
computer program. A refinement phase must be carried out in order to add
detail where necessary, incorporate formalisms wherever helpful, and
generally enhance the precision and completeness of the accumulated
information. Enhanced precision is achieved by moving to a higher level
of abstraction than that provided by the project description. The
reformulation of the information within the project description in terms of
parameters and variables is an initial step because these notions provide a
fundamental means for removing ambiguity and enhancing precision. They
provide the basis for the development of the simulation model that is
required for the experimentation phase.

There is a variety of formalisms that can be effectively used in the
refinement process. Included here are mathematical equations and
relationships (e.g., algebraic and/or differential equations),
symbolic/graphical formalisms (e.g., Petri nets, finite state machines), rule-
based formalisms, structured pseudocode, and combinations of these. The
choice depends on suitability for providing clarification and/or precision.

The result of this refinement process is called the conceptual model for
the modelling and simulation project. The conceptual model may, in
reality, be a collection of partial models each capturing some specific
aspect of the SUI’s behaviour. The representations used in these various
partial models need not be uniform.

The conceptual model is a consolidation of all relevant structural and
behavioural features of the SUI in a format that is as concise and precise as
possible. It provides the common focal point for discussion among the
various participants in the modelling and simulation project. In addition, it
serves as a bridge between the project description and the simulation
model that is essential for the experimentation activity (i.e., the simulation
phase). As we point out below, the simulation model is a software product
and its development relies on considerable precision in the statement of
requirements. One of the important purposes of the conceptual model is to
provide the prerequisite guidance for the software development task.

often a valuable component of the project description.

2.3 The Modelling and Simulation Process 43

interrupted because it becomes apparent that the information flowing from
the project description is inadequate. Missing or ambiguous information

corrected only by returning to the project description and incorporating the
necessary clarification. This possible ‘clarification loop’ is indicated with a
dashed line in Figure 2.4.

In Figure 2.4, a verification activity is associated with the transition
from the project description to the conceptual model. Both verification and

transition under consideration because it involves a reformulation of the key
elements of the model from one form to another and the integrity of this
transformation needs to be confirmed.

In the modelling and simulation literature, the phrase ‘conceptual
model’ is frequently reduced simply to ‘model’. Our usage of the word
‘model’ without a modifier generally implies a composite notion that

program successors where the latter two notions are described in the
discussion that follows.

As a concluding observation in this discussion, it is worth pointing out
that there is by no means a common understanding in the modelling and
simulation literature of the nature and role of a conceptual model. The
overview presented by Robinson [2.15] gives considerable insight into the
various perspectives that prevail.

Section) that generates the ‘behaviour’ that emulates pertinent aspects of

Typically the simulation model is written using the specialised facilities
of a programming language that has been designed specifically to support
the special requirements of simulation studies. Many such languages have

It can frequently happen that the formulation of the conceptual model is

are the two most common origins of this difficulty. The situation can be

become apparent from that discussion, verification is included as part of the

conceptual model into a representation that is consistent with the syntax
and semantic constraints of some programming language. This program is

(or more correctly, an

The essential requirement for the experimentation phase of a modelling

2.3.3 The Simulation Model

enhanced version of i t; see following

and simulation project is an executable computer program that embodies

the system under investigation. The solution to the underlying problem

the simulation model for the project. It is the execution of this program

that is embedded in the project goal(s) is obtained from the data reflected
in this behaviour.

the related notion of validation are examined in detail in Section 2.4. As will

the conceptual model. It evolves from a transformation of the

includes a conceptual model and its simulation model and simulation

44 2. The Modelling and Simulation Process

appeared in recent years; some examples are: SIMSCRIPT II.5, MODSIM,
GPSS, SIMAN, ACSL, Modelica, Arena, CSIM, and SIMPLE ++. Such

collection of data, and presentation of required output information. In the

of random variates, management of queues, and the statistical analysis of
data are also provided.

The simulation model is the penultimate stage of a development process

model is a software product and as such, the process for its development
shares many of the general features that characterise the development of
any software product.

Note that in Figure 2.4 the transition from the conceptual model to the
simulation model is associated with two activities: namely, transformation
and verification. As in the earlier transition from project description to
conceptual model, verification is required here to confirm that the
transformation has been correctly carried out.

2.3.4 The Simulation Program

The outline of the simulation model provided above is idealised inasmuch
as it suggests that the simulation model is directly capable of providing the
behaviour-generating mechanism for the simulation activity. In reality this
program code segment is never self-sufficient and a variety of auxiliary
services must be superimposed. The result of augmenting the simulation
model with complementary program infrastructure that provides these
essential functional services is the simulation program.

The services in question fall into two categories: one relates to
fundamental implementation issues whereas the other is very much
dependent on the nature of the experiments that are associated with the
realisation of the project goals. Included within the first category are such
basic tasks as initialisation, control of the observation interval,
management of stochastic features (when present), solution of equations
(e.g., the differential equations of a continuous system model), data
collection, and so on. Convenient programming constructs to deal with
these various tasks are normally provided in software environments
specifically designed to support the simulation activity. But this is
certainly not the case in general-purpose programming environments
where considerable additional effort is often required to provide these
functional requirements.

decision to formulate a modelling and
 simulation project to resolve an identified problem. The simulation

case of projects in the DEDS domain, additional features for the generation

languages generally provide features to support the management of time,

that began with the

2.3 The Modelling and Simulation Process 45

The second category of functional services can include such features as
data presentation (e.g., visualisation and animation), data analysis,
database support, optimisation procedures, and the like. The extent to
which any particular modelling and simulation project requires services
from this second category can vary widely. Furthermore, modelling and
simulation software environments provide these services only to varying
degrees and consequently, when they are needed, care must be taken in
choosing an environment that is able to deliver the required services at an
adequate level.

The manner in which the support services to augment the simulation
model are invoked varies significantly among software environments.
Almost always there is at least some set of parameters that need to be
assigned values in order to choose from available options. Often some
explicit programming steps are needed. Considerable care must be taken
when developing the simulation program to maintain a clear
demarkation between the code of the simulation model and
the code required to invoke the ancillary services. Blurring this separation
can be detrimental because the resulting simulation program may become
difficult to verify, understand, and/or maintain. It has, in fact, been
frequently noted (e.g., Oren [2.10]) that an important quality attribute of a
simulation software platform is the extent to which it facilitates a clear
separation of the code for the simulation model from the infrastructure
code required for the experimentation that is required for the achievement
of the project goal(s).

Figure 2.4 indicates that a verification activity needs to be carried out in
the transition from the simulation model to the simulation program. This
need arises because this transition typically involves a variety of decisions
relating to the execution of the simulation model and the correctness of
these decisions must be confirmed. Consider, for example, a simulation
model that incorporates a set of ordinary differential equations. Most
modelling and simulation programming environments offer a variety of
solution methods for such equations and each has particular strengths and
possibly weaknesses as well. If the equations in question have distinctive
properties, then there exists a possibility of an improper choice of solution
method. The verification process applied at this stage would uncover the
existence of such a flaw when it exists.

2.3.5 The Operational Phases

Thus far our outline of the modelling and simulation process has focused
on the evolution of a series of interdependent representations of SUI.
However, with the existence of the simulation program, the stage is set for

46 2. The Modelling and Simulation Process

two operational phases of the process that we now examine. The first of
these is the validation phase whose purpose is to establish the credibility of
each of the model realisations, from the perspective of the project goals.
The notion of validation is examined in some detail in Section 2.4 which
follows below, and hence we defer our discussion of this phase.

The second phase, which can begin only after the model’s credibility
has been established, is the experimentation phase, or more specifically,
the simulation phase. This activity is presented in Figure 2.4 as the task of
‘goal resolution’. This is achieved via a sequence of experiments with the
simulation program during which an ever-increasing body of data is
collected and analysed until it is apparent that a ‘goal resolution database’
is sufficiently complete and comprehensive to permit conclusions relating
to the goal(s) to be confidently formulated.

2.4 Verification and Validation

A simulation model is a software product and like any properly
constructed artefact its development must adhere to design specifications.
Assuring that it does is a verification task. All software products furthermore
have a well-defined purpose (e.g., manage a communications network, or ensure
that an optimal air/fuel mixture enters the combustion chamber of an
internal combustion engine). In the case of a simulation model the purpose
is to provide an adequate emulation of the behavioural features of some
SUI, where ‘adequate’ is assessed from the perspective of the project
goals. Assuring that this is achieved is a validation task.

Both verification and validation are concerned with ensuring the credibility
of the conclusions that are reached as a consequence of the experiments
carried out with the simulation program. They can be reasonably regarded
as part of the general thrust of quality assurance (the topic of the following
section). However the central role of these notions within the modelling
and simulation process, as presented in Figure 2.4, suggests that they merit
special treatment. The range of perspectives relating to the processes
associated with these notions further justifies an examination that extends
beyond their obvious contribution to quality assurance.

The terms verification and validation are used in a variety of disciplines,
notably software engineering. By and large, the distinction in the meaning
of these two notions is often poorly understood. In the software
engineering context, however, a remarkably concise and revealing
presentation of the essential difference can be expressed in terms of two
closely related questions. These (originally formulated by Boehm [2.4])
are:

2.4 Verification and Validation 47

Verification: Are we building the product right?
Validation: Are we building the right product?

The product referred to here is the software product being developed.
Reinterpretation within a modelling and simulation context is
straightforward. The ‘product’ is the model and the notion of ‘building the
right product’ corresponds to developing a model that has credibility from
the perspective of the project goals. On the other hand, ‘building the
product right’ corresponds to ensuring that the artefact that begins as a
meaningful and correct problem description and then undergoes various
transformations that culminate in a simulation program is never
compromised during these various transformations.

Verification is concerned with ensuring that features that should (by
design) be clearly apparent in each manifestation of the model are indeed
present. Whether these features properly reflect required or expected
model behaviour (always from the perspective of the project goals) is an
issue that falls in the realm of validation.

By way of illustration, consider a modeling and simulation project
whose primary purpose is to provide support for the design of the various
control systems that are to be incorporated into a new, highly automated,
thermoplastics manufacturing plant. Certain thermodynamics principles
have been identified as being best suited as the basis for formulating the
model of one particular aspect of the chemical kinetics that is involved in
the process. The approach will, in all likelihood, give rise to a conceptual
model that incorporates a set of partial differential equations. The task of
ensuring that these differential equations are correctly formulated on the
basis of the principles involved and ensuring that they are correctly
transformed into the format required by the simulation software environment
to be used, falls in the realm of verification. Confirmation that the selected
principles are indeed an adequate means of representing the relevant behaviour
of the chemical process is a validation task.

Consider an alternate but similar example where a modeling and
simulation project is concerned with exploring alternatives for enhancing
the operating efficiency of a large metropolitan hospital. The model is to
be organised as a number of interacting components. One of these will
focus on the operation of the elevator system which has frequently been
observed to be a point of congestion. The behaviour of any elevator system
is described by a relatively complex set of rules. Ensuring that these rules
are correctly represented in each of several realisations (e.g., natural
language in the initial statement, then an intermediate and more formal
representation such as a flow chart and finally in the program code of the
simulation model) is part of the verification activity. Confirmation of the
correctness of the rules themselves is a validation task.

48 2. The Modelling and Simulation Process

A simulation model always functions in some software environment and
assumptions about the integrity of the environment are often made without
any particular basis. Confirmation of this integrity is a verification task.
Consider, for example, the adequacy of the numerical software for the
solution of the differential equations in a continuous-time dynamic system
model or the adequacy of the mechanism used for generating a random
number stream required in a DEDS model. Confirmation that such
essential tools are not only available but are sufficiently robust for the
project requirements is part of the verification activity.

It has been rightly observed (e.g., Neelamkavil [2.12] that ‘complete
validation’ of a model is an objective that is beyond the realm of
attainability; the best that can be hoped for is ‘failure to invalidate’. A
related idea is contained in one of a collection of verification and
validation principles suggested by Balci [2.1], namely, that the outcome of
the validation activity is not binary valued. Degrees of success must be
recognised and accepted and the credibility of the conclusions derived
from the experiments with the model treated accordingly. The practical
reality for accepting less than total success in the validation endeavour
originates in the significant overhead involved. Carrying out validation to a
level that totally satisfies all concerned parties can be both expensive and
time consuming. A point of diminishing returns is invariably reached and
compromises, together with acceptance of the attendant risk, often become
unavoidable.

Validation must necessarily begin at the earliest possible stage of the
modelling and simulation project, namely, at the stage of problem
definition. Here the task is simply to ensure that the statement of the
problem is consistent with the problem that the project originator wants to
have solved. This is of fundamental importance because, for the members
of the project team that will carry out the project, the problem statement is
the problem. The documented problem statement is the only reference
available for guidance. All relevant facets must therefore be included and
confirmation of this is a validation task.

The problem definition has many facets and most have direct relevance
to the validation task. One which is especially relevant is the statement of
the project goals. These have a profound impact that ranges from the
required level of granularity for the model to the nature of the output data
that need to be generated. Consider, for example, the model of an airliner.
A model that has been validated within the context of a project that is
evaluating a business plan for a commercial airline will most likely not
qualify as an adequate model within the context of a project that seeks to
determine the aircraft’s aerodynamic characteristics. In effect then, one of
the most fundamental guiding principles of any validation activity is that it
must be guided by the goals of the study.

2.4 Verification and Validation 49

One (essentially naïve) perspective that might be adopted for validating
a model is simply to ensure that its observed behaviour ‘appears correct’,
as reflected by animation, graphical displays, or simply the values of some
set of designated variables. The assessment here is clearly entirely
qualitative rather than quantitative and hence is very subjective. A far
more serious shortcoming of this approach is that it makes no reference to
the goals of the modelling and simulation study. As noted above, this is a
very serious flaw. The absence of this context carries the naïve (and most
certainly incorrect) implication that the model has ‘universal applicability’.
However, it is rare indeed that a model of ‘anything’ is appropriate for all
possible modelling and simulation projects to which it might be linked.

Nevertheless, the relatively superficial approach given above does have
a recognised status in the validation toolkit when it is refined by including
the understanding that the observers are ‘domain experts’ and that their
judgement is being given with full understanding of the model’s purpose.
With these qualifiers, the approach is referred to as face validation.

It is reasonable to assume that within the framework of the project
goals, a collection of (more or less) quantifiable anticipated behaviours for
the model can be identified. These will usually be expressed in terms of
input–output relationships or more generally in terms of cause/effect
relations. Consider, for example, a model developed to investigate the
aerodynamic characteristics of an aircraft. The occurrence of an engine
failure during a simulation experiment should (after a short time interval)
lead to a decrease in the aircraft’s altitude. If this causal event does not
take place, then there is a basis for suspicion about the model’s adequacy.

Or consider introducing the occurrence of disruptive storms in a harbour
model. It is reasonable to expect that this would result in a decrease in the
operating efficiency of the harbour as measured by the average number of
ships per day passing through the loading/unloading facilities.

As a final example, consider doubling the arrival rate of
tourists/convention attendees in an economic model of an urban area. This
should result in an approximate doubling in the occupancy rate of the
hotels in the area. Furthermore, an occupancy rate increase of more than a
factor of two should be cause for some reflection about possible flaws in
the model’s specification.

The general approach outlined above is often called behaviour
validation. An implicit assumption in the approach is that a verified
simulation program is available for experimentation. The approach has
been examined in some detail by Birta and Ozmizrak [2.3] who
incorporate the notion of a validation knowledge base that holds the
collection of behavioural features that need to be confirmed. The
investigation includes a discussion of a procedure for formulating a set of
experiments that efficiently covers the tests that are implied in the

50 2. The Modelling and Simulation Process

knowledge base. An accessory question that does need resolution prior to
the implementation of the process relates to the level of ‘accuracy’ that
will be expected in achieving the designated responses. Behaviour
validation has several noteworthy aspects; for example, the knowledge
base can conveniently accommodate insights provided by a domain expert
and as well, it can accommodate data acquired from an observable system
when such an option exists.

In fact this latter feature is closely related to a notion called replicative
validation, that is, confirming that the simulation program is capable of
reproducing all available instances of the SUI’s input–output behaviour.
This notion is clearly restricted to the case where the SUI actually exists
and behavioural data have been collected. But even in such circumstances

data available and if so, how can they be organised into meaningful
(nonredundant classes), and how is the impact of project goals
accommodated?

Validation in the modelling and simulation context must also embrace
the data modelling task. For example, suppose that once ordered, the
arrival time for a replacement part for a machine in a manufacturing
process is random. There are at least two possible choices here for
representing this situation. One is simply to use the mean delay time
(assumed to be known) and an alternative is to use successive samples
drawn from a correctly specified stochastic distribution. Ensuring that a
satisfactory choice is made (with due regard to project goals) can be
regarded as a validation task.

Accreditation is a notion that is closely related to validation.
Accreditation refers to the acceptance, by a designated accreditation
authority, of some particular simulation model for use within the context
of a particular modelling and simulation project. Several important issues
are associated with this notion: for example, what guidelines are followed
in the designation of the accreditation authority and how is the decision-
making procedure with respect to acceptance carried out. These are clearly
matters of critical importance but they are, for the most part, very
situation-dependent and for this reason we regard the topic of accreditation
as being beyond the scope of our discussions. Certification is an equivalent
issue which is explored in some detail by Balci [2.2].

We conclude this section by observing that the importance of model
credibility has been recognised even at legislative levels of government
because of the substantial government funding that is often provided in
support of large-scale modelling and simulation projects. In 1976 the
American government’s General Accounting Office presented to the U.S.
Congress the first of three reports that explored serious concerns about the
management, evaluation, and credibility of government-sponsored

there remain open questions; for example, could there not be ‘too much’

2.5 Quality Assurance 51

simulation models (see [2.7] through [2.9]). For the most part these
concerns were related to verification and validation issues in the context of
modelling and simulation projects carried out by, or on behalf of, the U.S.
Department of Defense. This latter organisation is possibly the world’s
largest modelling and simulation user community and a comprehensive
presentation of its perspective about verification and validation can be
found in [2.6]. An overview of some of the material contained in [2.6]
together with a discussion of verification and validation issues in some
specialised circumstances (e.g., hardware-in-the-loop, human-in-the-loop,
distributed environments) can be found in Pace [2.13].

2.5 Quality Assurance

reference to a broad array of activities and methodologies that share the
common objective of ensuring that the goals of the simulation project are
not only achieved but are achieved in a timely, efficient, and cost-effective

Documentation

A modelling and simulation project of even modest complexity can require
many months to complete and will likely be carried out by a team having
several members. Information about the project (e.g., assumptions, data
sources, credibility assessment) is typically distributed among several
individuals. Personnel changes can occur and in the absence of
documentation, there is a possibility that important fragments of
information may vanish. Likewise the reasons for any particular decision
made during the course of the project may be completely obvious when it
is made, but may not be so obvious several months later. Only with proper
documentation can the emergence of this unsettling uncertainty be
avoided. Comprehensive documentation also facilitates the process of
‘coming-up-to-speed’ for new members joining the team.

Project documentation must not only be comprehensive but must

manner. An interesting overview of these can be found in Ören [2.10].
As we have previously noted, a significant thrust of the quality assurance
effort necessarily deals with ensuring the credibility of the simulation model
(where credibility here must always be interpreted from the perspective of the
goals of the project.) Nevertheless, there is a variety of other important issues

Quality assurance within the framework of modelling and simulation is a

in the discussion below.
that fall within the realm of quality assurance. We examine some of these

also be current. Deferring updates that reflect recent changes is a

52 2. The Modelling and Simulation Process

prescription for rapid deterioration in the value of the documentation
because prospective users will become wary of its accuracy and hence will
avoid reliance on it. In the extreme, documentation that is deferred until
the end of the project essentially belies the intent of the effort.

Program Development Standards

Premature initiation of the program development phase must be avoided.
Often there is an urge to begin the coding task before it is entirely clear
what problem needs to be solved. This can result a simulation program that
is poorly organised because it is continually being ‘retrofitted’ to
accommodate newly emerging requirements. Any computer program
developed in this manner is highly prone to error.

Testing

Testing is the activity of carrying out focused experiments with the
simulation program with a view towards uncovering specific properties.
For the most part, testing is concerned with establishing credibility and
consequently considerable care needs to be taken in developing, and
documenting, the test cases. Testing activity that is flawed or inadequate
can have the unfortunate consequence of undermining confidence in the
results flowing from the simulation project.

Testing can have a variety of objectives. For example, regression testing
is undertaken when changes have taken place in the simulation program. In
such circumstances it is necessary to confirm not only that any anticipated
behavioural properties of the simulation model do actually occur but also
that improper side-effects have not been introduced. This implies carrying
out some suite of carefully designed experiments before and after the
modifications.

Another testing perspective is concerned with trying to acquire some
insight into the boundaries of usefulness of the simulation program relative
to the goals of the project. This can be undertaken using a process called
stress testing whereby the model is subjected to extreme conditions. For
example, in the context of a manufacturing process the effect of extremely
high machine failure rates could be explored or alternately, in a
communication system context the impact of data rates that cause severe
congestion could be explored. The intent of such testing is to create
circumstances that provide insight into the limits of the model’s
plausibility in terms of an adequate representation of the SUI’s behaviour.

2.5 Quality Assurance 53

Experiment Design

We use the phrase ‘experiment design’ to refer to a whole range of
planning activities that focus on the manner in which the simulation
program will be used to achieve the project goals. The success of the
project is very much dependent on the care taken in this planning stage.
Poor experiment design can seriously compromise the conclusions of the
study and in the extreme case may even cast suspicion on the reliability of
the conclusions.

Some examples of typical matters of concern are:

 What data need to be collected (with due regard to the analysis
requirements and tools)?
How will initialisation and transient effects be handled?

 Are there particular operational scenarios that are especially well
suited to providing the desired insight when the relative merits of a
number of specified system design alternatives need to be
examined?

 Is there a useful role for special graphics and/or animation and if
so, what should be displayed?

Frequently the project goals include an optimisation requirement and the
difficulty of this task is often underestimated. Care is required both in the
formulation of the optimisation problem itself and in the formulation of a
procedure for its solution. Problem formulation usually corresponds to the
specification of a scalar-valued criterion function whose value needs to be
either minimised or maximised. The nature of this function is often clearly
apparent from the goals of the project. Care must be taken to avoid
attempting to embed in the project goals several such functions whose
simultaneous optimisation is in conflict. The parameters available for
adjustment in the search for an extreme value for the criterion function
need to be identified. Frequently there are constraints in the admissible
values for these parameters and such constraints must be clearly identified.
Alternately there may be prescribed requirements on certain features of the
model’s behaviour that have to be incorporated.

The identification of an appropriate procedure for solving the problem
then has to be carefully considered. Numerous techniques can be found in
the classical optimisation literature and these are generally directly applicable
within the modelling and simulation context provided stochastic effects are
not present. Their applicability is, however, seriously undermined when
stochastic behaviour is an integral part of the criterion function as is often
the case in the modelling and simulation context. Although true optimality
may be infeasible, sometimes a suboptimal solution can be a reasonable
expectation. In such circumstances it is highly desirable to have available a

54 2. The Modelling and Simulation Process

means for estimating the likely deviation from optimality of the accepted
solution. In practice, when stochastic effects are present, the search for
optimality may simply have to be abandoned and replaced with the
relatively straightforward task of selecting the best alternative from among
a finite collection of options.

Presentation/Interpretation of Results

explicitly requested, great detail about the simulation model’s features

obtained from the simulation experiments that relate directly to the goals

relevance should be clearly pointed out. Wide availability of increasingly
more sophisticated computer graphics and animation tools can be
creatively incorporated but the visual effects they provide should serve
only to complement, but not replace, comprehensive quantitative analysis.

2.6 The Dynamic Model Landscape

Models of dynamic systems can be characterised by a number of
features. For the most part these are inherited from the underlying system
(i.e., the SUI) that the model represents. We examine some of these
characterising features in the discussion that follows.

Deterministic and Stochastic

The system context for a large class of modelling and simulation projects
includes random elements. Models that emerge from such contexts are
called stochastic models which are very distinct from deterministic models
that have no random aspects. Values taken from any particular experiment
with a stochastic model must be regarded as observations of some
collection of random variables. The need to deal with random aspects of
stochastic models (and the underlying SUI) has a very substantial impact
on essentially all facets of both the modelling and the simulation phases of
a project. A whole range of related considerations must be carefully
handled in order to ensure that correct conclusions are drawn from the
study. A few of these are listed below.

of the project. This is not to suggest that additional information that

Often the person/organisation that has commissioned the modelling

appears pertinent should not be presented but its possibly tangential

stage and periodic presentations are normally necessary. Unless

should not dominate these presentations. The focus must be on results

and simulation project remains remote from the development

2.6 The Dynamic Model Landscape 55

 Only aggregated results are meaningful, hence many simulation
experiments need to be carried out.

 The need to formulate a collection of data models that capture the
various random phenomena that are embedded in the model.

Discrete and Continuous

In models for discrete event dynamic systems (i.e., DEDS models) state
changes occur at particular points in time whose values are not known a
priori. As a direct consequence, (simulated) time advances in discrete
‘jumps’ that have unequal length.

In contrast, with models that emerge from the domain of continuous
time dynamic systems (i.e., CTDS models), state changes occur
continuously (at least in principle) as time advances in a continuous
fashion over the length of the observation interval. It must, however, be

realities introduced by the computational process. It is simply infeasible
for any practical procedure to actually yield data at every value of time
within the continuum of the observation interval. Thus, from the
perspective of the observer, state changes do apparently occur with
discrete ‘jumps’ as the solution unfolds over the observation interval.

Our presentation in this textbook may give the erroneous impression
that models neatly separate into the two broad categories that we refer to as
DEDS models and CTDS models. This is an oversimplification. There is,
in fact a third category of models that are usually called combined models
where the name reflects the combination of elements from both the
discrete and continuous domains. As an illustration consider the parts in a
manufacturing plant that move from one workstation to another on the way
to assembly into a final product. At these workstations, queues form and
the service function provided by the workstation may have random aspects
(or may become inoperative at random points in time). Thus the basic
elements of a DEDS model are present. At some workstations the
operation may involve heating the part to a high temperature in a furnace.
This heating operation and the control of it would best fall in the realm of a
CTDS model. Hence the overall model that is needed has components
from the two basic domains.

Work on the development of modelling formalisms and tools for
handling this third category of combined models has a long history. The
interested reader wishing to explore this topic in more detail will find
relevant discussions in Cellier [2.5], Ören [2.11], and Praehofer [2.14].

the initial portion of a simulation experiment.
 Dealing with the start-up issue may require ignoring data from

stressed that this is an idealised perspective that ignores the

56 2. The Modelling and Simulation Process

The properties of linearity and nonlinearity of systems are basic

the inherent simplifications to the analysis process that are introduced by the
linearity property have no particular consequence in the modelling and

and nonlinear systems and models is most certainly one of the noteworthy
features of the modelling and simulation approach to problem solving.

2.7 Exercises and Projects

2.1 Technical papers in the modelling and simulation applications
literature are sometimes lacking in the clarity with which they deal
with such fundamentals as

a)
b) Outline of the conceptual model
c) Identification of input and output variables
d) Model validation efforts

and simulation and compare the effectiveness with which the authors
have addressed the items listed above. Some application areas that
could be considered are:

a) Network management and control
b) Ecological and environmental systems
c) Biomedicine and biomechanics
d) Power generation and distribution
e) Automated manufacturing
f) Robotics and autonomous systems
g) Transportation and traffic
h) New product development

simulation realm. This absence of any need to distinguish between linear

Linear and Nonlinear

However, because the experiments that are inherent. within the modelling and
considerations in many areas of analysis, e.g., mathematics and system theory.

mation that is ‘delivered’ evolves entirely from numerical computation. Hence
simulation context are always assumed to be carried out by a computer the infor-

Choose two papers in some particular application area of modelling

The goals of the modelling and simulation study

that motivated the study
e) Evaluation of success in achieving a solution to the problem

2.8 References 57

Technical papers and/or pointers to technical papers in these areas can
be found at Web sites such as www.scs.org and www.informs-
cs.org/wscpapers.html.

2.8 References

2.1. Balci, O.,(1994), Validation, verification, and testing techniques throughout
the life cycle of a simulation study, Annals of Operations Research, 53: 121–
173.

2.2. Balci, O., (2001), A methodology for certification of modeling and
simulation applications, ACM Transactions on Modeling and Computer
Simulation, 11: 352–377.

2.3. Birta, L.G. and Ozmizrak, N.F., (1996), A knowledge-based approach for the
validation of simulation models: The foundation, ACM Transactions on
Modeling and Computer Simulation, 6: 67–98.

2.4. Boehm, B.W., (1979), Software engineering: R&D trends and defence needs,
in: P. Wegner (Ed.), Research Directions in Software Technology, MIT
Press, Cambridge, MA.

2.5. Cellier, F.E., (1986), Combined discrete/continuous system simulation –
aplication, techniques and tools, in Proceedings of the 1986 Winter
Simulation Conference.

2.6. Department of Defense (DoD) Recommended Practices Guide (RPG) for
Modeling and Simulation VV&A, Millennium Edition (available at
http://vva.dmso.mil).

2.7. General Accounting Office, (1976), Report to the Congress: Ways to
improve management of federally funded computerized models, report LCD-
75-111, U.S. General Accounting Office, Washington, DC.

2.8. General Accounting Office, (1979), Guidelines for model evaluation, report
PAD-79-17, U.S. General Accounting Office, Washington, DC.

2.9. General Accounting Office, (1987), DOD simulations: Improved assessment
procedures would increase the credibility of results, report GAO/PEMD-88-
3, U.S. General Accounting Office, Washington, DC.

2.10. Ören, T.I., (1981), Concepts and criteria to access acceptability of simulation
studies, Communications of the ACM, 24: 180–189.

2.11. Ören, T.I., (1971), GEST: General system theory implementor, a combined
digital simulation language, PhD Dissertation, University of Arizona,
Tucson.

2.12. Neelamkavil, F., (1987), Computer Simulation and Modeling, John Wiley
and Sons, Chichester, UK.

2.13. Pace, D.K., (2003), Verification, validation and accreditation of simulation
models, in M.S. Obaidat and G.I. Papadimitriou (Eds.), Applied System
Simulation: Methodologies and Applications, Kluwer Academic, Boston.

2.14. Praehofer, H., (1991), System theoretic formalisms for combined discrete
continuous system simulation, International Journal of General Systems, 19:
219–240.

58 2. The Modelling and Simulation Process

2.15. Robinson, S., (2006), Issues in conceptual modelling for simulation: Setting
a research agenda, in Proceedings of 2006 Operations Research Society
Simulation Workshop, March, Lexington, England.

2.16. Shannon, R.E., (1975), Systems Simulation: The Art and Science, Prentice-
Hall, Englewood Cliffs, NJ.

PART 2
DEDS Modelling and Simulation

In the second part of this book we examine the modelling and simulation
process within the discrete event dynamic systems (DEDS) domain. The
presentation is, for the most part, guided by the general process presented
in Figure 2.4.

We have previously emphasised (Section 2.3.1), that the project

system under investigation (SUI) that have relevance to the model develop-
ment process. One behavioural feature that is specific to DEDS is the central
role played by random phenomena. The interarrival times between
messages entering a communication network and the time to service
customers at the checkout counter of a grocery store are examples of such
phenomena.

Data modelling is an essential subtask of conceptual modelling phase in
the DEDS domain. It is concerned, in part, with correctly representing the
features of the SUI’s environment that have an impact on its behaviour and
this can be a demanding and time-consuming task. The project goals guide
the identification of the data models that are required. The data modelling
task is considerably facilitated when the SUI currently exists and is
accessible because then data collection is possible. When the SUI does not
yet exist (or indeed, may never actually ‘exist’) data modelling becomes a
very uncertain undertaking and essentially depends on insight and
intuition.

There are three main world views or frameworks for building a DEDS
simulation model: the activity scanning world view, the event scheduling
world view, and the process-oriented world view. With the superposition
of a variety of operational features (e.g., generation and management of
random variates for handling random phenomena, management of a
predefined time-advance mechanism) the simulation model evolves into a
simulation program.

Chapters 3 and 4 deal with conceptual modelling. Chapter 3 provides an
overview of some key aspects of random behaviour and discusses data
modelling. These data models are then integrated into a conceptual
modelling framework that captures the relevant structural and behavioural
features of the SUI; this is presented in Chapter 4. The framework
presented in Chapter 4 is based on the activity scanning world view.
Chapter 5 shows how a conceptual model that has been formulated in the
framework described in Chapter 4 can be transformed into either an event
scheduling simulation model or a process-oriented simulation model. The

description should provide a clear statement of the project goals. From
these it should be possible to identify those behavioural features of the

60 Part 2. DEDS Modelling and Simulation

programming environments used in these two cases are Java and GPSS,
respectively.

The project goals have a direct impact on the way in which
experimentation is carried out with the simulation program. A basic
objective of experimentation is to produce values for the performance
measures stipulated in the project goals. In Chapter 6, we examine how the
experimentation activity has to be organised in order to acquire meaningful
values for these performance measures.

Chapter 3 DEDS Stochastic Behaviour and Data
Modelling

3.1 The Stochastic Nature of DEDS

This section explores some fundamental aspects of the random (stochastic)
nature of DEDS and introduces several assumptions that are typically
made about it.

Consider a simple view of the operation of a delicatessen counter which
has one server. Customers arrive at the counter, wait in a queue until the
server is available, and then select and purchase items at the counter.

Two important random phenomena drive this SUI. The first is the
arrival of customers which is usually expressed in terms of interarrival
times, that is, the time between successive customer arrivals. The second is
the time it takes to select and purchase items at the counter which is
referred to as the service time. Both of these phenomena can be
represented by discrete stochastic processes (an overview of stochastic
processes is provided in Section A1.8 of Annex 1). The arrival process, for
example, can be represented by X = (X1, X2, X3, . . . , Xn), where Xj is the
time between the arrival of the (j – 1)th customer and the jth customer, j =
1, 2, . . . , n (X1 is measured with respect to the left boundary of the
observation interval). A convenient assumption here is that the observation
interval corresponds to the boundaries of a business day and that n
customers are processed over the course of a day. The service time of each
of the n customers can likewise be represented by a stochastic process; that
is, Y = (Y1, Y2, Y3, . . . , Yn). In our simple model, both of these random
phenomena are entirely independent of any other phenomena or
interactions in the system. Throughout our discussions we refer to
stochastic processes with this independent attribute as autonomous
stochastic processes.

As an alternate example, consider the status of a machine in a
manufacturing system which we can represent with the continuous
stochastic process Status(t). A simple approach is to assign Status a value
of 1 when the machine is operational and a value of 0 when it is not; for
example, it has malfunctioned and is being repaired (see Figure 3.1).
Continuous stochastic processes in a DEDS model are piecewise-constant

62 3. DEDS Stochastic Behavious and Data Modelling

time functions because their values change only at discrete points in time,
as is the case with Status(t). Notice that the stochastic process, Status(t),
could be viewed as having two independent component parts; namely
a discrete stochastic processes for the ‘uptime’ durations, U = (U1, U2,
U3, . . . , Un) and another for ‘downtime’ durations, D = (D1, D2, D3, . . . ,
Dn). Status(t) could in fact, be constructed from these two component data
models.

0

1

t

Status(t)

FIGURE 3.1. Continuous stochastic process representing machine status.

In our delicatessen example, the autonomous stochastic processes X and
Y give rise to dependent stochastic processes via the inherent behaviour
properties of the model. Consider, for example, the waiting times of
customers in the deli queue and the length of the queue. The waiting times
can be represented as a discrete stochastic process: W = (W1, W2, W3, . . . ,
Wn), where Wj is the waiting time of the jth customer. The length of the
queue, L(t), is likewise a dependent random phenomenon which is,
furthermore, piecewise constant.

Properties of the dependent random phenomena are typically of interest
in resolving the project goals and these properties are usually called
performance measures. Often interest focuses on the change in value of
performance measures that results from some predetermined change in
system operation or system structure. For example, the service time could
be reduced by restricting customer choices to some collection of
prepackaged items. A change in the structure of the system would result if
an additional person were hired to serve behind the counter and a two-
queue service protocol was established. The goal of a modelling and
simulation project could then be to evaluate the effect of such changes on
customer waiting time.

When stochastic processes are used to represent autonomous random
phenomena simplifying assumptions are typically incorporated. For
example, a common assumption is that customer interarrival times can be

3.1 The Stochastic Nature of DEDS 63

represented with a homogeneous stochastic process, that is, the sequence
of random variables that constitute the stochastic process are independent
and identically distributed (IID).

Unfortunately there are many cases where such assumptions are simply
not realistic. Consider our deli counter example. There are ‘busy periods’
over the course of a business day, during which customer arrivals occur
more frequently. This implies that the mean of the customer interarrival
time distribution will be shorter during these busy periods. It is reasonable
to assume that dependent stochastic processes such as waiting times will
be affected and will also be nonstationary. When appropriate, this issue
can be circumvented by redefining the observation interval so that the
study is restricted, for example, to the busy period. Then the validity of a
homogeneous stochastic process assumption for the customer interarrival
time can be reasonably assured.

Even in cases where the autonomous stochastic processes within a
DEDS model are stationary over the observation interval, dependent
stochastic processes can still exhibit transient behaviour. These transient
effects are a consequence of initial conditions whose impact needs to
dissipate before stationary behaviour evolves. Consider, for example,
waiting times when the deli of our example first opens in the morning. The
first customer will experience no waiting time and receive service
immediately. Subsequent customers will likewise experience short waiting
times. As time progresses, more customers will enter the queue and
waiting times could start to lengthen but in any event, the exceptional
circumstances immediately following the opening will disappear.

This behaviour will occur even when we assume that the customer
interarrival times are represented by a homogeneous stochastic process. If
the mean of the interarrival times changes to a new value at the start of the
busy period, the waiting times will again go through a transient period
prior to eventually reaching steady-state behaviour. Note that it can be
reasonably assumed that the waiting time stochastic process is positively
correlated.

With very few exceptions, the variables in a DEDS model can be
regarded as stochastic processes: some as autonomous stochastic processes
and others as dependent stochastic processes. The values acquired by a
variable that is regarded as a dependent stochastic process are an
outgrowth of the autonomous stochastic processes coupled with the
model’s behaviour specifications; hence consideration of data models in
this circumstance is not meaningful. Such values, however, are generally
of considerable importance because they provide the sample set and/or
trajectory set output that is required for the achievement of the project
goals. These issues are examined in Section 3.2 below.

64 3. DEDS Stochastic Behavious and Data Modelling

A data model is required for each autonomous stochastic process that is
identified in a conceptual model. Such models provide the basis for
generating the values that are associated with these processes. Such a
process might, for example, represent the interarrival times of an input
entity stream as introduced in Chapter 2.

Creating a data model consists of determining appropriate probability
distributions for the constituent random variables of the stochastic process.
Data models can be very complex. Such models could be required to
represent nonstationary stochastic processes or even multivariate stochastic
processes where one stochastic process is correlated to another. However,
our treatment of data modelling in this textbook is restricted in scope. In
particular, we limit our considerations to autonomous stochastic processes
that are piecewise homogeneous (see Section A1.8 of Annex 1).

The key feature of a homogeneous stochastic process is that the data
modelling task reduces to the identification of a single underlying
distribution function (because all constituent random variables have the
same distribution). The situation is somewhat more demanding in the
general piecewise homogeneous case (with m segments) inasmuch as there
is a distribution required for each of the m segments.

A useful overview of data modelling is provided by Biller and Nelson
[3.3]. More comprehensive discussions can be found in a variety of
references such as: Banks et al. [3.2], Law and Kelton [3.13], and Leemis
and Park [3.14].

3.2 DEDS Modelling and Simulation Studies

The goals of a modelling and simulation project implicitly define one of
two possible types of study. The differences between them are easy to
appreciate. However, as becomes apparent in later discussions (in
particular, in Chapter 6) these differences have a significant impact on the
nature of the experimentation procedure that needs to be carried out and in
one case it requires considerably more effort. The main differences arise
from two interdependent features; one relates to specifications on
the right-hand boundary of the observation interval and the other relates to
possible constraints imposed on the acquired data. We refer to the two
alternatives as bounded horizon studies and steady-state studies. They1 are
summarised below:

1 These two types of study are often referred to as ‘terminating simulations’ and

‘nonterminating simulations’, respectively

3.3 Data Modelling 65

Bounded Horizon Study:

 The right-hand boundary of the observation interval is specified in the
problem statement either explicitly by a given value of time or
implicitly by some combination of values acquired by the model’s
state variables.
There are no restrictions on the properties of the dependent stochastic
processes that are of interest. Often transient behaviour dominates.

Steady-State Study:

The right-hand boundary of the observation interval is not provided in
the problem statement. Its value emerges in an indirect fashion
because the observation interval extends to a point where the times
series of acquired data is long enough to reflect steady-state behaviour.
Steady-state behaviour of the dependent stochastic processes that are of
interest is essential. In other words, the focus is on behaviour patterns
in the absence of transient effects.

3.3 Data Modelling

Data models (expressed in terms of theoretical probability distributions)
are provided for the various autonomous stochastic processes that appear
in the DEDS examples presented in this textbook. This might give the
erroneous impression that defining such data models is simple and
straightforward. In reality much time and effort is required for carrying out
the data modelling task that gives rise to these data models. Furthermore, it
must be strongly emphasised that improper data models can destroy the
value of the results that flow from a simulation study. Data models play
the role of input data to a computer program and a long established
principle in software engineering is that ‘garbage in equals garbage out’!

When the SUI exists it may be possible to obtain insights about its
various autonomous stochastic processes by observing the existing system.
Data can be gathered and analysed to obtain information necessary for the
formulation of suitable data models. In other cases, when such data are not
available (e.g., the SUI does not exist or the collection of data is
impossible or too costly), data models may have to be constructed on the
basis of the insight provided by domain specialists, that is, ‘educated
guesses’.

In this section we first consider the case when data can be obtained from
the SUI and we provide an overview of steps required to develop, from the
collected data, the underlying distributions that serve as data models. Some
general guidelines are given for formulating data models when no data
exist.

66 3. DEDS Stochastic Behavious and Data Modelling

Data models are integrated, in a modular fashion, into the conceptual
modelling framework that is presented in Chapter 4. Data modelling is
usually carried out in parallel with the conceptual modelling task. Both of

3.3.1 Defining Data Models Using Collected Data

Our introduction to data modelling is restricted to modelling autonomous
stochastic processes that are (piecewise) homogeneous. The objective is to
formulate either an appropriate theoretical or empirical distribution derived
from the collected data.

Collected data can be used to formulate a data model that is specified in
terms of a cumulative distribution function that is called an empirical CDF.
Section 3.3.4 discusses this approach. When the empirical distribution is
continuous, an inherent disadvantage of the approach is that it will not
generate values outside the limits of the observed values. It can
nevertheless yield values other than those that have been observed. An
alternate (and generally preferred) approach is to use statistical techniques
to fit a theoretical distribution to the collected data. A theoretical
distribution provides a number of advantages; for example, it smooths out
irregularities that could arise with the empirical alternative and it can yield
values outside the boundaries of the observed values. Theoretical
distributions always have embedded parameters (see Sections A1.3.6 and
A1.4.4 of Annex 1) which provide a simple means for adjusting the
distribution to best fit the collected data.

Our first task is to determine if the collected data do indeed belong to a
homogeneous stochastic process. This requires two tests: one to determine
if the stochastic process is identically distributed and a second to determine
if the constituent random variables are independent. A number of analysis
techniques exist for testing for these properties and a few are presented in
Section 3.3.2. The final task is to fit a theoretical distribution to the
collected data. Software is available for analysing collected data and fitting
theoretical distributions. Such software is available in standalone form, for
example, ExpertFit [3.12] and Stat::Fit [3.7]. This functionality is often
integrated directly into simulation packages; e.g., Arena [3.9] or ProModel
[3.7] (which includes Stat::Fit).

to the problem description and/or project goals.
these modelling exercises can give rise to the need for refinements

3.3 Data Modelling 67

3.3.2 Do the Collected Data Belong to a Homogeneous
Stochastic Process?

This section presents two techniques for evaluating independence of
collected data and a technique for evaluating stationarity.

3.3.2.1 Testing for Independence

Two graphical methods for evaluating independence are presented here:
scatter plots and autocorrelation plots. In both cases the objective is to
investigate possible dependencies among the values in a times series
obtained as an observation of a stochastic process (see Section A1.8 of
Annex 1). More specifically, we assume that our collected data are the
time series x = (x1, x2, x3, . . . , xn) which is an observation of a stochastic
process, X = (X1, X2 , . . . , Xn).

A scatter plot is a display of the points Pi = (xi, xi+1), = 1, 2, . . . ,
(n – 1) . If little or no dependence exists, the points should be scattered in a
random fashion. If, on the other hand, a trend line becomes apparent then
dependence does exist. For positively correlated data, the line will have a
positive slope; that is, both coordinates of the points Pi will be either large
or small. If data are negatively correlated the trend line will have a
negative slope; that is, a small value of xi will be associated with a large
value of xi+1 and vice versa.

We illustrate the method with two separate time series. The first consists
of 300 data values generated from a gamma distribution (with = 2, =
1/3)2. The second has 365 values representing the daily maximum
temperatures in Ottawa, Ontario, Canada3 between May 20, 2005 and May
20, 2006.

Figure 3.2 shows the scatter plot for the first case. Clearly there is no
apparent trend and consequently independence can be assumed. The
scatter plot shown in Figure 3.3 for the temperature data shows a trend line
with a positive slope. The implied positive correlation is to be expected
inasmuch as there is a great likelihood that the temperature on successive
days will be similar.

2 Generated using the Microsoft ® Office Excel 2003 Application.
3 Source: http://ottawa.weatherstats.ca.

i

68 3. DEDS Stochastic Behavious and Data Modelling

0

5

10

15

20

25

0 5 10 15 20 25

x(i)

x
(i

+
1
)

FIGURE 3.2. Scatter plot showing uncorrelated data.

-20

-10

0

10

20

30

40

-20 -10 0 10 20 30 40

x(i)

x
(i

+
1
)

FIGURE 3.3. Scatter plot showing correlated data.

A scatter plot is a presentation of data values that are immediately
adjacent, that is, that have a lag of 1. An autocorrelation plot on the other
hand is more comprehensive because it evaluates possible dependence for
a range of lag values. An autocorrelation plot is a graph of the sample
autocorrelation)(ˆ k for a range of lag values k, where:

3.3 Data Modelling 69

)()(

))())(((

)(ˆ
2

1

nskn

nxxnxx

k

kn

i
kii

 .

Here)(nx and s2(n) are estimates of the sample mean and sample variance
respectively for the time series (some elaboration can be found in Section
A1.8 of Annex 1).

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Lag k

A
u

to
c
o

rr
e
la

ti
o

n

(j
)

FIGURE 3.4. Autocorrelation plot showing uncorrelated data.

Figure 3.4 shows the autocorrelation plots for the time series obtained
from the gamma distribution. The graph shows that the sample
autocorrelation is low for all lag values which reinforces the earlier
conclusion that the data are independent. For the temperature time series
the autocorrelation plot in Figure 3.5 shows high values for the sample
autocorrelation for all lag values between 1 and 30, indicating a high level
of correlation between temperatures over the first month.

70 3. DEDS Stochastic Behavious and Data Modelling

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Lag k

A
u

to
c
o

rr
e
la

ti
o

n

(j
)

FIGURE 3.5. Autocorrelation plot showing correlated data.

3.3.2.2 Testing for Stationarity

. , m} has been acquired for the stochastic process X. Each i is an n(i)-
tuple of values obtained for the constituent random variables within X; that
is, = (xi,1, xi,2, . . . , xi,n(i)). The process X could, for example, represent the
interarrival times of customers at the deli counter introduced earlier. The
n(i)-tuple (or time series) , could be interpreted as an observation of X on
the ith day of an m-day collection period. Testing for stationarity can be a
relatively elaborate process but as a minimum it requires the assessment of
the degree to which average values within the collected data remain
invariant over time.

We outline below a graphical method that provides insight into the
variation over time of the average value of the collected data hence an
approach for carrying out a fundamental test for stationarity. Assume that
the collected data extend over a time interval of length T. The procedure

T into a set of L time cells of length t. Recall that each
data value (say xi,j) is necessarily time indexed (either explicitly or
implicitly) and consequently falls into one of the L time cells. The n(i)
values in the time series xi can then be separated into disjoint subsets
according to the time cell to which each value belongs. The average value
of the data in each cell is computed for each of the m time series and then a
composite average over the m time series is determined and plotted on a

We begin with the assumption that a collection of values { : i = 1, 2, . .

begins by dividing

^xi

^xi

^xi

^x

3.3 Data Modelling 71

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

9:
00

:0
0 A

M

10
:0
0:0

0
A
M

11
:0
0:0

0
A
M

12
:0
0:0

0
P
M

1:
00

:0
0 P

M

2:
00

:0
0 P

M

3:
00

:0
0 P

M

4:
00

:0
0 P

M

5:
00

:0
0 P

M

Time Cell

A
v
e
ra

g
e
 I

n
te

r-
A

rr
iv

a
l

T
im

e
s

FIGURE 3.6. Nonstationary interarrival times.

time axis that is similarly divided into L cells. The resulting graph
therefore displays the time behaviour of average values within the cells.

Within the context of our deli example, the recorded data could
represent observations of the customer interarrival times. For day i, we
denote by cia the average interarrival time in cell c. Then, for each time

cell c, we compute an overall average interarrival time ca using data from
all m days; that is,

m

i
cic a

m
a

1

1
.

The value ca provides an estimate for the mean of the underlying
distribution of those interarrival time random variables whose time index
falls in the time cell c.

A plot of ca versus time cell c provides a visual aid for evaluating how
the mean of the distributions vary over time. Figure 3.6 shows such a plot
computed from three days of observed interarrival times in the deli
between 9 AM and 6 PM. An interval t of 30 minutes was used. The plot
clearly shows that the mean does vary because smaller averages occur
around noon and at the end of the day, that is, during rush-hour periods.

72 3. DEDS Stochastic Behavious and Data Modelling

3.3.3 Fitting a Distribution to Data

Fitting a theoretical distribution that matches time series data obtained
from a homogeneous stochastic process is a trial-and-error procedure. The
procedure usually begins with a histogram developed from the collection
of N values belonging to some particular time series. If the objective is a
continuous distribution then the histogram provides a representation whose
shape approximates the underlying probability density function. On the
other hand, if the objective is a discrete distribution, then the histogram
provides a representation whose shape approximates the underlying
probability mass function. A plot of the associated cumulative distribution
function can also be helpful for specifying empirical distributions.

The general shape of the histogram serves to suggest possible theoretical
distribution candidates. Parameters that are associated with theoretical
distributions then need to be estimated. Goodness-of-fit tests are generally
used to determine how well the parameterised distribution candidates fit
the data. A selection is made based on the results from this analysis.

As an example, consider a time series obtained by observing the ‘group
sizes’ that enter a restaurant over the course of a particular business day.
The distribution of interest here is discrete and the histogram shows the
number of occurrences of each of the group sizes as contained in the
available time series data. The histogram shown in Figure 3.7 illustrates a
possible outcome. A group size of 4 clearly occurs most frequently. The
associated cumulative distribution is also provided in Figure 3.7; and it
shows, for example, that just over 70% of the group sizes are equal to or
less than 4.

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9

Number of Clients in Group

F
re

q
u

e
n

c
y
 (

P
M

F
)

0

0.2

0.4

0.6

0.8

1

1.2

C
u

m
m

u
la

ti
v
e
 (

C
D

F
)

FIGURE 3.7. Histogram for discrete valued data.

3.3 Data Modelling 73

An approximation process is required to handle the continuous case, that
is, the case where observed data values can assume any value in a
prescribed interval of the real line. In this circumstance, a histogram is
constructed by dividing the interval into subintervals called bins. The
number of values that fall into each bin is counted and plotted as the
frequency for that bin. The ‘smoothness’ of the graph that results is very
much dependent on the bin size. If the bin size is too small, the resulting
plot can be ragged. If the bin size is too large, the graph’s value for
inferring a candidate distribution can be compromised. Banks et al. [3.2]
suggest choosing the number of bins to be n , where n is the number of
values in the time series observation. On the other hand, Stat::fit [3.7]
recommends 3 2n for the number of bins.

Figure 3.8 shows a histogram created using 100 data values (n = 100)
generated from an exponential distribution using 22 bins. It illustrates how
a ragged plot can occur when the bin size is too small. Figure 3.9 shows
the histogram using 10 bins (value recommended by Banks et al.).
Figure 3.10 shows the histogram using 6 bins (recommended value used in
Stat::Fit).

0

5

10

15

20

25

0 0.063 0.126 0.189 0.252 0.315 0.378 0.441

Inter-Arrival Times

F
re

q
u

e
n

c
y
 (

P
D

F
)

0

0.2

0.4

0.6

0.8

1

1.2

C
u

m
u

la
ti

v
e
 (

C
D

F
)

FIGURE 3.8. Histogram of interarrival times with 22 bins.

74 3. DEDS Stochastic Behavious and Data Modelling

0

5

10

15

20

25

30

35

40

45

50

0 0.046 0.092 0.138 0.184 0.23 0.276 0.322 0.368 0.414 0.46

Inter-Arrival Times

F
re

q
u

e
n

c
y
 (

P
D

F
)

0

0.2

0.4

0.6

0.8

1

1.2

C
u

m
m

u
la

ti
v
e
 (

C
D

F
)

FIGURE 3.9. Histogram of interarrival times with 10 bins.

0

10

20

30

40

50

60

70

0 0.077 0.154 0.231 0.308 0.385 0.462

Interarrival Times

F
re

q
u

e
n

c
y
 (

P
D

F
)

0

0.2

0.4

0.6

0.8

1

1.2

C
u

m
m

u
la

ti
v
e
 (

C
D

F
)

FIGURE 3.10. Histogram of interarrival times with 6 bins.

Once the histogram has been created, the shape of the histogram is used
to select one or more theoretical distributions as possible candidates for the
data model. Estimated values for the parameters of each of these

3.3 Data Modelling 75

candidates must be obtained and a number of estimation methods
developed for this purpose are available. In the discussion that follows we
briefly examine the category of estimators called maximum likelihood
estimators (further details can be found in [3.13]).

The sample mean)(nx and the sample variance s2(n) of the time series
observation play a key role in the maximum likelihood parameter
estimation procedure. Table 3.1 shows how maximum likelihood
estimators for the parameters of several distributions are computed. Estimators
for other distributions can be found in [3.2] and [3.13].

Once parameters for a candidate distribution have been estimated, a
goodness-of-fit test needs to be used to determine how well the selected
theoretical distribution (with assigned parameters) fits the collected data.
Various such tests are available and an overview can be found in Law and
Kelton [3.13] or Banks et al. [3.2]. Among the options is the chi-square test4
which we summarise below.

TABLE 3.1. Maximum likelihood estimators.

Distribution Parameters Estimators
Exponential

)(

1ˆ
nx

Normal µ, 2

)(ˆ

)(ˆ

22 ns

nx

Gamma , Compute
1

1

)ln(
1

))(ln(
n

i
ix

n
nxT and find ˆ

)(

ˆ
ˆ

nx

Suppose Dc is the parameterised candidate distribution to be tested. The
objective is to determine if there is a basis for rejecting Dc because it
provides an inadequate match to the collected data. The first step in the test
is to determine a value for an adequacy measure Am that essentially
compares the frequencies in the histogram formulated from the collected
data to expected frequency values provided by Dc.The definition of Am is:

4 The test is shown for the continuous distribution. For discrete distributions, each

value in the distribution corresponds to a class interval and pi = P(X = xi). Class
intervals are combined when necessary to meet the minimum-expected-interval-
frequency requirement (Ei is less than 5).

from Table 3.4 using linear interpolation.

76 3. DEDS Stochastic Behavious and Data Modelling

k

i i

ii
m

E

EO
A

1

2)(
 , (3.1)

where:

of bins in the data histogram. In other words, a class interval is initially
associated with each bin.
Ei is the expected frequency for the ith class interval based on Dc. It is
defined as Ei = npi, where pi is the probability that a value falls into the

i+1] where xi and xi+1 are the boundaries of

series data. The probability pi can be computed using the cumulative
density function F(x) of Dc; that is,

i i+1) – F(xi).

When Ei is less than 5, the interval is combined with an adjacent one
(thus the new interval contains multiple adjacent bins) and the value of k
is appropriately reduced. The Ei for the new enlarged interval is then re-
evaluated. This step is repeated until all Ei values are greater than 5.
The value Oi corresponds to the frequency observed in the histogram bin
that corresponds to the ith class interval. For a class interval that
contains more than one bin, the frequencies from the corresponding
histogram bins are summed to provide the value for Oi.

Clearly the intent is to have Am as small as possible. The practical
question, however, is whether Am is sufficiently small. The decision is
made by comparing the value of Am with a ‘critical value’ *, obtained from
the chi-square distribution table as given in Table 3.5. The selection of *

depends on two parameters; the first is the degrees of freedom, = k – g –
1, where g is the number of parameters embedded in Dc and the second is

 (the level of significance) for which 0.05 is a commonly used value. If
Am > *, then Am is not sufficiently small and Dc should be rejected as a
distribution option.

The procedure outlined above for fitting a theoretical distribution to a
time series observation is illustrated with the gamma distributed data used
in Section 3.3.2.1. Seventeen (the approximate square root of 300) bins
were used to generate the histogram shown in Figure 3.11. Two theoretical

Values for the sample mean and sample variance of the data are)300(x

= 5.58 and s2(300) = 14.26 respectively. The estimator of the exponential

ii x < x x

p = F(x

exponential distribution and then a gamma distribution.
distributions are selected for consideration as candidates, first an

k is the number of class intervals which initially is equal to the number

=interval; that is, p
the ith class interval and n is the number of values in the available time

P[

3.3 Data Modelling 77

distribution’s single parameter ˆ is equal to 1/5.58 = 0.179. Table 3.2
shows the values for Oi derived from the data histogram and Ei derived
from the exponential distribution candidate (with mean 5.58). Notice how
the bins 12 to 17 are collapsed into two class intervals. Using the data in

m = 11 (k =
13 and g = 1) and = 0.05, the critical value (from Table 3.5) is *= 19.68.
Because Am > * the exponential distribution candidate is rejected by the
test.

FIGURE 3.11. Histogram for 300 data values (gamma distributed).

parameters are ˆ = 2.141 and ˆ = 0.384 (notice that these do not equal the
parameters used in generating the data: namely = 2 and = 1/3). Table
3.3 shows the values for Oi derived from the data histogram and Ei derived
from the gamma distribution candidate. In this case bins 10 to 17 are

Am =
10.96. Now = 8 (k = 11, g = 2) and with = 0.05, the critical value * =
15.51. Because Am < *, the gamma distribution candidate is not rejected by
the chi-square test.

From Table 3.1, the estimators for the gamma distribution’s two

collapsed into two class intervals. From Equation (3.1), it follows that

Table 3.2 it follows (from Equation (3.1)) that A = 37.30.With

0

10

20

30

40

50

60

0 2.8 5.6 8.4 11.2 14 16.8 19.6 22.4

Bins

Fr
eq

ue
nc

y
(P

DF
)

0

0.2

0.4

0.6

0.8

1

1.2

C
um

m
ul

at
iv

e
(C

DF
)

78 3. DEDS Stochastic Behavious and Data Modelling

TABLE 3.2. Observed and expected frequency data for exponential distribution
candidate.

1 0 - 1.4 22 66.56

2 1.4 - 2.8 57 51.79

3 2.8 - 4.2 54 40.30

4 4.2 - 5.6 47 31.36

5 5.6 - 7 38 24.40

6 7 - 8.4 22 18.99

7 8.4 - 9.8 16 14.78

8 9.8 - 11.2 15 11.50

9 11.2 - 12.6 10 8.95

10 12.6 - 14 14 6.96

11 14 - 15.4 1 5.42

15.4 - 16.8 2 4.22

16.8 - 18.2 0 3.28

18.2 - 19.6 0 2.55

19.6 - 21 0 1.99

21 - 22.4 1 1.55

22.4 - 23.8 1 1.20

12

13

7.50

Class Interval

7.29

2

1

Oi Ei

}}

} }{
{

TABLE

1 0 - 1.4 22 26.11

2 1.4 - 2.8 57 52.17

3 2.8 - 4.2 54 53.96

4 4.2 - 5.6 47 46.17

5 5.6 - 7 38 36.05

6 7 - 8.4 22 26.66

7 8.4 - 9.8 16 19.02

8 9.8 - 11.2 15 13.23

9 11.2 - 12.6 10 9.028

12.6 - 14 14 6.07

14 - 15.4 1 4.034

15.4 - 16.8 2 2.655

16.8 - 18.2 0 1.733

18.2 - 19.6 0 1.124

19.6 - 21 0 0.725

21 - 22.4 1 0.465

22.4 - 23.8 1 0.297

4

15 10.1010

11.0311

Class Interval Oi Ei

{ } }

 3.3. Observed and expected frequency data for gamma distribution candidate.

3.3 Data Modelling 79

TABLE 3.4. Estimating the

T ˆ T ˆ T ˆ

0.0 0.0187 2.7 1.4940 10.3 5.3110
0.0 0.0275 2.8 1.5450 10.6 5.4610
0.0 0.0360 2.9 1.5960 10.9 5.6110
0.1 0.0442 3.0 1.6460 11.2 5.7610
0.1 0.0523 3.2 1.7480 11.5 5.9110
0.1 0.0602 3.4 1.8490 11.8 6.0610
0.1 0.0679 3.6 1.9500 12.1 6.2110
0.1 0.0756 3.8 2.0510 12.4 6.3620
0.1 0.0831 4.0 2.1510 12.7 6.5120
0.2 0.1532 4.2 2.2520 13.0 6.6620
0.3 0.2178 4.4 2.3530 13.3 6.8120
0.4 0.2790 4.6 2.4530 13.6 6.9620
0.5 0.3381 4.8 2.5540 13.9 7.1120
0.6 0.3955 5.0 2.6540 14.2 7.2620
0.7 0.4517 5.2 2.7550 14.5 7.4120
0.8 0.5070 5.4 2.8550 14.8 7.5620
0.9 0.5615 5.6 2.9560 15.1 7.7120
1.0 0.6155 5.8 3.0560 15.4 7.8620
1.1 0.6690 6.0 3.1560 15.7 8.0130
1.2 0.7220 6.2 3.2570 16.0 8.1630
1.3 0.7748 6.4 3.3570 16.3 8.3130
1.4 0.8272 6.6 3.4570 16.6 8.4630
1.5 0.8794 6.8 3.5580 16.9 8.6130
1.6 0.9314 7.0 3.6580 17.2 8.7630
1.7 0.9832 7.3 3.8080 17.5 8.9130
1.8 1.0340 7.6 3.9580 17.8 9.0630
1.9 1.0860 7.9 4.1090 18.1 9.2130
2.0 1.1370 8.2 4.2590 18.4 9.3630
2.1 1.1880 8.5 4.4090 18.7 9.5130
2.2 1.2400 8.8 4.5600 19.0 9.6630
2.3 1.2910 9.1 4.7100 19.3 9.8130
2.4 1.3420 9.4 4.8600 19.6 9.9630
2.5 1.3930 9.7 5.0100 20.0 10.1600
2.6 1.4440 10.0 5.1600

Derived from table provided by Choi and Wette [3.4].

 parameter for the gamma distribution.

80 3. DEDS Stochastic Behavious and Data Modelling

TABLE 3.5. Chi-square distribution.

Degrees of
freedom

0.005 0.01 0.025 0.05 0.1
1 7.88 6.63 5.02 3.84 2.71
2 10.60 9.21 7.38 5.99 4.61
3 12.84 11.34 9.35 7.81 6.25
4 14.86 13.28 11.14 9.49 7.78
5 16.75 15.09 12.83 11.07 9.24
6 18.55 16.81 14.45 12.59 10.64
7 20.28 18.48 16.01 14.07 12.02
8 21.95 20.09 17.53 15.51 13.36
9 23.59 21.67 19.02 16.92 14.68

10 25.19 23.21 20.48 18.31 15.99
11 26.76 24.72 21.92 19.68 17.28
12 28.30 26.22 23.34 21.03 18.55
13 29.82 27.69 24.74 22.36 19.81
14 31.32 29.14 26.12 23.68 21.06
15 32.80 30.58 27.49 25.00 22.31
16 34.27 32.00 28.85 26.30 23.54
17 35.72 33.41 30.19 27.59 24.77
18 37.16 34.81 31.53 28.87 25.99
19 38.58 36.19 32.85 30.14 27.20
20 40.00 37.57 34.17 31.41 28.41
21 41.40 38.93 35.48 32.67 29.62
22 42.80 40.29 36.78 33.92 30.81
23 44.18 41.64 38.08 35.17 32.01
24 45.56 42.98 39.36 36.42 33.20
25 46.93 44.31 40.65 37.65 34.38
26 48.29 45.64 41.92 38.89 35.56
27 49.64 46.96 43.19 40.11 36.74
28 50.99 48.28 44.46 41.34 37.92
29 52.34 49.59 45.72 42.56 39.09
30 53.67 50.89 46.98 43.77 40.26
40 66.77 63.69 59.34 55.76 51.81
50 79.49 76.15 71.42 67.50 63.17
60 91.95 88.38 83.30 79.08 74.40
70 104.21 100.43 95.02 90.53 85.53
80 116.32 112.33 106.63 101.88 96.58
90 128.30 124.12 118.14 113.15 107.57

100 140.17 135.81 129.56 124.34 118.50

Level of Significance ()

Generated using Microsoft Excel function CHIINV

3.3 Data Modelling 81

3.3.4 Empirical Distributions

When it is difficult to fit a theoretical distribution to the collected data, an
empirical distribution can usually be formulated to serve as a data model.
The procedure requires a cumulative distribution function (CDF) and this
can be easily developed from the histogram of the collected data.5 Observe,
for example, that in Figure 3.11 the CDF is already present and defined by
a series of points. Values between these points can be obtained by

We use the Java Class Empirical6 as a data module. It first creates an
empirical distribution and then uses the resulting data model to generate
samples. The main steps involved are as follows. An array of histogram

the distribution using the CDF and the inverse transform method discussed
later in Section 3.4.2.

Figure 3.12 shows a short Java method that instantiates an Empirical
object called empDM (empirical data module), extracts the CDF

random numbers. The object empDM is instantiated with the Class

distribution is continuous and linear interpolation
 is to be used to

i i

where:

L

k

ii

i

khistogramKandyF

K

ihistogram
yFyF

iwithy

1

0

1

][0)(

][
)()(

.....,2,1

5 It is also possible to derive the CDF directly from the collected data.
6 The Empirical Class is provided as part of the cern.colt Java package provided by

details on using this package.

frequencies is first provided to an Empirical object. When instantiated,
the object creates an internal representation of the CDF from these

interpolation (e.g., linear interpolation).

frequencies. The Empircal object generates random variates from

data
histogram provided by the user. (Figure 3.12 provides 17 values taken

 indicates that the

The array histogram contains the frequency values from a

constructor that has the following three arguments.

the second argument a discrete CDF is created and used.

generate radom samples from the constructed CDF.

The third argument is a uniform random number generator object.

 is used).

 following way:

CERN (European Organization for Nuclear Research). See Section 5.4.3 for more

representation from empDM, and then invokes empDM to generate ten

from Figure 3.11.)

L and scaleFactor is the bin width.i * scaleFactor

 The value Empirical. LINEAR_INTERPOLATION for the second argument

Otherwise when the value Empirical. NO_INTERPOLATION is used for

(in Figure 3.12, the MersenneTwister uniform random number generator

The object first defines L points (y ,F(y)) on the CDF, F(y), in the

82 3. DEDS Stochastic Behavious and Data Modelling

i

by the program).

FIGURE 3.12 Implementing a data module using an empirical distribution.

 public static void main(String[] args)
 {
 double randomValue;
 double[] histogram = {
 22, 57, 54, 47, 38, 22, 16,
 15, 10, 14, 1, 2, 0, 0, 0, 1, 1
 };
 double scaleFactor=1.4; // Width of the histogram bin

 // Create Empirical Object
 Empirical empDM=new Empirical(histogram,
 Empirical.LINEAR_INTERPOLATION,
 new MersenneTwister());

 // Lets get defining points on the CDF from empDM

 {
 System.out.println(i+", "+(i*scaleFactor)+", "+empDM.cdf(i));
 }

 // Get empDM to generate 10 random numbers
 for(int i=0 ; i<20 ; i++)
 {

 System.out.println(randomValue);
 }
 }

The method cdf(i) returns the value F(y). Table 3.6 shows the points defined
on the CDF by empDM in the program of Figure 3.12 (the table is generated

double yMax = histogram.length*scaleFactor; // maximum data value

for(int i = 0 ; i<=histogram.length ; i++)

 randomValue = yMax*empDM.nextDouble();

The random numbers generated by the Empirical object empDM in Figure
3.12 vary between 0 and 1. Thus random values returned by empDM must
be multiplied by yMax (23.8) to obtain values that fall into the domain of

3.3 Data Modelling 83

TABLE 3.6. The CDF used by the empirical object empDM.

i F()
0 0 0
1 1.4 0.073333
2 2.8 0.263333
3 4.2 0.443333
4 5.6 0.6
5 7 0.726667
6 8.4 0.8

8 11.2 0.903333
9 12.6 0.936667
10 14 0.983333
11 15.4 0.986667
12 0.993333
13 18.2 0.993333
14 19.6 0.993333
15 21 0.993333
16 22.4 0.996667
17 23.8 1

9.3559343, 1.4540021, 8.0323057, 5.3995883, 6.0610477, 3.8339216,
6.385926, 1.9355035, 9.2322093, 1.5383085, 4.5596041, 3.2674369,
7.8097124, 4.0771284, 5.7625121, 4.9623389, 2.9529618, 3.1037785,
10.877524. These correctly fall in the domain of the CDF, that is, between

3.3.5 Data Modelling with No Data

When data cannot be collected or are not available (e.g., the SUI does not
exist), then educated guesses provide the means of last resort for
formulating data models for the autonomous stochastic processes. These

iy
iy

7 9.8 0.853333

16.8

the CDF. The code shown in Figure 3.12 produces the following values: 6.3445029,

0 and yMax.

84 3. DEDS Stochastic Behavious and Data Modelling

guesses can be based on research material and/or on information obtained
from individuals who are particularly familiar with the SUI.

When the only features that can be confidently assumed about a random
phenomenon that needs to be modelled are its minimum and maximum
values then a reasonable distribution candidate is the uniform distribution
(see Section A1.4.4.1). Because of this ‘minimum knowledge’ feature the
uniform distribution is sometimes referred to as the distribution of
maximum ignorance.

If the minimum, maximum, and modal values of a distribution can be
specified, then the triangular distribution provides a convenient choice (see
Section A1.4.4.2). The Beta distribution (see Section A1.4.4.8) can
provide a variety of forms over the unit interval [0, 1] and can be easily
shifted to accommodate other intervals.

Hundreds of distributions have been created to model many different
types of phenomena. The type of phenomena under consideration often
suggest a particular group of candidate distributions that are especially

comprehensive discussion can be found in Banks et al. [3.2].

3.4 Simulating Random Behaviour

techniques for generating samples from a specified distribution, in other
words, techniques for generating random variates. The presentation is not
intended to be complete and comprehensive. Its purpose is primarily to
provide some insights into the techniques that are widely implemented in
simulation software environments and consequently are conveniently
accessible. Nevertheless, some appreciation for the nature of the
procedures being invoked can provide a basis for ensuring correct usage,
understanding potential shortcomings, and dealing with unanticipated
results.

3.4.1 Random Number Generation

As will become apparent in the following subsection, the common methods
for generating random variates depend on the availability of a stream of
random numbers that are uniformly distributed on the unit interval.
Although a procedure for generating uniformly distributed random
numbers has its own intrinsic importance, this alternate role considerably
amplifies this importance. On first glance, the development of such a
procedure might seem straightforward but this is far from being so. The

relevant. Several examples of this relationship are presented in Annex 1. A

In this section we provide an overview of some of the most common

3.4 Simulating Random Behaviour 85

subtle complexities that need to be addressed have given rise to a
considerable body of research literature. The special journal issue of
Reference [3.5] is recommended for readers wishing to explore the topic in
more detail within a modeling and simulation context.

From a theoretical point of view the basic requirement is that any value
in the [0, 1] interval be equally likely and that there be no interdependence
among the values that are generated (e.g., values to the right of the mean
and to the left of the mean should not occur in batches or values should not
tend to have a pattern of successively diminishing or successively
increasing). From a practical point of view, there are implicit requirements
for:

Computational efficiency because many thousands of variates may be
needed for any particular simulation experiment.
Reproducibility because it should be possible to replicate any particular
random number stream in order to repeat experiments.
Hardware independence; that is, the procedure should not be intimately
locked into the hardware architecture of any particular computer in
order to ensure portability.

The reproducibility requirement might correctly suggest a fundamental
contradiction to the reader. The important implication here is that we are
obliged to abandon our original quest and be satisfied with the generation
of pseudorandom numbers which provide reproducibility at the expense of
genuine ‘randomness.’ We note furthermore that any implementation via
an algorithmic process will intrinsically provide reproducibility. Thus the
challenge reduces to the search for a ‘good’ algorithm, that is, one that
yields a random number stream that has satisfactory statistical properties
and also provides the efficiency and hardware independence that we seek.

The most widely used technique for generating streams of
pseudorandom numbers is an approach called the linear congruential
method. It is the remarkably simple iterative formula:7

Ki = (a Ki-1 + c) mod m; with i = 1, 2, . . . ,

where a and m are positive integers and c is a nonnegative integer. The
initial value K0 (likewise a positive integer) is called the seed. It was first
proposed by Lehmer [3.15] with c = 0 in which case the method is called
the multiplicative congruential method. The case where c 0 (which is
called the mixed congruential method) was suggested by Rotenberg [3.17]
and Coveyou [3.6]. As might be expected, the values chosen for the
parameters a, c, and m have a significant impact on the statistical quality of
the sequence of numbers that are generated.

7 Mod is the modulo operator; p mod q yields the remainder when p is divided by

q where both p and q are positive integers.

86 3. DEDS Stochastic Behavious and Data Modelling

Several basic features of the formula should be noted:

The integer values that are generated fall in the [0, m – 1] interval. They
can be shifted into the [0, 1) interval simply by dividing by m. In other
words, the values ui = Ki/m fall in the range [0, 1).
Suppose that the qth value Kq in the sequence K1, K2, . . . , Kp, . . . , Kq is
the first occurrence of equality to a previously generated value Kp, then
the subsequence between Kp and Kq will be continually recycled as the
sequence continues. Such an occurrence must happen sooner or later
because there are at most m distinct values that can be generated. In
other words, the process has a maximum period of m.
Because at most m distinct values can be generated, there is an
immediate divergence from the properties of a ‘genuine’ continuous
random variable U that is uniformly distributed on the [0, 1] interval.
For example, suppose m > 3; then the probability that U falls between
2.5/m and 2.6/m is 0.1/m. However, there is zero probability that the
linear congruential method will yield a value in this range.

These apparent shortcomings of the approach can, to a large extent, be
overcome by suitable choices for the available parameters, a, c, and m.
Selection of a very large value for m has obvious advantages. In fact, m is
typically chosen to be of the form 2b where b is the word length of the
computer being used. That choice has the added advantage of simplifying
the modulo calculation which can be carried out with a shift or mask
operation.

As noted earlier, the longest possible period for the linear congruential
method is m. An obvious question then is whether there exist parameter
selections that will yield this limiting period. The following result due to
Hull and Dobell [3.8] answers the question.

The linear congruential method has full period (a period of m) if
 and only if the following conditions hold (throughout, divides means
 exactly divides; i.e., zero remainder):

– The only positive integer that divides both m and c is 1.
– If q is a prime number (divisible only by itself and 1) that divides
m, then q divides (a – 1).
– If 4 divides m, then 4 divides (a – 1) (i.e., a = 4k – 1 for some
positive integer k).

Notice that the first of these conditions precludes the existence of a full
period multiplicative congruential method. If m is chosen to be a power of
2, for example, m = 2b (b > 0) then a full period method results if and only
if c is an odd integer and a = 4k – 1 for some positive integer k.

Although a full period multiplicative congruential generator is not
possible (because the first condition listed above fails), the statistical

3.4 Simulating Random Behaviour 87

properties of this method have generally proved to be superior to those of
the mixed generators. Consequently it is widely used. It can be shown (see,
for example, Knuth [3.11]) that if m is chosen to be 2b then the maximum
period is 2b-2 and this period is achieved if K0 is odd and a = 8k + h, where
k is a nonnegative integer and h is either 3 or 5.

A variety of tests has been formulated for assessing the acceptability of
any random number stream, for example, frequency test, runs test, and
poker test. These have been designed to detect behaviour that is
inconsistent with the statistical integrity of the stream. Some details of
these tests can be found in Banks et al. [3.2] and Law and Kelton [3.13].

3.4.2 Random Variate Generation

Our concern in this section is with generating samples from arbitrary, but
specified, distributions. The techniques we outline depend on the
availability of random samples that are uniformly distributed. In practice
these random samples will originate from an algorithmic procedure which
provides samples whose statistical properties only approximate those of a
uniform distribution, for example, the techniques outlined in the previous
section. Consequently we are obliged to acknowledge that the results
generated will likewise fall short of being ideal.

One of the most common techniques for generating variates from a
specified distribution is the inverse transform method. Its application
depends on the availability of the CDF, F(x), of the distribution of interest.
The method is equally applicable for both the case where the distribution is
continuous or discrete. We consider first the continuous case.

Application of the method in the continuous case requires the
assumption that F(x) is strictly increasing; that is, F(x1) < F(x2) if and only
if x1 < x2. A representative case is shown in Figure 3.13. Because of this
assumption it follows that P[X x] = P[F(X) F(x)]. The procedure is
illustrated in Figure 3.13 and is as follows (F-1 denotes the inverse of the
CDF).

Generate a sample u from the uniform distribution on [0, 1] (recall that

U

Take y = F-1(u) to be the generated value (note that F-1 (u) is defined
because u falls in the range 0 and 1, which corresponds to the range of
F).

the CDF for this distribution is F (u) = P[U u] = u).

88 3. DEDS Stochastic Behavious and Data Modelling

F(x)

x

1

0

U → u

y

Y

FIGURE 3.13. Illustration of the inverse transform method for the case of a
continuous distribution.

The procedure, in effect, creates a random variable Y = F-1(U). To
confirm that the procedure is doing what we hope it is doing, we need to
demonstrate that P[Y y] = F(y), that is, that the CFD for Y is the one of
interest. This demonstration is straightforward:

)(

)](P[

)increasingstrictlyis(because)]()((P[

])(P[]P[

1

1

yF

yFU

FyFUFF

yUFyY

When the CDF of interest can be explicitly ‘inverted,’ the procedure
becomes especially straightforward. Consider the case of the exponential
distribution with mean 1/ ; the CDF is F(x) = 1 – exp(– x). We begin by
setting u = F(x) = 1 – exp(– x) and then obtaining an expression for x in
terms of u. This can be readily achieved by taking the natural logarithm
which yields:

x = – ln(u – 1) / . (3.2)

The implication here is that if we have a sequence of u's that are uniformly
distributed random values on the interval [0, 1] then the corresponding
values x given by Equation (3.2) will be a sequence of samples from the
exponential distribution having mean 1/ .

The inverse transform method is equally applicable when the
requirement is for random variates from a discrete distribution. Suppose

3.4 Simulating Random Behaviour 89

that X is such a random variable whose range of values is x1, x2, . . . , xn.
Recall that in this case the CFD, F(x) is:

F(x) = P[X x] =)(
xx

i

i

xp ,

where p(xi) = P[X = xi]. The procedure (which is illustrated in Figure 3.14)
is as follows.

 Generate a sample u from the uniform distribution on [0, 1] (i.e.,
from the distribution whose CDF is FU(u) = P[U u] = u) .
Determine the smallest integer K such that u F(xK) and take xK

F(x)

x

1

U → u

x1 x2 x3 x4 x5

p(x5)

p(x4)

p(x3)

p(x2)

p(x1)

X
~

FIGURE 3.14. Illustration of the inverse transform method for the case of a discrete
distribution.

Repetition of the procedure generates a stream of values for a random

variable that we can represent by X
~

. To verify the correctness of the
procedure, we need to demonstrate that the values xi that are generated

satisfy the condition P[X
~

= xi] = p(xi), for i = 1, 2, . . . , n. Observe first

that X
~

 = x1 if and only if U F(x1). Thus:

P[X
~

= x1] = P[U F(x1)] = F(x1) = p(x1) .

 to be
the generated value.

90 3. DEDS Stochastic Behavious and Data Modelling

Assume now that i > 1. The procedure ensures that:

X
~

= xi if and only if F(xi-1) < U F(xi).

Consequently:

P[X = xi] = P[F(xi-1) < U F(xi)]

 = FU(F(xi)) – FU(F(xi-1))

 = F(xi) – F(xi-1)

 = p(xi) ,

which completes the demonstration. Note that the above relies on the fact
that for any discrete CDF, FY(y), it is true that P[a < Y b] = FY(b) – FY(a).

form, the inverse transform method is not conveniently applicable for
generating samples from that distribution. Fortunately there are a number
of alternative general methods available which can be used. In fact, there is
one technique that is specifically tailored to the normal distribution. This is
the polar method

An alternate general technique is the rejection–acceptance method. Its
implementation depends on the availability of the probability density
function of the distribution of interest (hence it can be used for generating
samples from the normal distribution). It is equally applicable for both
discrete and continuous distributions. In its simplest form, the method
involves generating samples from a uniform distribution and discarding
some samples in a manner which ensures that the ones that are retained
have the desired distribution. The method shares some features with the
Monte Carlo method for evaluating integrals (see Section 1.6). A more
comprehensive treatment of the method can be found in Reference [3.16]
where the presentation includes a more general approach for the
underlying procedure than we give in the following discussion.

In the simplest form described here, the implementation depends on the
assumption that the probability density function f(x) (or probability mass
function) of interest is bounded on the left (by a) and on the right (by b).
Consequently if a long ‘tail’ exists, it needs to be truncated to create the
values a and b. We assume also that the maximum value of f(x) on the
interval [a, b] is c.

The procedure (which is illustrated in Figure 3.15) is as follows.

Generate two samples u1 and u2 from the uniform distribution on [0,1].
(i.e., from the distribution whose CDF is FU(u) = P[U u] = u).
Compute x~ = a + u1 (b – a).
Compute y~ = c u2.

Because the CDF for the normal distribution cannot be written in closed

 and a description can be found in Ross [3.16].

3.4 Simulating Random Behaviour 91

If y~ f(x~) accept x~ as a valid sample; otherwise repeat the process
with the generation of two new samples from U.

f(x)

c

a b x

f(x)

c

a b x

U

U

)(~
1 abuax

ycu ~
2

)~(xf)~(xf

y~

x~

FIGURE 3.15. Illustration of the rejection–acceptance method.

Although by no means a formal proof, the following observations
provide some intuitive confirmation of the procedure’s correctness. Note
that the tuple (x~ , y~) is a point in the abc rectangle. Because the values u1

and u2 are independent samples from the uniform distribution each point in
the rectangle is equally likely to occur. Suppose x1 and x2 are two distinct
points in the [a, b] interval with f(x1) > f(x2) (see Figure 3.16). Over a large
number of repetitions of the procedure x~ will coincide with x1 and x2 the
same number of times. However the occurrence of x1 is far more likely to
be output by the procedure than x2. More specifically,

Given that x1 has occurred the probability of it being output is:

P[c U f(x1)] = P[U f(x1)/c] = f(x1)/c.

Given that x2 has occurred the probability of it being output is:

P[c U f(x2)] = P[U f(x2)/c] = f(x2)/c

Although the occurrence of x1 and x2 are equally likely, the relative
proportion of x1 outputs to x2 outputs is proportional to f(x1)/f(x2) which is
consistent with an intuitive perspective of the distribution of interest.

92 3. DEDS Stochastic Behavious and Data Modelling

f(x)

c

a b xx1 x2

f(x1)

f(x2)

FIGURE 3.16. Illustration of relative output frequency.

One shortcoming of the method is the uncertainty that any particular
execution of the procedure will be successful (i.e., yield an acceptable
sample). The probability of success is equal to the relative portion of the
abc rectangle that is filled by the density function of interest. Because the
area of the rectangle is c(b – a) and the area of the density function is 1,
the probability of success is the ratio 1/[c(b – a)]. Two representative cases
are shown in Figure 3.17: the occurrence of rejections will, on average, be
more frequent in the case of f2(x) than in the case of f1(x).

f1(x)

a b

c

f2(x)

a b

c

x x

FIGURE 3.17. illustration of relationship between rejection probability and shape.

3.5 References

3.1. Balci O., (1998), Validation, verification and testing, in The Handbook of
Simulation, Chapter 10, John Wiley & Sons, New York, pp. 335–393.

3.2. Banks, J., Carson II, J.S., Nelson, B.L., and Nicol, D.M., (2005), Discrete-
Event System Simulation, 4th edn., Pearson Prentice Hall, Upper Saddle
River, NJ.

3.5 References 93

3.3. Biller, B. and Nelson, B.L., (2002), Answers to the top ten input modeling
questions, in Proceedings of the 2002 Winter Simulation Conference.

3.4. Choi S.C. and Wette R., (1969), Maximum likelihood estimation of the
paramters of the gamma distribution and their bias, Technometrics, 11:
683–690.

3.5. Couture, R. and L’Ecuyer, P. (Eds.), (1998), Special Issue on Random
Variate Generation, ACM Transactions on Modeling and Simulation, 8(1).

3.6. Coveyou, R.R., (1960), Serial correlation in the generation of psuedo-
random numbers, Journal of the ACM, 7: 72–74.

3.7. Harrell, C., Ghosh, B.K., and Bowden, Jr., R.O., (2004), Simulation Using
ProModel, 2nd ed., McGraw-Hill, New York.

3.8. Hull, T.E. and Dobell, A.R., (1962), Random number generators, SIAM
Review, 4: 230–254.

3.9. Kelton, D.W., Sadowski, R.P., and Sturrock, D.T., (2004), Simulation with
Arena, 3rd ed., McGraw-Hill, New York.

3.10. Kleijnen, J.P.C., (1987), Statistical Tools for Simulation Practitioners,
Marcel Dekker, New York.

3.11. Knuth, D.E., (1998), The Art of Computer Programming, Vol. 2:
Seminumerical Algorithms, 3rd ed. , Addison-Wesley, Reading, MA.

3.12. Law A.M. and McComas, M.G., (1997), Expertfit: Total support for
simulation input modeling, in Proceedings of the 1997 Winter Simulation
Conference, pp. 668–673.

3.13. Law, A.M. and Kelton, D.W., (2000), Simulation Modeling and Analysis,
3rd ed., McGraw-Hill, New York.

3.14. Leemis, L.M. and Park, S.K., (2006), Discrete Event Simulation: A First
Course, Pearson Prentice Hall, Upper Saddle River, NJ.

3.15. Lehmer, D.H., (1949, 1951), Mathematical methods in large scale
computing units, in Proceedings of the Second Symposium on Large-Scale
Digital Calculating Machinery, 1949 and Annals Comput. Lab, 1951, vol.
26, pp. 141–146, Harvard University Press, Cambridge, MA.

3.16. Ross, S.M., (1990), A Course in Simulation, Macmillan, New York.
3.17. Rotenberg, A., (1960), A new pseudo-random number generator, Journal of

the ACM, 7: 75–77.

Chapter 4 A Conceptual Modelling Framework
for DEDS

4.1 Need for a Conceptual Modelling Framework

A key requirement for carrying out a meaningful discussion of any
complex topic is a collection of clearly defined concepts that map onto the
various facets of the domain of interest. Within the context of formulating
models of discrete-event dynamic systems, this requirement translates into
the need for a framework that provides a consistent and coherent way of
viewing and describing the mechanisms that give rise to behaviour. In this
chapter we present such a framework. It serves as an essential aspect of
our goal of exploring the issues that surround the successful completion of
any modelling and simulation project in the DEDS domain.

Because of the diversity and the unbounded complexity that
characterises the DEDS domain, no standardised and generally accepted
framework for representing systems in this class has yet emerged. A
variety of existing formalisms, such as finite state machines or Petri nets
([4.4] and [4.6]) can be useful in particular cases but these lack sufficient
‘modelling power’ (i.e., generality) to be universally applicable. The
DEVS approach (Zeigler [4.7] and Zeigler et al. [4.8]) on the other hand
certainly has the requisite generality but has restricted accessibility
because of its underlying mathematical formality.

Various options are possible. The one we present is informal in nature
and has considerable intuitive appeal. But at the same time, it has a high
level of both generality and adaptability. Although it is directly applicable
to a wide range of project descriptions, it can also be easily extended on an
ad hoc basis when specialised needs arise.

4.2 Constituents of the Conceptual Modelling Framework

4.2.1 Overview

Our conceptual modelling framework for DEDS is formulated from a
small number of basic components. The first is a collection of entities that
interact over the course of the observation interval by reacting to, and
giving rise to, the occurrence of events which are the second important
constituent of our framework. Entities and events represent basic building

96 4. A Conceptual Modelling Framework for DEDS

blocks. In addition, however, there is a higher-level construct called an
activity that is fundamental to our conceptual modelling framework. The
set of activity constructs within the model provides the means for
capturing relevant dynamic behaviour. Each activity, in fact, represents a
specific unit of behaviour that needs to be recognised. It can be viewed as
a relationship among some of the entities within the model. An activity is
formulated from the basic building blocks of entities and events which are,
in turn, characterised in terms of some collection of constants, parameters,
and variables that have been chosen to enable this characterisation in a
meaningful way (see Section 2.2.4).

The basic concepts underlying our approach are not new. They can be
traced back to the activity scanning paradigm that is usually identified as
one of the modelling and simulation ‘world views’. A comprehensive
presentation of activity scanning from a programming perspective can
be found in Kreutzer [4.2]. Examples of the utilisation of this paradigm
can be found in Martinez [4.3], Shi [4.5], and Gershwin [4.1].

 One particular aspect of our activity-based conceptual modelling

as a programming environment. Its purpose instead is to provide a
meaningful foundation for program development or, stated alternately, its
purpose is to serve as a vehicle for making the transition from a project
description to a simulation program.

4.2.2 Entities and Model Structure

We recognise three sets of entities in our conceptual modelling framework.
These are:

A set of consumer entity instances (cei’s), , where:

nk

kCC
1

ˆ

The sets Ck are disjoint and n is SUI-dependent. The cei’s in each
k

k

A set of resource entities. Each resource entity has relevance to the
cei’s from some of the consumer entity classes represented in .
A set Â of aggregate entities. These have real-world counterparts that
include queues and groups where the latter is simply a collection
without the ordering protocol that is associated with a queue.

The cei’s typically interact directly with the resource and the aggregate
entities within the model. This interaction gives rise to changes in the state
of the model and it is these changes that represent the dynamic behaviour
that is of interest. The sets , , and Â are dependent on the specific nature

framework needs to be emphasised; namely, that it must not be interpreted

.
consumer entity set C are all members of the same consumer entity
class which we denote by

4.2 Constituents of the Conceptual Modelling Framework 97

of the SUI; however, the conceptual model for even the simplest DEDS

The resource entities can generally be regarded as providing a service
that is sought by the cei’s. Consequently the cei’s within a model can often
be viewed as being ‘in motion’ inasmuch as they disperse throughout the
space embraced by the model in search of the services that are available
from the various resource entities. Because the rate at which these services
can be dispensed is constrained, the service-seeking cei’s are frequently
obliged to wait until they can be accommodated. Waiting takes place in an
aggregate that is connected (perhaps only implicitly) to the resource. In
effect, our conceptual modelling framework generally gives rise to a
network structure in which the nodes are resources or aggregates and the
links are paths that the cei’s can traverse.

Implicit in the description given above is the important feature
that no cei can exist except by virtue of being connected to either
an aggregate or a resource. In effect then, the resource and
aggregate entities in a model share the important common feature of
providing a ‘location’ (possibly virtual) where cei’s can temporarily

ment and termination are associated with the occurrence of
events. As becomes apparent in the following section, this has important
consequences on the manner in which we develop a meaningful
characterisation for the various entity types within any particular model.
The state variables for the model emerge from this characterisation.

Note also that any particular cei in is permitted to have only a
transient existence within the model over the course of the observation
interval. In other words the consumer entity sets Ck may be time-
dependent; that is, Ck = Ck(t). Transient existence for members of Â and
is not precluded but, at the same time, is not typical.

To illustrate these essential notions of our conceptual modelling
framework, consider the operation of a department store. Customers arrive
and generally intend to make one or more purchases at various shopping
areas of the store. At each chosen area a customer browses, makes a
selection, and then pays for it at the closest service desk before moving on
to the next shopping area. Upon completion of the shopping task the

For this fragment of a project description, the customers correspond

store at any particular moment correspond to a consumer entity set.

will normally include at least one consumer entity class, one resource, and
one aggregate.

to a consumer entity class and those instances that are in the

reside. This residency typically has finite duration and both its establish-

customer leaves the store.

, ,

98 4. A Conceptual Modelling Framework for DEDS

resource. Because the service function at a service desk has a finite
duration there is a likelihood that some cei’s may not receive immediate
attention upon arrival at the service desk. Hence it is reasonable to
associate a queue entity with each service desk. Note also that the
browsing phase at each shopping area introduces the special case of an
aggregate that we call a group. The network structure of the underlying
dynamics is apparent from the representation given in Figure 4.1.

The cei’s within a group are not organised in a disciplined way as in the
case of a queue but rather simply form an identifiable ‘grouping’. Note
furthermore that the discipline that is inherent in a queue introduces two

exit mechanism for cei’s within a queue, namely, availability of access to
the resource that is associated with the queue. As a consequence:

established.

In contrast, neither the duration of membership nor the subsequent
destination of a cei within a group is implicit in the membership property
and both of these therefore need to be explicitly specified.

Several data models are necessarily associated with the above
formulation. Included here would be the characterisation of customer
arrival rates and service times at the service desks, allocation of the
shopping areas to be visited by the arriving customers and the
characterisation of the duration of the browsing phase at each area, and so
on. It is especially important to observe that these various data models will
provide the basis for generating events that give rise to change. For
example, the event associated with the end of a particular customer’s
browsing phase will generally (but not necessarily) result in that
customer’s relocation into the queue associated with the service desk of
that service area.

Many details have yet to be clarified; for example, how is the set of
shopping areas that a particular customer visits selected? What is the order
of the visitations? And how many servers are assigned to the service
desks? Can a particular customer balk, that is, not make any purchase at
one or more of the assigned shopping areas and if so, then under what
circumstances? The information for dealing with these questions is not
provided in the given project description fragment but would most
certainly be necessary before a meaningful conceptual model could be
formulated. Indeed one of the important functions of the conceptual
modelling process is to reveal the absence of such essential details.

Each of the service desks at the various shopping areas corresponds to a

the duration of a cei’s membership in a queue is implicitly established.

important features. Both of these arise from the fact that there is a natural

the destination of a cei that departs from a queue is likewise implicitly

4.2 Constituents of the Conceptual Modelling Framework 99

FIGURE 4.1. Structural view of the conceptual model for department store
shoppers.

We refer to the conceptual modelling perspective for discrete event
ABCmod framework

be represented as a structure with three components; that is,

ABCmod = < , , > ,

where:
 is a set of consumer entity classes.
 is a set of service entities (the union of a set of aggregates and a set of

resources).
 is a set of activity constructs.

dynamic systems that is outlined above as the
(Activity-Based Conceptual modelling) and we refer to the conceptual
model that emerges as an ABCmod conceptual model. As becomes
apparent in the discussion that follows, an ABCmod conceptual model can

--- --- ---

100 4. A Conceptual Modelling Framework for DEDS

There are two types of activity constructs, the Activity and the Action.
An Activity can be viewed as a unit of behaviour which represents an
abstraction of some purposeful task that takes place within the SUI.
Generally the specification for an Activity references one of the service
entities and one or more consumer entity instances. An Activity has a
duration and results in changes in the value of some state variables within
the model. An Action resembles an Activity but with the important
difference that an Action has no duration; that is, it unfolds at one
particular instant of (simulated) time.

, and are derived from the
information provided in the project description. They are presented as a set

It needs to be stressed that a flexible interpretation of the sets and is
essential. For example, our suggestion above that the resources provide a
service to the cei’s should not be rigidly interpreted at the exclusion of
other possibilities. Consider, for example, a SUI that includes a collection
of supermarkets (a set of resources) and two particular consumer entity
classes called ‘shoppers’ and ‘delivery trucks’. Two distinct relationships
can be identified between these classes and the set of resources: namely, a
‘shopping’ Activity and a ‘delivery’ Activity, respectively. In the first case
the resources (the supermarkets) do provide a service for the shoppers
whereas in the second case, the resources receive a service from the
delivery trucks. Thus references in the sequel to the notion of resources
providing a service to cei’s should be loosely interpreted and regarded
simply as a semantic convenience.

Likewise note that the distinction between membership of entities in the
sets and can become blurred. Consider, for example, a set of machines
within a manufacturing environment that are subject to failure. A team of
maintenance personnel is available to carry out repairs. While the
machines are operating, they clearly serve as a resource in the
manufacturing operation but when they fail they become consumer entity
instances that need the service function of the maintenance team. How the
model builder chooses to view such situations is not especially critical; the
choice is typically governed by the perspective that seems most natural to
the modeller.

4.2.3 Characterising the Entity Types

The discussion in Section 4.2.2 is primarily concerned with presenting a
structural perspective of our conceptual modelling framework. We now
undertake a more detailed examination of the constituents of this structure.

of tables. The templates for these tables are included with the discussion of

The specifications for the sets ,

these various sets which follows in Sections 4.2.3 and 4.2.4.

4.2 Constituents of the Conceptual Modelling Framework 101

We begin by exploring how members of the sets and can be
characterised in a way that facilitates the specification of dynamic
behaviour (namely, the specification of the activity constructs in
the set)
identifying the state variables for the model emerges from this
characterisation. Our approach is to propose for each entity category a set
of attributes that provide the basis for a meaningful characterisation. It is
important to appreciate that the choice of attributes depends very much on
the nature of the SUI and on the project goals (e.g., its output
requirements).

As noted earlier, the cei’s that belong to can be viewed as flowing
among the aggregates and the resources in Â and , respectively. There is
therefore an essential requirement here to track both the existence and the
status of these entities to ensure that they can be processed correctly by the
rules that govern the model’s behaviour. In addition, there may be a
particular trail of data produced by the cei’s that is relevant to the output
requirements that are implicit in the project goals. These various

way. This can be achieved by associating with each consumer entity class k a
set of mk attributes that has been chosen in a way that satisfies the

reflectors. They are described below.

Property reflectors: The cei’s from any particular class k may have a
variety of essential properties or features that have direct relevance to
the manner in which they are treated in the rules of behaviour, for
example, a ‘size’ which may have one of three values (small, medium,
or large) or a ‘priority’ which may have one of two values (high or
low). The value assigned to an attribute that falls in the category of a

Path reflectors: In view of the inherent network structure of our

maintain an explicit record of what nodes a cei has already visited or
alternately, what nodes remain to be visited. Attributes that have this
function fall in the category of path reflectors. The values of these

Elapsed-time reflectors: Output requirements arising from the project
goals often need data that must be collected about the way that cei’s
have progressed through the model. Frequently this requirement is for

which we consider in Section 4.2.4. The basis for

requirements demonstrate the need to characterise each cei in some meaningful

that we call property reflectors, path reflectors, and elapsed-time

property reflector remains invariant over the course of a consumer

conceptual modelling framework, it is sometimes necessary to

a key role in initiating the transfer of the cei’s to their next destination.

entity instance's existence within the scope of the model.

through the model. The values of attributes that are path reflectors play
attributes naturally change as a particular consumer entity instance flows

underlying requirements. There are three common categories of attributes

102 4. A Conceptual Modelling Framework for DEDS

some type of elapsed time measurement. The values assigned to
attributes that fall in the elapsed-time category serve to provide a basis
for the determining the required output data. For example, it may be
required to determine the average time spent by cei’s from some
particular class k waiting for service at a particular resource entity.
The principal attribute introduced in this context could function as a
timestamp storing the value of time t when the waiting period begins.
A data value for the required data set would then be produced as the
difference between the value of time when the waiting period ends and
the timestamp.

k

of attributes associated with k provides the basis for characterising Con
using a variable that we write as C.Con. Specifically,

)(
k

m----,2,1C.Con ,

where j is the jth attribute for the class k. The value of the variable C.Con
at any moment in time t corresponds to the value of the collection of
attributes, j, j = 1, 2, . . . , mk as they exist at time t. The notation C.Con. j

is used to reference the value of the jth attribute of consumer entity
instance Con. The template for a consumer entity class is shown in Table
4.1.

When a specific cei belonging to k first appears within the scope of the
model’s behaviour (and hence becomes a member of Ck) values are
assigned to its attributes (if, in fact, a meaningful value is not yet available,
we assume for convenience that a temporary value of ‘nil’ is implicitly
assigned). The result is an mk-tuple of data values that we refer to as an
attribute-tuple.
that specific cei.

TABLE 4.1. Template for summarising a consumer entity class.

Consumer Entity Class: EntityClassName
A description of the consumer entity class called EntityClassName.
Attributes Description
AttributeName1 Description of the attribute called
AttributeName2 Description of the attribute called

AtributeNamen. Description of the attribute called AttributeNamen

Suppose Con is a cei belonging to the consumer entity class . The collection

AttributeName1.

In effect, such an attribute-tuple serves as a surrogate for

.

.
.
.

 AttributeName2.

4.2 Constituents of the Conceptual Modelling Framework 103

accessing the services associated with these resources. At any particular point
in time, however, access to a particular resource may not be possible because
the resource is already engaged (busy) or is otherwise not available (e.g., out
of service because of a temporary failure). Such circumstances are

associated with the resource where it can wait until access to the resource
becomes possible.

The most common aggregate entity is a queue. Connecting a cei to a
queue corresponds to placing the entity’s attribute-tuple in that queue.
From this observation it is reasonable to suggest two particular attributes
for any queue entity within the model, namely, List and N. Here List serves
to store the attribute-tuples for the cei’s that are enqueued in the queue and
N is the number of entries in that list. Thus we might associate with a queue

 entity called Q, the variable

A.Q = (List, N) .

Note that the attribute-tuples in List need not all be of uniform structure
because cei’s belonging to a variety of consumer classes may be
interleaved in the queue. Also note that it may be appropriate in some
circumstances to assume that the attribute-tuples are ordered in List
according to the queuing discipline specified in the project description. In
any event we do adopt the convention that the first entry in List is the
attribute-tuple that will next be removed from the queue. This particular
attribute-tuple is referenced as A.Q.List[0].

It needs to be stressed that the above selection of attributes for
characterising a queue is not necessarily adequate for all situations. In
some cases, for example, it may be appropriate to include a reference to
the specific resource (or even resources) with which the queue is
associated.

It is interesting to observe that the queue in which a cei awaits service
may only be virtual inasmuch as it may be the service providing entities
(resources) that are in motion whereas the service requesting cei’s are
stationary. The resources may simply cycle through a list of cei’s
providing the appropriate service function. The queue, although virtual,
still remains an effective way of viewing the interaction between these two
categories of entity. As an example, consider a manufacturing plant in
which there are a large number of machines participating in the
manufacturing process. These machines are subject to failure and a repair
crew (the resource) moves around the plant carrying out repairs.

precisely, their attribute-tuple surrogates) flow from resource to resource
A perspective that is frequently appropriate is one where cei’s (or more

normally handled by connecting the cei to an aggregate entity

104 4. A Conceptual Modelling Framework for DEDS

The characterisation of a group entity is similar to that of a queue but
there are important differences. Consumer entity instances are placed into
a group as in the case of a queue, however, there is no intrinsic ordering
discipline. In many cases the duration of the connection of a cei to a group
is established via a data model. The time TF

is disconnected from a group can be obtained as (TS + D) where TS is
the value of time when the connection occurred and D is the duration
provided by the data model. In such circumstances it is natural to assume
that the value TF is assigned to some attribute (possibly called
TerminationTime) of each connected cei as part of the connection step. In
this situation the set of TerminationTime values could provide a basis
for imposing an ordering for the cei’s connected to the group.

On the basis of the observations above, the attributes for a group could
reasonably include List and N where List is the list of attribute-tuples of the
cei’s connected to the group and N is the number of entries in this list. In
this circumstance, the characterising variable associated with a group
entity called G would be:

A.G = (List, N) .

In some situations it may be useful to extend this characterisation with a
reference to the destination of consumer entities following their connection
to a group. This is very much context-dependent and provides a further
illustration of the need to tailor the characterisation variables of entity
types to the specific requirements of a project. The template for an
aggregate entity is shown in Table 4.2.

Consider now a resource entity. In our perspective, we choose to regard
the cei being serviced as being incorporated into the resource. In other
words we assume that each resource entity has an attribute allocated for
this purpose (possibly called Client) whose value is the attribute-tuple of
the cei currently being serviced by that resource entity. As in the case of a
group aggregate, the time TF when a connected cei is disconnected from a
resource would be determined as (TS + D) where TS is the value of time
when the connection to the resource occurred and D is the duration
assigned to that cei (typically obtained from a data model). The value TF

would then be assigned to the attribute TerminationTime of the connected
cei. It is also usually relevant to incorporate a status indicator reflecting
whether the resource entity is ‘busy’. This implies a binary-valued attribute
whose name might be Busy.

 when a connected cei

4.2 Constituents of the Conceptual Modelling Framework 105

TABLE 4.2. Template for summarising an aggregate entity.

Aggregate Entity: EntityName

Attributes Description
AttributeName1 Description of the attribute called
AttributeName2 Description of the attribute called

.

.
AtributeNamen.

.

.
Description of the attribute called

Thus, a typical variable associated with a resource entity Res in the
model, might be:

R.Res= (Client, Busy) .

Depending on the context, a possibly useful extension of this
characterisation could be the addition of another attribute called Broken,
whose value would reflect whether the resource entity is in working order.
The template for an aggregate entity is shown in Table 4.3.

TABLE 4.3. Template for summarising a resource entity.

Resource Entity: EntityName
A description of the resource entity called EntityName.

Attributes Description
AttributeName1 Description of the attribute called
AttributeName2 Description of the attribute called

.

.
AtributeNamen. Description of the attribute called AttributeNamen

References to the state of a model are an important and integral part of
the discussions surrounding the conceptual model development process.
Inasmuch as the model’s state at time t is simply the value of its state
variables at time t, a prerequisite for such discussions is a clear
understanding of what constitutes the set of state variables for the model. If
the model’s state variables are incorrectly identified then aspects of the
model’s development can become muddled and vague and hence
errorprone.

AttributeName1.

A description of the aggregate entity called EntityName.

AttributeName2.

AttributeName1.
AttributeName2.

 AttributeNamen

106 4. A Conceptual Modelling Framework for DEDS

There are, unfortunately, very few rules for dealing with the task of state
variable identification that have general applicability. The one fundamental

is a specification of what must hold true if some set of variables is to serve
as the state variables for a model. The requirements of Property can

The tracking information for all instances of consumer entities within
the model at time t is part of the model’s state at time t and hence this
information needs to be captured in the state variables defined for the
model. This has been reflected in our choice of the characterising variables
for both aggregate entities and resource entities, namely, the variables,
A.Q, A.G, and R.Res which relate to a queue, a group, and a resource called
Q, G, and Res, respectively. These variables can, in fact, be taken to be the
model’s state variables. This follows from the observation that the
information embedded in these variables is needed in order to satisfy the
requirements of Property .

4.2.4 Activity Constructs and Model Behaviour

As we have previously stressed, the only models of interest to us are
 variable t which we use to

model’s behaviour depends on a key assumption, namely, the existence of
a mechanism that moves t across the observation interval, beginning at its
left boundary. How this is carried out is not relevant to the current

discussions that follow. In concert with the traversal of t across the
observation interval, state changes occur within the model and these, in

Our concern now is with developing a framework within which the
model’s behaviour can be formulated in a consistent and coherent manner.
Our main constructs for characterising change, or equivalently, behaviour,

re-examination of the department store example introduced in Section

(i.e., three instances of the consumer entity class called Shopper) in the
department store example might interact. The three shoppers (called A, B,

provide the justification for augmenting a candidate set with additional

notion we rely on is Property as outlined in Section 2.2.4.3. Property

variables and this approach is used below.

dynamic and hence evolve over time. The

represent time naturally plays a key role in the exploration of this

assumption relating to the variable t is the assumption that within

discussion but this traversal assumption is essential and it is implicit in the

behaviour. Furthermore, the formulation of the specification for the

all sections of any model, the units associated with t are the same for
example, seconds, days, years, and the like.

effect, represent the model’s behaviour. Another important but implicit

is the Activity construct which, in turn, depends on the notion of events. A

4.2.2 provides useful insight for developing these notions.
In Figure 4.2 we illustrate a possible manner in which three shoppers

4.2 Constituents of the Conceptual Modelling Framework 107

A0
t

t

t

Customer A

Customer B

Customer C

C0

B0

A5A4A3A2A1

B4B3B2B1 B5

C1 C2 C3

Waiting in

Queue 3

B6 B7

Inter-arrival

time 1

Inter-arrival

time 2

Waiting in

Queue 1

Service

at

Desk 3

Browsing

in Area 1

Service

at

Desk 1

Browsing

in Area 3

Waiting in

Queue 1
Browsing

in Area 1

Service

at

Desk 1

Service

at
Desk 1

Browsing

in Area 1

Browsing

 in Area 3

Service

at

Desk 3

Browsing

in Area 2

Service

at
Desk 2

FIGURE 4.2. Behaviour of three department store shoppers.

and C) arrive at times A0, B0, and C0, respectively, and leave the store at
times A5, B7, and C3, respectively.

There are a number of important observations that can be made about
Figure 4.2. Notice, in particular, that some type of transition occurs at each
of the time points A0 through A5, B0 through B7, and C0 through C3. These
transitions, in fact, correspond to changes in the state of the model. Notice
also that some of these time points are coincident; for example, A2 = B2, A3

= C2, and A5 = B4, suggesting that several different changes can occur at the
same moment in time. It is also clear from Figure 4.2 that there are
intervals of time during which at least some of these three shoppers are
engaged in the same activity; for example, between B0 and B1 all three
customers are browsing in Area 1 and between C1 and A2 customers A and
C are in Queue 1.

Each of the service desks corresponds to a resource entity and shoppers
need to acquire (‘seize’) this resource in order to pay for items being
purchased before moving on to another shopping area. The payment
activity at a service desk is highly structured and is, in fact, representative
of a wide class of activities that can take place in DEDS models. Notice
several key features:

1. There is a precondition that must be true before the service activity
can begin (the server must be available and there must be a shopper
seeking to carry out a payment transaction).

2. The service activity has a duration; that is, it extends over an interval
of time.

3. One or more state variables change value when the service function is
completed (e.g., at time A3 = C2 the number of shoppers in browsing

108 4. A Conceptual Modelling Framework for DEDS

Area 3 increases by one and the number in the queue in front of
service desk 1 decreases by one).

The payment procedure which shoppers carry out in this example maps
onto one of the basic constructs in our conceptual modelling framework
called an Activity. An Activity represents a unit of behaviour. Its role is to
encapsulate some aspect of the interaction among the various entities that
exist within the model. An essential feature of this interaction is a
collection of changes in the value of some of the state variables within the
model. The notion of ‘unit’ here is intended to suggest minimality; in other
words, an Activity should be viewed as an atomic construct in the sense
that it captures an aspect of the model’s behaviour that is not amenable to
subdivision (at least from the perspective taken by the model builder).

Activity carries the important implication that once it has become

number of time units. This duration need not map onto a contiguous time
interval but may instead correspond to a collection of disjoint intervals.

primitive constituents called events. When an event occurs, a
construct that we call a status change specification (SCS) captures its

The event is a primitive construct in the sense that it can only appear as

An event begins and ends at the same point in (simulated) time and
consequently all the changes specified in its associated SCS occur
simultaneously. An event can be either conditional or scheduled. The
distinction reflects the manner in which the event is ‘activated’. If it is
conditional, its activation depends on the value of one or more state and/or
input variables. On the other hand, if it is scheduled, then its activation will
occur at some predefined value of time t, and independent of the state of
the model.

The event that corresponds to the initial phase of an Activity (i.e., its
starting event) occurs when a prescribed logical expression associated
with the Activity (its precondition) acquires a TRUE value. Although there
are some important exceptions, the precondition is generally formulated in
terms of the various state variables and/or input variables within the

(i.e., they consume no (simulated) time). The duration aspect of an

impact on the model. There is an event associated with both the

aspect of the model’s status.

In general, an Activity has an initial phase, a duration, and a terminal

a constituent within an Activity construct. Its associated SCS includes, as

phase. Both the initial phase and the terminal phase unfold instantaneously

‘energised’, an Activity cannot end until there has been an elapse of some

have some affinity in terms of their relevance in characterising some particular

initial phase and the terminal phase of an Activity construct.

within the model. The state variables that are referenced generally

From a structural point of view, an Activity is assembled from more

a minimum, the designation of changes to some set of state variables

4.2 Constituents of the Conceptual Modelling Framework 109

model. Hence the starting event of an Activity is a conditional event.
Furthermore, it always includes a state variable change that inhibits an
immediate reactivation of the Activity (in other words, a change which
gives the precondition a FALSE value). Notice that the implication here is
that when a precondition is present, a starting event is a mandatory
component for an Activity.

Activation of the event that corresponds to the terminal phase of an
Activity (i.e., its terminating event) takes place immediately upon the
completion of the Activity’s duration (hence it can be regarded as a
scheduled event). Although typically present, a terminating event is not a
mandatory feature of an Activity. The state changes resulting from the
activation of a terminating event may cause preconditions of multiple
activity constructs to become TRUE thereby enabling those constructs.
This demonstrates that multiple Activities within the model can be
simultaneously ‘in progress’.

When an Activity starts it has a tentative duration whose length is either
already known before the Activity begins, or else is an intrinsic part of the
Activity’s specification. This length is frequently established via a data
model which, therefore, implies that a data modelling stage is often embedded
in the Activity’s formulation. In the most common circumstance, the
duration of an Activity does not change once the Activity is initiated.
Furthermore it typically maps onto a continuous time interval. In these
circumstances the termination time tend of an Activity is predetermined
when the Activity begins; that is,

tend = (tstart +) ,

where startt
a TRUE value and hence the Activity was initiated. The terminating event
(if present) occurs at time at t = tend.

The Activity, as described thus far, should be regarded simply as a generic
concept. In reality, its realisation in our ABCmod conceptual modelling frame-
work maps onto a collection of closely related constructs whose properties
are outlined in the discussion that follows. Each of these constructs has a
predetermined format that can be conveniently presented in terms of a
template. These templates serve to provide a convenient means
of summarising salient features.

Activity: This is the most fundamental member of the collection of
constructs. Each occurrence of this construct in the model has a
name and is organised according to a template whose format is given in
Table 4.4. Each status change specification (SCS) usually includes (but is not
restricted to) the identification of changes in value to some
collection of state variables.

 is the value of time t when the Activity’s precondition acquired

110 4. A Conceptual Modelling Framework for DEDS

TABLE 4.4. Template for an Activity.

Activity: ActivityName

Event SCS associated with Activity initiation
Duration

Event

Our convention of regarding an Activity as an atomic unit of behaviour
precludes embedding within it a secondary behaviour unit even when it
may be closely related. One such situation occurs when one behaviour unit
directly follows upon completion of another without the need to ‘seize’ a

As an example, consider a port where a tugboat is required to move a

unloading) operation immediately begins. Here the berthing and the

immediately initiated upon completion of the berthing operation. It is
because of this absence of a precondition that the loading operation maps
onto a Triggered Activity in our ABCmod framework.

Triggered Activity: The distinguishing feature of a Triggered Activity is
that its initiation is not established by a precondition but rather by an
explicit reference to it within the terminating event of some Activity, for
example, TA.TriggeredActivityName. Note that this demonstrates that an
SCS can be more than simply a collection of specifications for state
variable changes inasmuch as it can also include a reference to a Triggered
Activity which, in turn, serves to initiate that Activity. The template for the
Triggered Activity is given in Table 4.5.

As we have previously indicated, an Activity is associated with a unit of
behaviour within the model. The flow of this behaviour may, however, be
subjected to an intervention which disrupts the manner in which the
Activity unfolds. Such an intervention can have a variety of possible
effects; for example,

a) The initial (tentative) duration of the Activity may be altered.
b) The duration may no longer map onto a continuous time interval

but may instead map onto two or more disjoint intervals.
c) A combination of (a) and (b).
d) The behaviour intrinsic to the Activity may be stopped and may

 never be resumed.

handling such situations.

because (by assumption) no additional resource is required and hence it can be

freighter from the harbour entrance to a berth where a loading (or

further resource. Our notion of a Triggered Activity provides the means for

loading operations both map onto Activities but the latter Activity is distinctive

Precondition Boolean expression that specifies the condi-
tions which initiate the Activity

The length of the duration (typically acquired

model)
from a Data Module that references a data

SCS associated with Activity completion

TABLE 4.5. Template for the Triggered Activity.

Triggered Activity: ActivityName
Event
Duration

Event

There are two possible types of intervention; namely, pre-emption and
interruption. We examine each of these in turn.

Pre-emption: This typically occurs in a situation where two (or more)
Activities require the same resource which cannot be shared. Such a
circumstance is commonly resolved by assigning access priorities to the
various competing Activities. With this approach, an Activity can disrupt
the duration of some lower-priority Activity that is currently accessing the
resource. There is, however, an implication here that some consumer entity
instance that is ‘connected’ to the resource will be displaced. When this
occurs, the completion of the service function for the displaced cei is
suspended and consequently the duration of the Activity, from the
perspective of the displaced cei, becomes distributed over at least two
disjoint time intervals, or in the extreme case may never even be
completed.

Interruption: Changes in the value of an input variable are generally
reflected in one or more of the Activities within the model. For example, in
response to a change in value of an input variable, an ‘in progress’ Activity
may undergo a change in the manner in which it completes the task that
was initially undertaken. Such an intervention is called an interrupt.
Generally an interrupt is characterised by a set of changes as reflected
in an SCS. An interrupt shares some common features with the notion
of pre-emption but the range of possible behaviour alterations is broader.

To accommodate the requirements involved in handling an intervention,
a more general construct than the Activity is necessary. This construct is
called an Extended Activity and its template is given in Table 4.6.

Extended Activity: As its name suggests, this construct can
accommodate more general behaviour and is the most comprehensive of
the Activity constructs.

The length of the duration (typically ac-

4.2 Constituents of the Conceptual Modelling Framework 111

a data model).
SCS associated with Activity completion

SCS associated with Activity initiation

quired from a Data Module that references

112 4. A Conceptual Modelling Framework for DEDS

TABLE 4.6. Template for the Extended Activity.

Extended Activity: ActivityName
Boolean expression that specifies the
conditions which initiate the Activity

Event
Duration

Pre-emption
Event

Interrupt
Precondition Boolean expression that specifies the

Event
Event

The notion of intervention is equally relevant to a Triggered Activity.
This gives rise to a generalisation of the Triggered Activity construct that
we call an Extended Triggered Activity.

Extended Triggered Activity: Like its ‘basic’ counterpart, the
distinguishing feature of an Extended Triggered Activity is that its
initiation is not established by a precondition but rather by an explicit
reference to it within the terminating event of some Activity. The template
for an Extended Triggered Activity is given in Table 4.7.

The final member of the family of activity constructs is called an Action.
An Action resembles other Activity constructs inasmuch as it also is
initiated when a precondition acquires a TRUE value. The principal
difference is that an Action does not include a duration, hence it
unfolds at a single point in time and has a single SCS. Often the
precondition for an Action is formulated exclusively in terms of the
variable t (time), that is, without reference to the state variables of the
model. In such circumstances, the Action can be regarded as being
autonomous. Such a circumstance rarely occurs in the case of any of the
other Activity constructs.

The length of the duration (typically ac-

Precondition

SCS associated with Activity initiation

SCS associated with Activity pre-emption

conditions under which an interrupt oc-
curs
SCS associated with Activity interruption
SCS associated with Activity completion

ences a data model).
quired from a Data Module that refer-

TABLE 4.7. Template for the Extended Triggered Activity.

ActivityName
Event
Duration

Pre-emption
Event

Interrupt
Precondition

Event SCS associated with Activity interruption
Event

An Action may be intrinsically repetitive. This can occur as a

fashion. In the former case, the change is embedded in the
Action’s SCS. An Action with such a repetitive property is called an
Action Sequence. As becomes clear in the discussion of Input in Section.
4.2.5, this particular realisation of an Action (i.e., the Action Sequence)

Table 4.8.

TABLE 4.8. Template for the Action/Action Sequence.

Action /Action Sequence: ActionName
Precondition

conditions which initiate the Action
Event

Another common application of the Action construct is the
accommodation of a circumstance where the current state of the model

of uncertain length is thus introduced. An Action can be used to provide a
‘sentinel’ that awaits the development of the conditions that permit the
state change to occur.

Table 4.9 summarises the important features of the various Activity
constructs.

consequence of a recurring change in the value of some variable
within the precondition in either an explicit or an implicit

inhibits a particular state change that might otherwise take place. In effect, a delay

The length of the duration (typically acquired

4.2 Constituents of the Conceptual Modelling Framework 113

Extended Triggered Activity:

model).

Boolean expression that specifies the condi-

SCS associated with Activity pre-emption

tions under which an interrupt occurs.

SCS associated Activity initiation

SCS associated with Activity completion

Boolean expression that specifies the

provides the basis for handling input entity streams within the ABCmod

The SCS associated with Action initiation

framework. The template for an Action (or Action Sequence) is given in

from Data Module that references a data

114 4. A Conceptual Modelling Framework for DEDS

TABLE

Feature Activity Triggered
Activity

Extended
Activity

Extended
Triggered
Activity

Action/Action
Sequence

Precondition Yes No Yes No Yes
Starting Event Yes Yes Yes Yes
Duration Yes Yes Yes Yes No
Intervention No No Yes Yes No
Terminating

Event
Optional Optional Optional Optional No

4.2.5 Inputs

A model may have many inputs. Each represents a particular aspect of the
SUI’s environment that affects the behaviour that is of interest. In general
a variable u, selected to represent any such input within the model is, in

essential information about an input u(t) is normally available as a
k k k

value of time and uk = u(tk) and we assume that ti < tj for i < j. Each of the
tk

For any input u, the specifications that allow the construction of CS[u]

In this regard, however, note that there are two separate sequences that
can be associated with the characterising sequence CS[u] = [(tk, uk): k = 0,
1, 2, . . .]. These are:

D k

R k

which we call, respectively, the domain sequence for u and the range
sequence for u. It is almost always true that the domain sequence for any
input u has a stochastic characterisation, that is, a stochastic data model.
Generally this implies that if tj and tj+1 = tj + j are successive members of
CSD[u], then the value of j is provided by a stochastic model. The range
sequence may or may not have a stochastic characterisation.

From the perspective of the ABCmod conceptual modelling process we assume
that the data modelling task has been completed. This, in particular, means
that valid mechanisms for creating the domain sequence and the range
sequence for each input variable are available.

Yes

4.9. Features of the family of Activity constructs.

time values in this sequence identifies a point in time where there is a

refer to this sequence as the characterising sequence for u and denote it CS[u].
noteworthy occurrence in the input u (typically a change in its value). We

are part of the data modelling task associated with model development.

CS [u] = <t : k = 0, 1, 2, . . .>

CS [u] = <u : k = 0, 1, 2, . . . > ,

fact, a function of time; that is, u = u(t). In the case of a DEDS model the

sequence of ordered pairs of the form: <(t ,u): k = 0, 1, 2, . . .> where t is a

4.2 Constituents of the Conceptual Modelling Framework 115

Often a variable u that represents an input to a DEDS model falls in the
class of piecewise-constant (PWC) time functions. A typical member of
this class is shown in Figure 4.3.

The input variable u(t) in Figure 4.3 could, for example, represent the
number of electricians, at time t, included in the maintenance team of a
large manufacturing plant that operates on a 24 hour basis but with varying
levels of production (and hence varying requirements for electricians). The
behaviour of the model over the interval [tj, tj+1) likely depends explicitly
on the value uk = u(tj) hence the representation of u(t) as a PWC function is
not only meaningful but is, in fact, essential. The characterising sequence
for u is:

CS[u] = (t0,1), (t1,2), (t2,4), (t3,4), (t4,3), (t5,1), (t6,2) .

Observe also that with the interpretation given above this particular input
is quite distinctive inasmuch as neither its domain sequence nor its
range sequence will likely have a stochastic characterisation.

0

4

3

2

1

tt1

u(t)

t
3

t2 t4 t5 t6t0

 4.3. A piecewise constant time function.

As another example consider a case where an input variable u represents
the number of units of a particular product requested on orders received
(at times t1, t2, . . . , tj, . . .) by an Internet-based distributing company. The
characterising sequence would be written as

CS[u] = (t1, u1), (t2, u2), . . . , (tj, uj)

Note however that only the specific values u1 = u(t1), u2 = u(t2), . . . , uj =
u(tj) are relevant. In other words, representation of this particular input as a
PWC time function is, strictly speaking, not appropriate because the value
of u between order times has no meaning. Note also that the data model for

< >

< >

FIGURE

116 4. A Conceptual Modelling Framework for DEDS

this input would need to provide a specification for both the domain
sequence CSD[u] = t1, t2, . . . , tj, . . . and the range sequence of order
values CSR[u] = u1, u2, . . . , uj, . . . and both would likely be in terms of
specific probability distribution functions.

The notion of an input entity stream was introduced in Chapter 2 as the
vehicle for describing the arrival of members of the various consumer entity classes
that typically flow into the domain of a DEDS model. Suppose we
associate the variable K = K(t) with the input entity stream corresponding
to consumer entity class K. The characterising sequence for K can be
written as

CS[K] = (t , 1), (t +1, 1), (t +2, 1), . . . , (tj, 1),

Here each value in the domain sequence t , t +1, t +2, . . . , tj, . . . is the
arrival time of a cei from class K. Each element of the range sequence has
a value of 1 (i.e., K(tj) = 1 for all j) because we generally assume that
arrivals occur one at a time. Also = 0 if the first arrival occurs at t = t0

(the left boundary of the observation interval) and = 1 otherwise (i.e., the
first occurrence is at t1 > t0). The domain sequence is constructed from the
arrival process associated with consumer entity class K.

Of particular importance to the handling of input variables in our
ABCmod framework is a time variable M[u](t) which we associate with
the input u to a DEDS model. This function is called the timing map for
u(t) and is constructed from the information embedded in the domain
sequence CSD[u] for u. Suppose tj-1 and tj are two successive times in the
domain set CSD[u]; then

M[u](t) = tj for tj-1 < t tj .

In other words, at time t, M[u](t) provides the value of the entry in CSD[u]
that most closely follows (or is equal to) t. In more formal terms, M[u] is a
mapping from the segment of the real line that corresponds to the
observation interval to the set CSD[u]. The timing map for the input
function shown in Figure 4.3 is shown in Figure 4.4.

There are generally many inputs to a DEDS model; some correspond to
input entity streams and some do not. Nevertheless all inputs have a
characterising sequence and hence an associated timing map. The

framework by an Action Sequence whose precondition is based on the
timing map for the input variable. It should be noted that it is only in
limited circumstances that the domain sequence CSD[u] is explicitly
known; generally the values in CSD[u] evolve in a stochastic manner. The

Note also that if the first entry in CSD[u] is t0 (the left-hand boundary of I0)
0 0

< >
< >

< >

< >

behaviour implicit in each such input is captured in the ABCmod

then, by definition, M[u](t) = t .

implication here is that the timing map for u can rarely be explicitly drawn.

4.2 Constituents of the Conceptual Modelling Framework 117

t

M[u](t)

t
0

t
3

t
2

t
4

t
5

t
1

t1 t
3

t2 t4 t5 t6

t
6

FIGURE 4.4. Timing map for the input function of Figure 4.3.

The salient features of all inputs to a particular DEDS model are
summarised in an Inputs template whose format is shown in Table 4.10.
The templates for the Action Sequences referenced in Table 4.10 are given
in Table 4.11(a) and Table 4.11(b).

TABLE 4.10. Template for Inputs.

Inputs
Input

Variable
Description Data Models Action

Sequence
 Domain

Sequence
Range

Sequence
u(t) Description of the

input which the
input variable
represents

Details for
CSD [u]

Details for
CSR[u]

associated
Action
Sequence

K(t) Description of the
input entity stream
which the input
variable represents

Details for
CSD [K]

Details for
CSR[K]

associated
Action
Sequence

Name of the

Name of the

118 4. A Conceptual Modelling Framework for DEDS

TABLE 4.11. Templates for Action Sequences.

(a) Case where the Action Sequence corresponds to the input variable, u(t).

Action Sequence: ActionName(u)
Precondition t = M[u](t)
Event Typically the assignment to u of the value which it

acquires at time t (this need not be different from the
value prior to time t). The values for M[u](t) are
derived from the domain sequence D

(b) Case where the Action Sequence corresponds to an input entity stream.

Action Sequence: ActionName(C.EntityClassName)
Precondition t = M[K](t)
Event Typically a collection of value assignments to the

attributes of the arriving consumer entity instance
from the class referenced in the argument together
with a state variable change that reflects the initial
positioning (connection) of the arriving consumer
entity instance. The values for M[K](t) are derived
from the domain sequence CSD[K

4.2.6 Outputs

In our discussion of output variables in Section 2.2.4 we indicated that
such variables fall into one of two categories based on the nature of the
values that they represent. More specifically, the value associated with an
output variable may be either:

A set of data values (either a trajectory set associated with a time
variable or a sample set associated with a consumer entity class)
A scalar value usually obtained via an operation on a data set

Inasmuch as the output variables provide the information that is either
explicitly or implicitly required for achieving the goals of the modelling
and simulation project, it is important that they be documented in a
meaningful way in our ABCmod framework. This documentation is
organised in terms of three templates whose general structure is shown in

Recall that both the time variables and the sample variables listed in the
Trajectory Set and the Sample Set templates always correspond to
attributes defined for entities within the model. (In the interest of

Table 4.12 through Table 4.14.

CS [u].

].

4.2 Constituents of the Conceptual Modelling Framework 119

facilitating transformation to program code, we have replaced with TRJ
and with PHI.)

Trajectory Sets
Name Description
TRJ[y] Description of the time variable y(t)

Sample Sets
Name Description
PHI[y] Description of the sample variable y whose values

populate the sample set PHI[y]

TABLE 4.14. Template for summarising derived scalar output variables.

Name Description Output Set Name Operator
Y The meaning

of the value

Y

The value of Y is
obtained by carrying

the values in this
output set

The operation that is
carried out on the

to obtain the value
assigned to Y

4.2.7 Data Modules

It is rarely possible to formulate an ABCmod conceptual model without
the need to access data. The simplest such requirement is the case where
there is a need for a sample from a prescribed distribution function.
Alternately, the requirement might be for a sample from one of several
specified distributions according to some prescribed rule. The convention
we have adopted in our ABCmod framework is to encapsulate any such
data delivery requirement within a named data module which serves as a
‘wrapper’ for the data specification. The rationale here is simply to
facilitate modification of the actual source of the data if that need arises.
The collection of such data modules that are referenced within an
ABCmod conceptual model is summarised in a table whose template is
shown in Table 4.15.

TABLE 4.12. Template for Summarising Trajectory Sets.

TABLE 4.13. Template for Summarising Sample Sets.

Derived Scalar Output Variables (DSOV
,
s)

acquired by out an operation on underlying data set

120 4. A Conceptual Modelling Framework for DEDS

TABLE 4.15. Template for summarising data modules.

Data Modules
Name Description Data Model

4.2.8 Standard Modules and User-Defined Modules

A variety of ‘standard’ operations reoccur in the formulation of the SCSs

of any ABCmod conceptual model. We assume the existence of modules to
carry out these operations and each of these is briefly outlined below.

InsertQue(QueueName, item)
This module carries out an insertion into a queue called QueueName.
The second argument holds the item to be inserted. The insertion takes
place according to the declared queuing protocol associated with the
QueueName.
InsertQueHead(QueueName, item)
This module carries out an insertion into a queue called QueueName.
The second argument holds the item to be inserted. The item is inserted
at the head of the queue.
RemoveQue(QueueName, item)
This module removes the item which is at the head of the queue called
QueueName. The removed item is placed in the second argument.
InsertGrp(GroupName, item)
This module carries out an insertion into a group called GroupName.
The second argument holds the item to be inserted.
RemoveGrp(GroupName, item)
This module removes an item from the group called GroupName. The
item to be removed is identified in the second argument.
Put(SampleSetName, item)
This module is used to place items into the Sample Set called

Details of the mecha-

order to generate the
nism that is invoked in

data values provided by
the data module called
ModuleName.

purpose of the
data module

 Description of the

called Module-
Name.

ModuleName(parameter list)

within the various activity constructs that emerge during the development

4.2 Constituents of the Conceptual Modelling Framework 121

Leave(cei)

It frequently occurs that a cei’s existence within the model comes to an
end. The purpose of this module is to explicitly indicate this occurrence

of an Activity. The argument serves to provide an explicit reference to
the cei in question.

Situations typically arise where modules are needed to carry out
specialised operations that are not included in the ‘standard set’ above.
These can be freely defined wherever necessary to augment the ABCmod
framework and facilitate the conceptual modeling task. They are called
user-defined modules and a template is given in Table 4.16.

Note that references to standard modules and user-defined modules in

TABLE

User-Defined Modules
Name Description

4.2.9 Intervention

We have previously pointed out (Section 4.2.4) that an Activity may be
subjected to an intervention which disrupts the manner in which it unfolds.
This disruption has a direct impact upon the duration of the Activity. In
our ABCmod framework we recognise two types of intervention which we
call Pre-emption and Interruption.

Pre-emption is most commonly associated with the circumstance where
the initiation of one Activity (e.g., called ActP) disrupts the flow of
another Activity (e.g., called ActQ) because a resource that is required by
both Activities must be taken from ActQ and reassigned to ActP because
ActP has higher-priority access to the resource. The ABCmod conceptual model
presentation of such a circumstance requires that ActQ be formulated as an
Extended Activity (see Table 4.6) with a Pre-emption subsegment within its
Duration segment. A directive of the form: ‘PE.ActQ’ in the starting SCS
of ActP initiates the pre-emption. This directive links directly to the Pre-
emption subsegment of ActQ where the consequences of the Pre-emption
are specified.

which is typically invoked as part of the SCS of the terminating event

ModuleName ()
UM.ModuleName (), respectively.

ModuleName(parameter list)

the formulation of activity constructs have the form SM.

Description of the purpose of the user-
defined module called ModuleName.

4.16. Template for summarising user-defined modules.

SampleSetName. The second argument holds the item to be placed into
the set.

122 4. A Conceptual Modelling Framework for DEDS

In the ABCmod framework we typically use the Interrupt notion as the
means for handling an intervention that results from a change in the value
of one of the conceptual model’s input variables. Such a change may have
an impact on several Activities and the Interruption subsegment of the
Extended Activity provides the means for formulating the condition that
defines the occurrence of an Interrupt as well as the consequent reaction to
it.

An intervention of the Interrupt category is illustrated in Example 3 that
is presented in the following section. Although no explicit example of the
Pre-emption category is given, it is convenient mechanism for handling the
circumstances outlined in Problem 4.4 of Section 4.4 (Exercises and
Projects). Details are left to the reader.

4.3 Some Examples of Conceptual Model Development
in the ABCmod Framework

We have emphasised the importance of the conceptual modelling phase of
a modelling and simulation project because of its role in bridging the gap
between the generalities of the project description and the precision
required for the development of the simulation program. In Section 4.2 we
presented a framework for formulating a conceptual model for discrete-
event dynamic systems and in this section we present several examples to
illustrate its application. These examples have been chosen to illustrate
how a variety of features that can arise within the DEDS context are
handled in the ABCmod framework.

4.3.1 Example 1

Project Description
Tankers are loaded with crude oil at a port that currently has berth facilities
for loading three tankers simultaneously. There is one tugboat available to
assist the tankers. Tankers of all sizes require the service of the tug to
move from the harbour into a berth and later to move out of the berth back
to the harbour, at which point they leave the port. The general
configuration is shown in Figure 4.5.

4.3 Some Examples of Conceptual Model Development 123

Berth 1

Berth 2

Berth 3

Harbour

FIGURE 4.5. View of the port’s operation.

Project Goals
The port authority is concerned about the increasing number of complaints
arising from excessive turnaround time experienced by some tankers. It is
therefore considering the construction of a fourth berth. The project goal is
to acquire some insight into the likely impact of such an expansion. More
specifically, the goal is to compare, for the two cases (three berths and four
berths), the average number of berths that are occupied and, as well, the

Some clarification is in order with respect to the interpretation of

time intervals during which the tanker is not engaged in some purposeful
task. Hence it includes the periods when the tanker is waiting to be towed
to berths or waiting to be towed back to the harbour. In the ideal case,
these tasks would be initiated immediately and waiting time would be
 zero.

SUI Details
The interarrival time between tankers can be modelled as a homogeneous
stochastic process that has an underlying exponential distribution with a
mean of 8 hours. There are three sizes of tanker: small, medium, and large
and 25% of the arriving tankers are small, 25% are medium, and 50% are

uniform distribution. However specific details differ as follows: small tankers
require 9 1 hours to load, medium tankers require 12 2 hours, and large
tankers require 18 3 hours. Additional tanker characteristics are summarised

 in Table 4.17.
The process followed by each tanker upon arrival in the harbour is as

follows.

1. It waits in a (virtual) queue for the tugboat to assist it to dock in an
available berth. The queue functions on a first-in-first-out (FIFO) basis
and is independent of tanker size.

‘waiting time’. For any particular tanker, it is the accumulation of those

average waiting time of tankers, based on steady-state conditions.

large. The loading time for tankers of each size is a random variable that has a

124 4. A Conceptual Modelling Framework for DEDS

2. The tanker is moved from the harbour into a berth (the berthing
operation) by the tug; the loading procedure begins immediately and
the tug is released to carry out its next task.

3. When the loading is complete, the tanker once again requests the
service of the tug which effectively places it in a queue with other
tankers that are waiting for the tug’s assistance to depart from a berth.

4. The loaded tanker is moved from the berth back to the harbour
entrance by the tug (the deberthing operation).

5. The tanker leaves the harbour and the tug proceeds to its next task.

TABLE 4.17. Tanker characteristics.

Tanker Size Proportion of
Arrivals (%)

Loading Time (hours)

Small 25 UNIFORM(8,10)
Medium 25 UNIFORM(10,14)
Large 50 UNIFORM(15,21)

The berthing operation (moving an empty tanker from the harbour to an
empty berth) takes 2 hours and the deberthing operation (moving a loaded
tanker from its berth to the harbour) takes 1 hour. Both these operations
are independent of tanker size. When not towing a tanker, the tug requires
0.25 hour to travel from the harbour to the berth area and vice versa. When
the tug finishes a berthing operation, it will deberth the first tanker that has
completed loading. If no tanker is available for deberthing but tankers are
waiting in the harbour and a berth is available, then the tug will travel to
the harbour and begin berthing the tanker that has been waiting the longest
in the harbour queue. Otherwise, the tug remains idle in the berth area.

When the tug finishes a deberthing operation and there are tankers

longest. If there is no tanker waiting to be berthed and the berths are
empty, then the tug will simply wait at the harbour entrance for the arrival
of a tanker. If, on the other hand, there are no tankers in the harbour but
there are tankers in the berths, then the tug will travel back to the berth
area without any tanker in tow. Then, if there are tankers ready for
deberthing, it will begin deberthing the one that has waited longest.
Otherwise the tug will remain idle in the berth area until either a tanker
finishes loading and needs to be deberthed or a tanker arrives in the
harbour, in which case it will travel back to the harbour without a tanker in
tow. The ABCmod conceptual model for example 1 is given in Tables 4.18
through 4.30. For convenience of reference we have assigned the name

waiting in the harbour, the tug will berth the one that has been waiting the

ABCmod.Port.ver1 to this conceptual model.

4.3 Some Examples of Conceptual Model Development 125

ABCmod.Port.ver1

Structural Components

A number of constants are introduced to facilitate the formulation of the
conceptual model and these are summarised in Table 4.18. There is one
parameter, namely, MaxBerth which has two values of interest, that is, 3
(the ‘base’ case) and 4.

TABLE 4.18. Summary of constants and parameters for ABCmod.Port.ver1.

Constants
Name Role Value
t0 Left boundary of the

vation Interval
0 (clock time)

tf Right boundary of the
vation Interval

Cannot be
predetermined
because a steady-
state study is
required

tFA Time of first tanker arrival 0 (clock time)
BerthingTime Time required for the

thing operation
2 (hours)

DeberthingTime Time required for the
 thing operation

1 (hours)

EmptyTravTime Harbour to berth (and berth
to harbour) travel time for
tug when travelling without
a tanker in tow

15 (minutes)

AvgArr Part of the specification for
DM. InterArrTime

8 (hours)

PerSml Percentage of arriving tankers
 that are small

25 %

PerMed Percentage of arriving tankers
 that are medium

25 %

PerLrg Percentage of arriving tankers
 that are large

50 %

SmlMin Part of the specification for
DM.LoadTimeSml

8 (hours)

SmlMax Part of the specification for
DM.LoadTimeSml

10 (hours)

MedMin Part of the specification for
DM.LoadTimeMed

10 (hours)

Obser-

Obser-

deber

ber

126 4. A Conceptual Modelling Framework for DEDS

Constants
Name Role Value
MedMax Part of the specification for

DM.LoadTimeMed
14 (hours)

LrgMin Part of the specification for
DM.LoadTimeLrg

15 (hours)

LrgMax Part of the specification for
DM.LoadTimeLrg

21 (hours)

Parameters
Name Role Values
MaxBerth Number of operational berths

 at the port
3 and 4

The tankers represent the only consumer entity class within the Project
Description. The attributes selected for this class are summarised in Table
4.19.

Consumer Entity Class: Tanker

Attributes Description
Size The size of the tanker (value is one of

StartWait A timestamp used to determine waiting
times

TotalWait Accumulated waiting time

The tugboat that provides the berthing/deberthing service is the one
resource entity in the conceptual model. Its selected attributes are
summarised in the Resource template given in Table 4.20.

This consumer entity class represents the tankers that arrive at the port

TABLE 4.19. The tanker consumer entity class.

for loading.

SMALL, MEDIUM, LARGE) as assigned
via DM.TankerSize

In the perspective we have chosen, the tankers being loaded in the
berths are regarded as being members of a group aggregate. In addition we

4.3 Some Examples of Conceptual Model Development 127

TABLE 4.20. The tugboat Resource Entity.

Resource Entity: Tug
This resource entity represents the tugboat that is needed to berth

finished loading.
Attributes Description
Status Indicates the status of the tug as specified by

one of the following values
BERTHING – berthing a tanker
DEBERTHING – deberthing a tanker
TOHARBOUR – going to the harbour with no
tanker in tow
TOBERTHS – going to berth area with no
tanker in tow
PauseH – in the harbour following the
tion of a deberthing operation
PauseB – in the berth area following the

Tnkr Attribute-tuple of the tanker being towed (when
applicable)

formed by tankers in the harbour waiting for berthing service from the tug
and the other to represent the virtual queue of tankers that have been

operation. The specifications for these aggregates are provided in Table

TABLE 4.21. Templates for the various aggregate entities.

(a) The group aggregate representing the berths.

Aggregate Entity: BerthGrp

Attributes Description
List A list of the attribute-tuples of the tankers that occupy a

berth
N The number of entries in List (maximum value is

MaxBerth)

tankers that arrive in the harbour and to deberth tankers that have

This group aggregate represents the collection of tankers that are being loaded

loaded and are waiting in a berth for a tug in order to begin a deberthing

in one of the berths.

introduce two queue aggregates, one to accommodate the virtual queue

4.21.

comple-

comple-
tion of a berthing operation

128 4. A Conceptual Modelling Framework for DEDS

(b) The queue aggregate representing the (virtual) tanker queue in the harbour.

Aggregate Entity: HarbourQue

harbour waiting to be assisted into a berth by the tug.
Attributes Description
List

waiting for the tug
Discipline: FIFO

N Number of entries in List

(c) The queue aggregate representing the (virtual) tanker queue at the berths.

Aggregate Entity: DeberthQue
This queue aggregate represents the (virtual) queue of tankers that have
completed loading and are waiting in a berth for deberthing assistance
from the tug.
Attributes Description
List A list of attribute-tuples of the tankers waiting to

be deberthed
Discipline: FIFO

N Number of entries in List

Input–Output Components

The tankers that flow through the port represent an input entity stream. The
variable T (t) is used to represent this stream and its characterisation is
provided in Table 4.22.

Input
Input

Variable
Description Data Models Action Sequence

 Domain
Sequence

Range
Sequence

T (t) T represents
the input entity

 stream
ponding to the

 Tanker consumer
entity class

First arrival:
t = tFA

interarrival
time:
EXP(AvgArr)

All values
equal to 1

 C.Tanker)

One of the project requirements is to determine the average number of
berths that are occupied over the duration of the observation interval.
This corresponds to the average value of the time variable A.BerthGrp.N
which is an attribute of the group aggregate called BerthGrp (see Table
4.21a). The Trajectory Set associated with A.BerthGrp.N is summarised in

This queue aggregate represents the (virtual) queue of tankers in the harbour

A list of attribute-tuples of the tankers in the harbour

 4.22. Input for ABCmod.Port.ver1.TABLE

corres-

TankerArrivals (

4.3 Some Examples of Conceptual Model Development 129

Table 4.23. The specific output of interest is provided by the DSOV
AvgOccBerths which is described in Table 4.25 below.

TABLE 4.23. Trajectory set for ABCmodPort.ver1.

Trajectory Sets
Name Description
TRJ[A.BerthGrp.N] The time variable A.BerthGrp.N is an attribute

 of the group aggregate BerthGrp and provides
 the number of occupied berths at any moment

t

A second project requirement is to determine the average time which
tankers spend waiting for assistance from the tug. Recall that such waiting
can occur in two separate contexts: the first is upon arrival in the harbour
(waiting to begin the berthing operation) and the second is upon
completion of loading (waiting to begin the deberthing operation). These
two durations are accumulated in the sample variable C.Tanker.TotalWait
which is an attribute of the Tanker consumer entity class (see Table 4.19).
The associated sample set is summarised in Table 4.24. The specific output
value of interest is provided by the DSOV AvgWaitTime which is
described in Table 4.25.

TABLE 4.24. Sample set for ABCmod.Port.ver1.

Sample Set
Name Description
PHI[Tanker.TotalWait] Each member of PHI[Tanker.TotalWait] is the

 final value of the attribute Tanker.TotalWait
 for some instance of the consumer entity class
 called Tanker. This attribute serves to accumulate
 the time spent, by that instance, waiting for the tug

TABLE 4.25. Derived scalar output variables for ABCmod.Port.ver1.

Derived Scalar Output Variables (DSOVs)
Name Description Output Set Name Operator
AvgOccBerths Average number

 of occupied berths
TRJ[A.BerthGrp.N] AVG

AvgWaitTime Average time that
 the tankers spend

waiting for the tug

PHI[Tanker.TotalWait] AVG

130 4. A Conceptual Modelling Framework for DEDS

Behaviour Components

Time units: hours
Observation interval: t0 = 0, tf : cannot be predetermined because a steady
state study is required

The attributes that require initialisation are listed in Table 4.26 with
their chosen initial values.

TABLE 4.26. Initialisation requirements.

Initialise
R.Tug.Status PauseB
A.BerthGrp.N 0
A.HarbourQue.N 0
A.DeberthQue.N 0

Several data modules are required in the formulation of
ABCmod.Port.ver1. These are summarised in Table 4.27.

TABLE 4.27. Data modules for ABCmod.Port.ver1.

Data Modules
Name Description Data Model
TankerSize Returns a value for

the Size attribute of
an arriving tanker

Percent of small, medium, and
large tankers is given by the
constants PerSml, PerMed and
PerLrg repectively

LoadTimeSml Returns the loading
time for a small
tanker

UNIFORM(SmlMin, SmlMax)

LoadTimeMed Returns the loading
time for a medium
tankers

UNIFORM(MedMin, MedMax)

LoadTimeLrg Returns the loading
time for a large
tankers

UNIFORM(LrgMin, LrgMax)

One user-defined module has been identified to facilitate the ABCmod
conceptual model formulation. It is summarised in Table 4.28.

4.3 Some Examples of Conceptual Model Development 131

4.28. User-defined module for ABCmod.Port.ver1.

User-Defined Modules
Name Description
LoadingTime(Size) The returned value is the loading time for

 a tanker assigned according to tanker size.
 This module accesses one of the data

 modules LoadTimeSml, LoadTimeMed,
 or LoadTimeLrg according to the value

 of the Size argument

The most important step in characterising the behaviour aspect of any
ABCmod conceptual model is the identification of the relevant ‘units of behaviour’
that are embedded within SUI. Each of these is associated with an Activity
construct. Table 4.29 summarises these constructs for the port project
under consideration.

TABLE 4.29. Summary of Activity constructs for ABCmod.Port.ver1.

Summary of Activity Constructs
Action Sequence

TankerArrivals The Input Entity Stream of arriving tankers
Activities

Berthing The tug moves an empty tanker from the
harbour into an empty berth

Deberthing The tug moves a loaded tanker from a berth
out to the harbour

MoveToHarbour The tug moves to the harbour without any
tanker in tow, to get a tanker waiting to be
berthed

MoveToBerths The tug moves to the berth area from the
harbour without any tanker in tow

Triggered Activities
Loading The loading of a tanker begins as soon as it is

berthed. Thus the Loading Activity is
triggered by the Berthing Activity

The details for each of the Activity constructs listed in Table 4.29 are
provided in Table 4.30.

TABLE

132 4. A Conceptual Modelling Framework for DEDS

TABLE 4.30. Elaboration of the various Activity constructs.

(a) The Action Sequence called Tanker Arrivals.

Action Sequence: TankerArrivals(C.Tanker)
Precondition t = M[T](t)
Event C.Tanker.Size DM.TankerSize

C.Tanker.StartWait t
C.Tanker.TotalWait 0
SM.InsertQue(A.HarbourQue, C.Tanker)

Precondition (R.Tug.Status = PauseH)&(A.HarbourQue.N > 0)
Event R.Tug.Status BERTHING

SM.RemoveQue(A.HarbourQue, R.Tug.Tnkr)
R.Tug.Tnkr.TotalWait + (t – R.Tug.Tnkr.StartWait)

Duration BerthingTime
Event SM.InsertGrp(A.BerthGrp, R.Tug.Tnkr)

TA.Loading(R.Tug.Tnkr)
R.Tug.Status PauseB

(c) The Triggered Activity called Loading.

Triggered Activity: Loading(C.Tanker)
Event
Duration UM.LoadingTime(C.Tanker.Size)
Event C.Tanker.StartWait t

SM.InsertQue(A.DeberthQue, C.Tanker)

(d) The Activity called Deberthing.

Activity: Deberthing
Precondition (R.Tug.Status = PauseB)&(A.DeberthQue.N 0)
Event R.Tug.Status DEBERTHING

SM.RemoveQue(A.DeberthQue, R.Tug.Tnkr)
R.Tug.Tnkr.TotalWait R.Tug.Tnkr.StartWait)
SM.Put(PSI[Tanker.TotalWait], R.Tug.Tnkr.TotalWait)
SM.RemoveGrp(A.BerthGrp, R.Tug.Tnkr)

Duration DeberthingTime
Event R.Tug.Status PauseH

SM.Leave(R.Tug.Tnkr)

(b) The Action Sequence called Berthing.

Activity: Berthing

The operator ‘ ’ is an add and assign operator. For example, x 1 should
 be interpreted as x x + 1.

1

1

 + (t –

 + +

4.3 Some Examples of Conceptual Model Development 133

(e) The Activity called MoveToHarbour.

Activity: MoveToHarbour
Precondition (R.Tug.Status = PauseB)&

(A.DeberthQue.N = 0)&
(A.HarbourQue.N > 0)&
(A.BerthGrp.N < MaxBerth)

Event R.Tug.Status TOHARBOUR
Duration EmptyTravTime
Event R.Tug.Status PauseH

(f) The Activity called MoveToBerths.

Activity: MoveToBerths
(R.Tug.Status = PauseH) & (A.HarbourQue.N = 0)

& (A.BerGrp.N>0)
Event R.Tug.Status TOBERTHS
Duration EmptyTravTime
Event R.Tug.Status PauseB

4.3.2 Example 2

The modelling and simulation project in this Example is an extension of
the one considered in Example 1. The Project Description for Example 1
indicates that upon completion of a deberthing task, the tug returns to the
berthing area without any tanker in tow when there is no tanker in the
harbour queue and the berths are not empty. This could be regarded as
unrealistically simplistic because it ignores the situation where a tanker
arrives in the harbour ‘shortly after’ the tug embarks on its trip back to the
berth area. In this example we introduce an alternate, and possibly more
practical, strategy for dealing with this case. As becomes apparent in the
discussion that follows, this change gives rise to the need for an interrupt.

Project Description
The harbour operation as outlined in the Project Description for Example 1
is changed in one respect which relates to the tug’s behaviour on
completion of a deberthing task. When there is no tanker in the tanker
queue waiting to be berthed and the berths are not empty, the tug again
embarks on a return trip to the berthing area without a tanker in tow.
However, in this modified case, if a tanker arrives in the harbour and the
tug has not yet completed 70% of its journey back to the berths or if there

Precondition

134 4. A Conceptual Modelling Framework for DEDS

is no tanker waiting to be deberthed, then the tug returns to the harbour
entrance to service the newly arrived tanker.

ABCmod.Port.ver2
Several extensions need to be incorporated into the conceptual model for
Example 1 in order to accommodate the additional feature outlined in the
revised project description of Example 2. These are summarised below.

The time required for the tug to return to the harbour if such a
requirement arises under the new policy, needs to be determined. We
take this duration to be equal to the elapsed time between the tug’s
departure from the harbour and the arrival of a tanker in the harbour.
This determination requires a new (timestamp) attribute for the tug
which holds the value of time when the tug leaves the harbour. The
additional attribute of the tug is shown in the revised Tug specification
given in Table 4.31.

TABLE 4.31. Revised tug specification for ABCmod.Port.ver2.

Resource Entity: Tug
This resource entity represents the tugboat that is needed to berth
tankers that arrive in the harbour and deberth tankers that have
finished loading.
Attributes Description
Status Indicates the task that is being carried

out by the tug as specified by one of the
following values

BERTHING – berthing a tanker
DEBERTHING – deberthing a tanker
TOHARBOUR – going to the harbour
with no tanker in tow
TOBERTHS – going to the berth area
with no tanker in tow
PauseH – in the harbour following the
completion of a deberthing operation
PauseB – in the berth area following the
completion of a berthing operation

Tnkr Attribute-tuple of the tanker being
towed (when applicable)

StartTime Timestamp indicating the time when
the tug leaves the harbour to travel back
to the berth area

The newly introduced possibility of the tug returning to the harbour
under certain conditions implies an intervention within the behaviour

4.3 Some Examples of Conceptual Model Development 135

specified in the previous MoveToBerths Activity. More specifically,
the possibility of an interrupt is introduced and hence this Activity
needs to be replaced with an Extended Activity. Its details are given in
Table 4.32.

Port.ver2.

Extended Activity: MoveToBerths
Precondition

Event R.Tug.Status TOBERTHS
R.Tug.StartTime t

Duration EmptyTravTime
Interrupt

Precondition (A.HarbourQue.N > 0)&(
((t-R.Tug.StartTime) < 0.7 *EmptyTravTime))
 (A.DeberthQue.N = 0))

Event TA.ReturnToHarbour
Terminate

Event R.Tug.Status PauseB

The Event associated with the interrupt in Table 4.32 introduces a new
unit of behaviour that we call ReturnToHarbour. This corresponds to a
Triggered Activity whose details are provided in Table 4.33.

TABLE

Triggered Activity: ReturnToHarbour
Event R.Tug.Status TOHARBOUR
Duration (t – R.Tug.StartTime)
Event R.Tug.Status PauseH

4.3.3 Example 3

In this Example, we further modify the port’s operating environment by
introducing the possible occurrence of storms. The details surrounding
such an occurrence are provided in the revised project description.

Project Description

of storms. The duration of storms is a random variable that is uniformly
The operation of the harbour, as outlined thus far, is now subjected to the occurrence

4.33. The Triggered Activity called ReturnToHarbour.

distributed; namely, UNIFORM(Short,Long) where Short = 2 hours and Long = 6

(R.Tug.Status = PauseH)&(A.HarbourQue.N = 0)&

TABLE 4.32. Revision of the MoveToBerths Activity required for ABCmod.

(A.BerGrp.N>0)

|

136 4. A Conceptual Modelling Framework for DEDS

hours. Likewise the time between successive storms is a random variable which

tfst = 7 hours. When a storm arrives the tug , together with

storm is over, the tug resumes the Activity that was underway before the
storm occurred.

ABCmod.Port.ver3
The input variable SS(t) is introduced to represent the storm phenomenon.
More specifically, we assign a value of TRUE to this variable when a
storm is raging and a value of FALSE when storm conditions are absent.
Because the first storm occurs after the beginning of the observation
interval, an initial value (of FALSE) needs to be explicitly assigned to SS.

Several additional constants have been introduced and these need to be
reflected in an update of Table 4.18. This addition is shown in Table 4.34.

The updated Initialise table is given in Table 4.37.
 The updated Inputs

 in Table 4.36.

TABLE 4.34. Addition to Table 4.18 required for ABCmod.Port.ver3.

Constants
Name Role Value
Short Part of the specification for

 the data model for input
SS(t); see Table 4.36

2 (hours)

Long Part of the specification for
 the data model for input

SS(t)

6 (hours)

AvgCalm Part of the specification for
 the data model for input

SS(t)
tfst Part of the specification for

 the data model for input
SS(t)

7 (hours
clock time)

Two additional attributes are introduced for the tug in order to deal with
the modified behaviour of the SUI resulting from the storm. These are
TravelTime and Anchored. The revised table for the tug is given in
Table 4.35.

table that incorporates the input variable SS(t) is given

has an exponential distribution with a mean of AvgCalm = 144 hours. The first

144 (hours)

 at timestorm occurs
any tanker that is being towed, battens down hatches and drops anchor. When the

4.3 Some Examples of Conceptual Model Development 137

TABLE 4.35. Revised Tug Specification for ABCmod.Port.ver3.

Resource Entity: Tug

that arrive in the harbour and deberth tankers that have finished
loading.
Attributes Description
Status Indicates the task that is being carried

out by the tug as specified by one of the
following values

BERTHING – berthing a tanker
DEBERTHING – deberthing a tanker
TOHARBOUR – going to the harbour
with no tanker in tow
TOBERTHS – going to the berth area
with no tanker in tow
PauseH – in the harbour following the
completion of a deberthing operation
PauseB – in the berth area following the
completion of a berthing operation

Tnkr Attribute-tuple of the tanker being towed
(when applicable)

StartTime Timestamp indicating the time when the
tug leaves the harbour to travel back to
the berth area

TravelTime The travelling time required to complete
the current task being carried out by the
tug

Anchored Set to TRUE if tug has been forced to
stop because of storm, set to FALSE
otherwise

This resource entity represents the tugboat that is needed to berth tankers

138 4. A Conceptual Modelling Framework for DEDS

ABCmod.Port.ver3.

Initialise
R.Tug.Status PauseB
A.BerthGrp.N 0
A.HarbourQue.N 0
A.DeberthQue.N 0
SS FALSE

The Action Sequence Storm(SS) referenced in Table 4.36 is given in Table
4.38.

TABLE 4.37. The modified Initialise table for

TABLE 4.36. Incorporation of SS(t) in the Inputs table for ABCmod.Port.ver3.

Inputs

Input
Variable

Description Data Models Action
Sequence

 Domain Sequence Range
Sequence

SS(t) The input
variable SS(t)
represents the
storm status

First storm:
t = tfst

Duration:
UNIFORM(Short,
Long)

Interstorm time:
EXP(AvgCalm)

Value of
SS
alternates
between

FALSE
(calm
prevails)
and

TRUE
(storm is
raging)

Storm(SS)

ũTk(t) ũTk represents
the input
entity stream
corresponding
to the Tanker
consumer
entity class

First arrival:
t = tFA

Interarrival time:
EXP(AvgArr)

All
values
equal to 1

TankerArrivals

(
C.Tanker)

4.3 Some Examples of Conceptual Model Development 139

stormy environment. Because the storm introduces the possibility of an
interrupt, these Activities need to be replaced by Extended Activities.

Event associated with an Interrupt ends with a ‘Terminate’. The
implication here is that the behaviour in question is stopped, usually to be
reinitiated when circumstances permit (in this case, when the storm is
over).

ABCmod.Port.ver3.

(a) The Extended Activity called Berthing.

Extended Activity: Berthing

(((R.Tug.Status = PauseH) &
(A.HarbourQue.N > 0))

 |

Event If(R.Tug.Anchored = FALSE)
R.Tug.Status BERTHING

R Tug.Tnkr.TotalWait +
 (t – R.Tug.Tnkr.StartWait)

R.Tug.TravelTime BerthingTime
Else

R.Tug.Anchored FALSE
EndIf
R.Tug.StartTime t

Duration R.Tug.TravelTime
Interrupt

Precondition SS = TRUE
Event

R.Tug.Anchored TRUE
Terminate

Event SM.InsertGrp(A.BerthGrp, R.Tug.Tnkr)
TA.Loading(R.Tug.Tnkr)
R.Tug.Status PauseB

The various activity constructs are affected by the newly introduced

TABLE 4.39. Extensions to Extended Activities as required in

(R.Tug.Status = BERTHING)))

SM.RemoveQue(A.HarbourQue, Tug.Tnkr)

 ((R.Tug.Anchored = TRUE) &

R.Tug.TravelTime - t - R.Tug.StartTime

These are listed in Table 4.39(a) through Table 4.39(e). Note that often the

TABLE 4.38. The Action Sequence for SS(t) as required in ABCmod.Port.ver3.

Action Sequence: Storm(SS)
Precondition t = M[SS](t)
Event SS = NOT(SS)

Precondition (SS = FALSE) &

140 4. A Conceptual Modelling Framework for DEDS

(b) The Extended Activity called Deberthing.

Extended Activity: Deberthing
Precondition (SS = FALSE) &

(((R.Tug.Status = PauseB) & (A.DeberthQue.N 0))
 |
 ((R.Tug.Anchored = TRUE) &
 (R.Tug.Status = DEBERTHING)))

Event If(R.Tug.Anchored = FALSE)
R.Tug.Status DEBERTHING
SM.RemoveQue(A.DeberthQue, R.Tug.Tnkr)

SM.Put(PSI[Tanker.TotalWait],
R.Tug.Tnkr.TotalWait)

SM.RemoveGrp(A.BerthGrp, R.Tug.Tnkr)
R.Tug.TravelTime DeberthingTime

Else
R.Tug.Anchored FALSE

EndIf
R.Tug.StartTime t

Duration R.Tug.TravelTime
Interrupt

Precondition SS = TRUE
Event

R.Tug.Anchored TRUE
Terminate

Event R.Tug.Status PauseH
SM.Leave(R.Tug.Tnkr)

R.Tug.Tnkr.TotalWait + (t – R.Tug.Tnkr.StartWait)

R.Tug.TravelTime - t - R.Tug.StartTime

4.3 Some Examples of Conceptual Model Development 141

(c) The Extended Activity called MoveToHarbour.

Extended Activity: MoveToHarbour
Precondition (SS = FALSE) &

(((R.Tug.Status = PauseA) &
 (A.DeberthQue.N = 0) &
 (A.HarbourQue.N > 0) &
 (A.BerthGrp.N < MaxBerth))
 |
 ((R.Tug.Anchored = TRUE) &

Event If(R.Tug.Anchored = FALSE)
R.Tug.Status TOHARBOUR
R.Tug.TravelTime EmptyTravTime
Else
R.Tug.Anchored FALSE
EndIf
R.Tug.StartTime t

Duration R.Tug.TravelTime
Interrupt

Precondition SS = TRUE
Event

R.Tug.Anchored TRUE
Terminate

Event R.Tug.Status PauseH

 (R.Tug.Status = TOHARBOUR)))

R.Tug.TravelTime - t - R .Tug.StartTime

142 4. A Conceptual Modelling Framework for DEDS

(d) The Extended Activity called MoveToBerths.

Extended Activity: MoveToBerths
Precondition (SS = FALSE)&

(A.HarbourQue.N = 0)&(A.BerthGrp.N>0))
 |
 ((R.Tug.Anchored = TRUE)&

(R.Tug.Status = TOBERTHS)))
Event If(R.Tug.Anchored = FALSE)

R.Tug.Status TOBERTHS
R.Tug.TravelTime EmptyTravTime

Else

EndIf
R.Tug.StartTime t

Duration R.Tug.TravelTime
Interrupt 1

Precondition (A.HarbourQue.N > 0)&(

Event TA.ReturnToHarbour
Terminate

Interrupt 2
Precondition SS = TRUE
Event

R.Tug.Anchored TRUE
Terminate

Event R.Tug.Status PauseB

*EmptyTravTime)) |

(((R.Tug.Status = PauseH)&

 ((t - R.Tug.StartTime) < 0.7

R.Tug.Anchored FALSE

 (A.DeberthQue.N = 0))

R.Tug.TravelTime - t - R.Tug.StartTravel

4.3 Some Examples of Conceptual Model Development 143

(e) The Extended Triggered Activity called ReturnToHarbour.

4.4 Exercises and Projects

4.1 The dining philosophers problem is a classic vehicle for illustrating
the occurrence of deadlock in an operating system and, as well, for
exploring strategies to avoid its occurrence. The concern in this
problem is to explore the dining philosophers problem from the
perspective of a modelling and simulation project.

We imagine five philosophers seated around a circular table.
Between each pair of philosophers there is a single fork and in the
middle of the table is a large bowl of spaghetti. These philosophers
have a very focused existence which consists of a continuous cycle of
thinking and eating. There is, however, a basic prerequisite for the
eating phase; namely, a philosopher must be in possession of both the
fork on his right and the fork on his left in order to access and eat the
spaghetti at the center of the table. Inasmuch as the philosophers are an
orderly group, they have a protocol for acquiring the forks. When any
particular philosopher finishes his thinking phase, he must first acquire
the fork on his right and only then can he seek to acquire the fork on his
left (whose acquisition enables the initiation of the eating phase). When
the eating phase is complete, the philosopher replaces both forks and
begins his thinking phase.

The situation outlined above can, however, lead to deadlock. This is
a situation where no philosopher is eating and no philosopher is
thinking, but rather they are all holding their right fork and waiting to

 Although the presentation suggests a group of male philosophers, this should not

be taken literally because the group is, in fact, gender balanced.

Extended Triggered Activity: ReturnToHarbour
Event R.Tug.Status TOHARBOUR

R.Tug.StartTime t
Duration R.Tug.TravelTime

Interrupt
Precondition SS = TRUE
Event R.Tug.TravelTime -

R.Tug.Anchored TRUE
Terminate

Event R.Tug.Status PauseH

R.Tug.TravelTime t – R.Tug.StartTime

t - R.Tug.StartTime

2

2

144 4. A Conceptual Modelling Framework for DEDS

eat. Under these circumstances the left fork will never become available
for any of them and hence none will ever eat!

exponentially distributed random variable with the same mean of µE

minutes. Likewise suppose that the thinking time TT for each of the

same mean of µT minutes. It has been conjectured that there is an
‘interesting’ relationship between the ratio (µE/µT) and the time it takes
for deadlock to occur (we denote this time interval by Tdead

assessment is to be based on two graphs. The first
 is a graph of Tdead

versus (µE/µT) with (µE/µT) in the range 1 to 10 and the
 second is a graph of Tdead versus (µE/µT) with (µE/µT) in the range 0.1 to 1.

Formulate an ABCmod conceptual model for the project as outlined
above. By way of initialisation, assume that the five philosophers enter
the SUI in a sequential manner at times: t = 0 (the left-hand boundary
of the observation interval), t = 0.1 µE, t = 0.2 µE, t = 0.3 µE, and t =
0.4 µE. Upon entry, each philosopher begins a thinking phase.

4.2 The repeated occurrence of deadlock has greatly annoyed the dining
philosophers described in Problem 4.1 After due consideration, they
agreed to alter their fork acquisition protocol in one small (but
significant) way. Instead of having to first acquire the fork on his right,
the fifth philosopher will henceforth be required to first acquire the fork
on his left, and only then can he seek to acquire the fork on his right. (It
can be readily demonstrated that with this altered rule deadlock will
indeed be avoided.) In this modified context the goal of the modelling
and simulation project is to develop a graphical presentation of the
average waiting time to eat as a function of (µE/µT) where waiting time
is measured from the moment a philosopher stops thinking to the
moment when he begins eating.

Formulate an ABCmod conceptual model for these modified
circumstances of the dining philosophers. Use the same initialisation
procedure that was outlined in Problem 4.1

4.3 A lock system in a waterway provides the means for diverting boat
traffic around a section of turbulent water. One (or more) locks are
placed in a manmade parallel water channel and each functions as an
elevator, raising or lowering boats from one water level to another. In
this way boat traffic is able to bypass the nonnavigatable portion of a
river. A representation of a typical lock’s operation is given in Figure
4.6a.

). A modelling

Suppose that the eating time ET for each of the philosophers is an

and simulation study has been proposed to determine if a noteworthy relation can

philosophers is an exponentially distributed random variable with the

 indeed be identified.The

4.3 Some Examples of Conceptual Model Development 145

FIGURE 4.6a. Lock operation.

The lock’s operation can be divided into two very similar cycles
which we refer to as the up-cycle and the down-cycle. The up-cycle
begins with the upstream gates closed, downstream gates open, and the
water within the compartment at the downstream level. Boats waiting at
the downstream end to move upstream, enter the compartment. When
the compartment is suitably filled with boats, the downstream gates
close, valve B opens (valve A is closed), and water fills the
compartment to raise the boats to the upstream level. The upstream
gates then open and the boats exit and continue on their journey. The
stages of the down-cycle are the reverse of those described for the up-
cycle.

The number of boats that can be accommodated within the lock
compartment during either phase is naturally restricted by the physical
size of the compartment. This is basically dependent on the length of
the lock because boats must be moored along the edges of the
compartment for safety reasons. Hence the linear length of the
compartment is a major constraining parameter. This constraint cannot
be directly translated into a specific number of boats because boats
have varying individual lengths. Furthermore, there is a requirement for
a one meter separation between boats and between the boats adjacent to
the moving gates and the gates themselves. A typical configuration of
boats in the lock during an up-phase is shown in Figure 4.6b.

FIGURE 4.6b. Boat configuration in lock.

Upstream
water
level

Upstream gates Downstream gates

Downstream
water
level

Valve AValve B

Compartement

146 4. A Conceptual Modelling Framework for DEDS

Both the up-cycle and the down-cycle have the same three phases
which we call the loading phase, the transport phase, and the exit phase.
The loading phase is the phase when boats from the waiting queue
position themselves within the lock compartment. The duration of this
phase is dependent on the number of boats that enter the compartment.
A reasonable approximation for this loading duration is: (d1 + n d2)
where d1 = 4 minutes, d2 = 2 minutes, and n is the number of entering
boats. The boats selected to enter the compartment are taken
sequentially from the waiting queue in the order of their arrival until the
‘next’ boat cannot fit any available space. Then the next boat in the
queue that can fit into the available space is selected and this continues
until no further boats can be accommodated.

The transport phase includes the closing of the open gate of the lock
compartment and the filling/emptying of the water from the
compartment by appropriate opening/closing of valves A or B. The
duration of this phase is 7 minutes. The exit phase, during which the
boats leave the compartment, has a duration of 5 minutes. Thus the total
cycle time is: (d1 + n d2) + 7 + 5 = (16 + n d2) minutes.

The management of the lock system (the particular lock in question
is one of a series of locks on the waterway) has been receiving
complaints about long delays during the peak traffic period of the day
which extends from 11:00 AM to 5:00 PM. (The lock system operates
from 8:00 AM to 8:00 PM.) Fortunately traffic rapidly diminishes after
5:00 PM and the queues that normally exist at the end of the busy period
generally empty by the 8:00 PM closing time.

The usable length of the lock compartment is 40 meters. One option
that is being considered by management to resolve the excessive delay
problem is to increase the compartment length to 50 meters. There are
significant costs involved in such a reconfiguration and there is
uncertainty about what impact it would have on the delays experienced
by the various boat categories. A modeling and simulation study has
been proposed as a means for acquiring insight into the effectiveness of
the plan. Furthermore, an increase in boat traffic is anticipated over the
short term and it has been suggested that the proposed compartment
extension would also be able to accommodate at least a 15% increase.
This possibility is also to be investigated by the study.

The boats traveling in this waterway fall into three categories which
we reference as 1, 2, and 3. These categories are intended to reflect a
size attribute (i.e., small, medium, and large, respectively). The actual
length of arriving boats in category k is uniformly distributed in the
range [Lk – k , Lk + k] meters. During the high-traffic portion of the day
the interarrival time for boats in category k is exponentially distributed

4.3 Some Examples of Conceptual Model Development 147

with mean µk.(minutes). The values of the various constants are given in
Table 4.40.

TABLE 4.40. Size and arrival attributes of the three boat categories.

Size µk (minutes Lk (meters) k (meters)
Small (k = 1) 5 6 1
Medium (k = 2) 15 9 1.5
Large (k = 3) 45 12 1.5

a) Formulate a set of performance measures that would likely be of
value for assessing the effectiveness of the proposed lock
extension within the context of a modeling and simulation study.

b) Develop an ABCmod conceptual model that captures the various
relevant aspects of the problem.

4.4 HappyComputing Inc. is a personal computer service, sales, and rental
shop. Customers who arrive at the shop fall into one of four categories
depending on the nature of the ‘work’ which results from their visit.
These are labeled as follows.

C1: This customer wishes to purchase or rent a PC.
C2: This customer is returning a rental PC.

 C3: This customer has brought in a PC that requires service of a
relatively minor nature (e.g., upgrade of hard drive or installation of
additional memory). The customer typically waits for the service to
be completed or possibly returns later in the day to pick up the
machine.

 C4: This customer’s PC has a problem that needs to be diagnosed
before repair can be undertaken. In this case the customer leaves the
PC in the shop with the understanding that he or she will be
telephoned when the problem has been corrected.

The shop has three employees: one is salesperson and the other two
are technicians. One technician (the senior technician) has extensive
training and considerable experience. The other (the junior technician)
has limited training and skills. The salesperson is the initial point of
contact for all arriving customers. The needs of both type C1 and type
C2 customers are handled exclusively by the salesperson.

The shop is open Monday through Saturday inclusive from 9:00 AM
to 6:00 PM. The salesperson (or a substitute) is always present. The
senior technician has a day off on Mondays and the junior technician’s
day off is Thursday. Each employee has a one hour lunch break.

Customers of the type C3 category are handled by the junior
technician on a first-in-first-out basis. However, in about 20% of the
cases the junior technician is obliged to consult with the senior

148 4. A Conceptual Modelling Framework for DEDS

technician in order to deal with some aspect of the servicing
requirement. This draws the senior technician away from his normal
work activity which is the servicing of the PCs that are brought to the
shop by category C4 customers. Note that on Thursdays the senior
technician takes responsibility for the C3 work on a priority basis (i.e.,
he always interrupts his C4 task to accommodate the C3 customer).

It is the policy of the shop to carry out a comprehensive examination
of all rental PCs when they are returned and to carry out any necessary
refurbishing before they placed back into the rental pool. The
refurbishing includes a range of possible tasks that usually involve
hardware and software upgrades. This refurbishing activity is the
responsibility of the junior technician but it is carried out only when
there are no PCs from category C3 customers that require service.

TABLE 4.41. Interarrival times for customer categories.

Customer Category Min (minutes) Max (minutes)
C1 70 130
C2 110 170
C3 180 260
C4 120 210

The interarrival times of each customer category over the course of a
business day are uniformly distributed; however, the parameters of the
distributions vary according to customer type. The boundaries of the
various uniform distributions are summarised in Table 4.41.

Each arriving customer, in effect, generates a service requirement
which requires time to complete. The service time requirement for each
customer category is a random variable. The assumed distribution for
each of the categories is given in Table 4.42 (together with associated
parameter values).

TABLE 4.42. Service time requirements for each customer category.

Customer
Category

Distribution of
Service Time
Requirement

Distribution
Parameters *

(minutes).
C1 Normal = 25, 2 = 10
C2 Uniform min = 25, max =

35
C3 Triangular a = 30, b = 75, c =

45
C4 Triangular a = 45, b = 175, c

= 140
* See Section A1.4.4 of Annex A.

4.3 Some Examples of Conceptual Model Development 149

The owner of the shop (who, in fact, is the senior technician) wants
to decrease the turnaround time for the PCs brought in by C4 customers
because that is the part of the business that he is especially interested in
‘growing’. He has, furthermore, noticed that the current workload of the
junior technician often leaves him with significant amounts of idle time.
He is therefore considering asking the junior technician to take a
number of courses in order to upgrade his technical skills. This will
have two benefits. First, it will enable the junior technician to deal with
the service requirements of C3 customers without having to request
assistance and second, it will enable the (upgraded) junior technician to
assist with the servicing of the PCs brought to the shop by the C4
customers when he is not otherwise occupied with his current
responsibilities. The owner anticipates that the net impact will be a
reduction of about 25% in the turnaround time for the C4 category of
service.

The goal in this modelling and simulation project is to determine if
the owner’s expectation is correct.

a) The problem statement as given above omits several details that
need to be provided before the project can be realistically
undertaken. Identify these and suggest meaningful clarifications.

b) What is a realistic performance measure for this study? Do you
regard this as a bounded horizon study or a steady-state study?

c) Develop an ABCmod conceptual model.

4.5 Balking occurs when a customer in a queue (or anything else that is
enqueued) has waited too long for service and abandons the queue. The
length of the wait time that triggers the balking event may be fixed or
may be a random variable. There are various ways in which balking can
be handled within the ABCmod framework and the purpose of this
exercise is to formulate at least one approach.

In Section 5.3 of Chapter 5 we outline a simple modeling and
simulation project formulated around a fast-food outlet called Kojo’s
Kitchen. An ABCmod conceptual model that evolves from the project
description is also presented. The SUI, as presented, does not include
customer balking. Your task is to introduce this feature and duly
modify/extend the given ABCmod conceptual model so that balking is
incorporated.

Suppose we use the variable balk-time to represent the length of time
that a customer will wait in the queue before becoming disgruntled and
leaving. For definiteness, assume that balk-time is a random variable
and that it has a triangular distribution with parameters as shown in
Figure 4.7.

150 4. A Conceptual Modelling Framework for DEDS

2 5 10

0.25

balk-time

f(balk-time)

FIGURE 4.7. Distribution for the random variable balk-time.

Note finally that a necessary part of any balking specification is the
clarification of what happens to a customer that balks. In the case of
Kojo’s Kitchen such a customer simply disappears from the SUI.

4.5 References

4.1. Gershwin, S.B., (1991) Hierarchical flow control: A framework for
scheduling and planning discrete events in manufacturing, in Y.-C. Ho (Ed.),
Discrete Event Dynamic Systems, IEEE Press, Piscataway, NJ.

4.2. Kreutzer, W., (1986), System Simulation: Programming Styles and
Languages, Addison-Wesley, Sydney-Wokingham, UK.

4.3. Martinez, J.C., (2001), EZStrobe: General-purpose simulation system based
on activity cycle diagrams, in Proceedings of the 2001 Winter Simulation
Conference, pp. 1556–1564.

4.4. Peterson, J.T., (1981), Petri Net Theory and the Modeling of Systems,
Prentice-Hall, Englewood Cliffs, NJ.

4.5. Shi, J.J., (2000), Object-oriented technology for enhancing activity-based
modelling functionality, in J.A. Joines, R.R. Barton, K. Kang, and P.A.
Fishwick (Eds.), Proceedings of the 2000 Winter Simulation Conference,
Orlando, FL, December 10–13, 2000, pp. 1938–1944.

4.6. Tadao, M., (1989), Petri nets: Properties, analysis and applications,
Proceedings of IEEE, 77: 541–580.

4.7. Zeigler, B.P., (1976), Theory of Modeling and Simulation, Wiley
Interscience, New York.

4.8. Zeigler, B.P., Praehofer, H., and Kim, T.G., (2000), Theory of Modeling and
Simulation: Integrating Discrete Event and Continuous Complex Dynamic
Systems, Academic Press, San Diego.

Chapter 5 DEDS Simulation Model Development

5.1 Constructing a Simulation Model

The simulation model associated with a modelling and simulation project
is a computer program that captures the behavioural and structural details
of the SUI as specified by the conceptual model. There are two important
features of this computer program. The first is simply the fact that, like any
computer program, its development must respect the rules of the
programming language/environment chosen as the vehicle for
implementation. The second feature, however, is distinctive to the
modelling and simulation paradigm. It relates to the perspective the
program writer takes with respect to the manner in which the model
dynamics are ‘packaged’. This perspective is often dictated by the
programming language/environment being used.

For example, a reasonable choice might appear to be a direct
implementation of the Activity constructs used in formulating the
ABCmod conceptual model itself, as outlined in Chapter 4. This, however,
is not a practical choice because it does not lend itself to an efficient time-
advance mechanism which is an important constituent in the execution of any
simulation model. The inherent difficulty relates to the initiation of the
various Activity constructs. The ‘trigger’ in each case is the logical
expression within the Activity’s precondition. In most cases the
precondition is formulated in terms of the model’s state variables, hence
from an implementation point of view, there is little choice but to move
time forward in small increments until some meaningful event occurs (e.g.,
the end of a duration) and results in state variable changes that may trigger
one or more other Activities. In principle, this approach is straightforward
but in practice it is awkward and exceedingly inefficient.

The perspective outlined above is called ‘Activity scanning’ and is one
of three world views that are commonly recognised in the formulation of

other two are called ‘event scheduling’ and ‘process oriented’, respec-
tively. Essentially all simulation programming languages/environments
that are currently available have a bias, or even a total commitment, to one
or the other of these world views. Each of these is briefly outlined below.

discrete-event simulation models (See Chapter 3 of Banks et al. [5.1]). The

152 5. DEDS Simulation Model Development

Event Scheduling: The essential constituent of this perspective is a
set of future events that are scheduled to occur. A future event is a
collection of actions that includes state variable changes and the possible
scheduling of other future events. These actions all occur at the same value
of (simulated) time. The simulation model’s behaviour is formulated in
terms of these future events which are maintained in a time-ordered list.

Process Oriented: Recall that our intent in developing our conceptual
modelling framework was to identify atomic units of behaviour which

are assembled into larger units that have a natural affinity in terms of
capturing a higher level of behaviour. Each of these is called a process and
the simulation model in the process-oriented world view is typically
formulated as a collection of such processes which interact as they unfold
over time. A process portrays the flow of entities from one Activity to
another. In most cases, a process corresponds to the lifecycle of some entity

process that captures the entry of a consumer entity instance into the model, its
participation in a number of Activities, and finally its departure from the
model. Processes can also be defined for resources that participate in one
Activity after another (possibly in a circular manner) without ever leaving
the model.

5.2 Relationship Between the World Views

At its most fundamental level, DEDS model behaviour takes place as a

of some of the model’s state variables. As discussed in Section 4.2.4, there
are two types of events: conditional events and scheduled events. A
simulation model behaviour specification must provide the means to
determine when these events occur and also to execute them, in other

has its own approach for organising these event specifications for
execution. Because all views are necessarily built from the same discrete
events, it is natural to expect that relationships can be identified that permit
transformations among the various ‘views’ to be carried out. These

oriented simulation model.

A simulation run therefore unfolds in discontinuous jumps in time which
 correspond to the time stamps of the events in the future event list.

emerged as Activities. In the process-oriented approach, various Activities

within the ABCmod conceptual model. A commonly occurring example is a

words, to carry out the status change specifications (SCS) associated with
the event. Each of the three world views described in the Section 5.1

conceptual model into either an event-scheduling simulation model or a process-

result of discrete events at specific points in time which change the value

relationships provide the basis that enables the translation of an ABCmod

5.3 Kojo’s Kitchen 153

framework is composed of a conditional event (the starting event which is
linked to a precondition) followed by a duration which is then followed by a
scheduled event (the terminating event). The various specifications
included in both the starting event and the terminating event are called
SCSs (status change specifications) and these always include state variable
changes. Because the development of an ABCmod conceptual model is a
conceptual modelling exercise, the management of these SCSs and the
advancement of time have no relevance.

As indicated earlier in Section 5.1, in the event-scheduling world view a
DEDS simulation model is expressed in terms of a set of future events. An

view by reorganising the preconditions and the SCSs in the starting events and
in the terminating events of the various Activities into members of this set.
The basic concepts, data structures, and algorithms for our perspective of this
world view are outlined in Section 5.4.1. The transformation of an
ABCmod conceptual model into an event-scheduling simulation model is
presented in Section 5.4. The Java programming language is used to illustrate
the creation of this category of simulation model.

The event-scheduling approach breaks Activities down into constituent
parts. The process-oriented approach on the other hand, interconnects Activities
into units that correspond to entity lifecycles. Consider again Figure 4.2
that presents the lifecycle of three different shoppers moving from activity
to activity. A process-oriented simulation program would execute these
lifecycles for each instance of the shopper entity. During a simulation run,
entity instances typically interact with other entities within the ABCmod Activities
that constitute the lifecycle. A prerequisite for the transformation of an
ABCmod conceptual model into a process-oriented simulation model is an
intermediate step that identifies these lifecycles (or processes).

Section 5.5 introduces an approach for developing processes from an
ABCmod conceptual model. These processes are applicable to any process-
oriented programming environment, and can be viewed as an additional step
added to the conceptual modelling phase. The remainder of Section 5.5 shows
how an ABCmod conceptual model can be transformed into a GPSS
(a process-oriented programming environment) simulation model.

5.3 Kojo’s Kitchen

A simple project formulated around a fast-food outlet in the food court of a
shopping mall is used to illustrate the main concepts required for the
translation of an ABCmod conceptual model into an event-scheduling model.

ABCmod conceptual model is transformed into an event-scheduling world

Recall that the basic Activity in our ABCmod conceptual modelling

154 5. DEDS Simulation Model Development

an ABCmod conceptual model.

S
an

d
w

ic
h

 a
n
d

 S
u
sh

i
C

o
u

n
te

r

Su

Sw

SuSu SwSw

E

E

Sw Su E

EmployeeSushi

Customer

Sandwich

Customer

FIGURE 5.1. Kojo’s Kitchen fast-food outlet.

Project Description
Kojo’s Kitchen is one of the fast-food outlets in the food court of a
shopping mall. The mall (and hence Kojo’s) is open between 10:00 AM
and 9:00 PM every day. Kojo’s serves only two types of product; namely,
sandwiches and sushi. We assume there are only two types of customer:
one type purchases only sandwiches and the other type purchases only
sushi products. Two rush-hour periods occur during the business day, one
between 11:30 AM and 1:30 PM, and the other between 5:00 PM and 7:00
PM.

The stochastic process for customer interarrival times is nonho-
mogeneous but, for convenience, is taken to be piecewise homogeneous
(see Section A1.8 of Annex 1). Interarrival times in each of the
homogeneous segments are taken to be exponentially distributed with
means as given in Table 5.1.

We begin with a statement of the project followed by the development of

5.3 Kojo’s Kitchen 155

TABLE 5.1. Kojo’s Kitchen customer arrival data model.

Customer
Type

Period Mean Inter-
Arrival Time

(min)
10:00 AM–11:30 AM 15
11:30 AM–1:30 PM 3
1:30 PM–5:00 PM 12
5:00 PM–7:00 PM 4

Sandwich
Customer

7:00 PM–9:00 PM 10
10:00 AM–11:30 AM 22
11:30 AM–1:30 PM 4
1:30 PM–5:00 PM 15
5:00 PM–7:00 PM 7

Sushi
Customer

7:00 PM–9:00 PM 12

Currently two employees work at the counter throughout the day
preparing sandwiches and sushi products for the customers. Service times
are product-dependent and they are both uniformly distributed, ranging
from three to five minutes for sandwich preparation and from five to eight
minutes for sushi preparation.

Goal: Kojo’s manager is very happy with business, but has been
receiving complaints from customers about long waiting times. He is
interested in exploring staffing options to reduce these complaints. The
specific interest is in comparing the current situation (base case) to an
alternative where a third employee is added during the busy periods
(between 11:30 AM and 1:30 PM and between 5:00 PM and 7:00 PM). The
performance measure of interest is the percentage of customers that wait
longer than five minutes for service over the course of a business day.

The various components of an ABCmod conceptual model for the flow
of customers through Kojo’s Kitchen are given in Tables 5.2 through 5.14.

156 5. DEDS Simulation Model Development

Structural Components

TABLE

Constants
Name Role Value

15

WMean2 Mean interarrival time for sandwich
customer between 11:30 AM and 1:30 PM

3

WMean3 Mean interarrival time for sandwich
customer between 1:30 PM PM

12

WMean4
PM and 7:00 PM

4

WMean5 Mean interarrival time for sandwich
customer between 7:00 PM and 9:00 PM

10

UMean1
between 10:00 AM and 11:30 AM

22

UMean2 Mean interarrival time for sushi customer
between 11:30 AM and 1:30 PM

4

UMean3 Mean interarrival time for sushi customer
between 1:30 PM and 5:00 PM

15

UMean4 Mean interarrival time for sushi customer
between 5:00 PM and 7:00 PM

7

UMean5 Mean interarrival time for sushi customer
between 7:00 PM and 9:00 PM

12

STWMin Minimum service time for sandwich customer 3
STWMax 5

5
STUMax 8
NumEmpReg Number of employees at counter during non- 2

NumEmpBusy
busy times

3

Case1 Identifier for the base case 1
Case2 Identifier for the alternative 2

Parameters
Name Role Values

EmpSchedCase Set to Case1 for the base case and
Case2 for the alternative case (when a
third employee is present at the counter
during busy periods)

Case1,
Case2

tomer between 10:00 AM and 11:30 AM

 and 5:00

Mean interarrival time for sushi customer

customer between 5:00
Mean interarrival time for sandwich

Maximum service time for sandwich customer

Maximum service time for sushi customer

busy times

STUMin Minimum service time for sushi customer

Number of employees at the counter during

WMean1 Mean interarrival time for sandwich cus-

5.2. Constants and parameters for Kojo,s Kitchen project.

5.3 Kojo’s Kitchen 157

TABLE 5.3. Customer Consumer Entity Class.

Consumer Entity Class: Customer
The customers that purchase items at the Kitchen.
Attributes Description
Type Set to the type of customer, either W

TABLE 5.4. Counter group.

Aggregate Entity: CounterGroup
This group contains the customers being served at Kitchen.
Attribute Description
List

being served
N Number of entries in List. This value is always less

than or equal to the input variable EmpNum
(number of employees at the counter)

TABLE 5.5. Customer queue.

Aggregate Entity: CustQue
Queue of customers in front of the Kitchen.
Attribute Description
List

are waiting for service
 Discipline: FIFO

N Number of entries in List

TimeEnterQu The time the customer enters the queue

Set of attribute-tuples of the customers that are

List of the attribute-tuples of the customers that

 (sandwich) or U (sushi)
,,

,,

Kojo,s

Kojo,s

Kojo,s

158 5. DEDS Simulation Model Development

T
A

B
L

E
5.

6.
In

pu
ts

 f
or

K
oj

o’
s

K
itc

he
n

pr
oj

ec
t.

In
pu

ts
In

pu
t

V
ar

ia
bl

e
D

es
cr

ip
ti

on

D
at

a
M

od
el

s
A

ct
io

n
Se

qu
en

ce
D

om
ai

n
Se

qu
en

ce
R

an
ge

Se

qu
en

ce
.

U
B W
B(t

)
B

t
t 1B

In
te

ra
rr

iv
al

 ti
m

e:
 E

xp
on

en
tia

l(
X

)
w

he
re

 X
 is

:
W

M
ea

n1
, 0

t<

 9
0

 W

M
ea

n2
, 9

0
t <

 2
10

W

M
ea

n3
, 2

10

t <
 4

20

W

M
ea

n4
, 4

20

t <
 5

40

t <
 6

60

A
ll

va
lu

es

eq
ua

l t
o

1

W
ar

ri
va

ls
(C

.C
us

to
m

er
)

U
B U
B(t

)

t
t 1B

X
)

w
he

re

 is
:

U
M

ea
n1

, 0

t
t <

 2
10

U

M
ea

n3
, 2

10

t <
 4

20

 U
M

ea
n4

, 4
20

t <

 5
40

U

M
ea

n5
, 5

40

t <
 6

60

A
ll

va
lu

es

eq
ua

l t
o

1

U
A

rr
iv

al
s

(C
.C

us
to

m
er

)

E
m

pN
um

(t
)

E
m

pN
um

R
eg

, 0

t <
 9

0,
 2

10

t <
 4

20
, 5

40

t <
 6

60

E
m

pN
um

B
us

y,
 9

0
t <

 2
10

, 4
20

t <

 5
40

 E
m

p N
um

B
us

y

Sc
he

dE
m

p

In
te

ra
rr

iv
al

 ti
m

e:
 E

xp
on

en
tia

l(

T
he

 in
pu

t v
ar

ia
bl

e
U

W
B r

ep
re

se
nt

s
th

e
in

pu
t e

nt
ity

 s
tr

ea
m

co

rr
es

po
nd

in
g

to
 th

e
sa

nd
w

ic
h

ty
pe

cu

st
om

er
 c

on
su

m
er

en

tit
y

cl
as

s
T

he
 in

pu
t v

ar
ia

bl
e

U
B

U

re
pr

es
en

ts
 th

e
in

pu
t

en
tit

y
st

re
am

co

rr
es

po
nd

in
g

to
 th

e
su

sh
i t

yp
e

cu
st

om
er

co

ns
um

er
 e

nt
ity

 c
la

ss

T
hi

s
in

pu
t v

ar
ia

bl
e

re
pr

es
en

ts
 th

e
nu

m
be

r
of

 e
m

pl
oy

ee
s

at
 th

e
co

un
te

r
se

rv
in

g
cu

st
om

er
s.

In
pu

t/
O

ut
pu

t
C

om
po

ne
nt

s

da
ta

 m
od

el
)

Fi
rs

t
ar

ri
va

l:
 =

B
 (

ra
nd

om
 u

si
ng

 i
nt

er
-a

rr
iv

al
 t

im
e

W
M

ea
n5

, 5
40

da
ta

 m
od

el
)

 <
 9

0

 U
M

ea
n2

, 9
0

ot
he

rw
is

e
w

he
n

E
m

pS
he

dC
as

e
eq

ua
l t

o
C

as
e2

:

X

E
m

pN
um

R
eg

,
w

he
n

C
as

e
is

 e
qu

al
 t

o
C

as
e1

,
E

m
pN

um
R

Fi
rs

t
ar

ri
va

l:
 =

B
 (

ra
nd

om
 u

si
ng

 i
nt

er
-a

rr
iv

al
 t

im
e

eg
 o

r

5.3 Kojo’s Kitchen 159

TABLE 5.7. Output for Kojo’s Kitchen project.

Sample Set for Kojo’s Kitchen project.

Sample Sets
Name Description

Each value in the sample set

spent waiting in the queue for service by
some instance of the consumer entity

DSOV for Kojo’s Kitchen project.

customers that
wait longer
than 5 minutes
in the queue

Behaviour Components

Time units: minutes

Observation interval: tB0B = 0, tBf B: = 660 minutes (11 hour business day).

TABLE 5.8. Initialisation for Kojo’s Kitchen project.

Initialise
EmpNum(t B0B) = 2

A.CustQue.N 0

Data Modules
Name Description Data Model
WSrvTm Returns a value for

the service time of a
sandwich customer

USrvTm Returns a value for
the service time of a
sushi customer

PHI[WaitTime]
PHI[WaitTime] is the time spent

class called Customer

PHI[WaitTime] PropGT(5, PHI
[WaitTime])

Derived Scalar Output Variable (DSOV)

A.CounterGroup.N 0

UNIFORM(STWMin, STWMax)

TABLE 5.9. Data modules for Kojo’s Kitchen project.

UNIFORM(STUMin, STUMax)

Name Description Output Set OperatorName

PropLongWait Proportion of

(b)

(a)

160 5. DEDS Simulation Model Development

TABLE

User-Defined Modules
PropGT(Val,SampleSet) This procedure analyses the set

SampleSet and returns the proportion of
entries in the set that exceed the value Val

TABLE 5.11. Summary of Activity constructs for Kojo’s Kitchen project.

Summary of Activity Constructs
Action Sequences

WArrivals The Input Entity Stream of arriving sandwich
customer

UArrivals The Input Entity Stream of arriving sushi customer
SchedEmp Extra employee scheduling

Activities
ServingW Service for a sandwich customer
ServingU Service for a sushi customer

TABLE 5.12. Sandwich customer Arrival Action sequence.

Action Sequence: WArrivals(C.Customer)
Precondition t = M[U Bw B](t)
Event C.Customer.Type W

SM.InsertQue(A.CustQue, C.Customer)

TABLE 5.13. Sushi customer Arrival Action sequence.

Action Sequence: UArrivals(C.Customer)
Precondition t = M[U BUB](t)
Event C.Customer.Type U

SM.InsertQue(A.CustQue, C.Customer)

TABLE 5.14. Employee scheduling Action sequence.

Action Sequence: SchedEmp
Precondition
Event IF(t = 90) EmpNum = 3

ELSE IF(t = 420) EmpNum = 3
ELSE EmpNum = 2

C.Customer.TimeEnterQu t

(t = M[EmpNum](t)) &(EmpShedCase = Case2)

5.10. User-defined modules for Kojo’s Kitchen project.

C.Customer.TimeEnterQu t

TABLE 5.15. Serving sandwich customer Activity.

Activity: ServingW
Precondition (A.CounterGroup.N < EmpNum) & (A.CustQue.N 0) &

(A.CustQue[0].Type = W)
Event SM.RemoveQue(A.CustQue, C.Customer)

SM.InsertGroup(A.CounterGroup,C.Customer)
SM.Put(

Duration DM.WSrvTm()
Event SM.RemoveGroup(A.CounterGroup, C.Customer)

SM.Leave(C.Customer)

TABLE

Precondition (A.CounterGroup.N < EmpNum) &
(A.CustQue.N 0) & (A.CustQue[0].Type = S)

Event SM.RemoveQue(A.CustQue, C.Customer)
SM.InsertGroup(A.CounterGroup,C.Customer)

Duration DM.USrvTm()

SM.Leave(C.Customer)

5.4.1 Event-Scheduling Simulation Models

The execution of an event-scheduling simulation model is concerned with
the processing of future events. The model’s behaviour over the course of

These snapshots contain:

The state of the model
The list of scheduled future events
The value of the simulation clock

PHI[WaitTime]

5.16. Serving sushi customer Activity.

SM.Put(PHI[WaitTime],

Activity: ServingU

(t-C.Customer.TimeEnterQu))

an Event-Scheduling Simulation Model
5.4 Transforming an ABCmod Conceptual Model into

taken at those the discrete points in time when the events in the future events
 list occur.

the simulation run can be represented as a sequence of snapshots of the model

Event SM.RemoveGroup(A.CounterGroup,C.Customer)

5.4 Transforming an ABCmo d Co n c e p t u a l M o d e l . . . 1 61

, (t-C.Customer.TimeEnterQu))

A future event is more complex than the notions of a scheduled event or

with a scheduled event (e.g., the Activity terminating event in an
ABCmod Activity) whose changes to the model might enable the

The view outlined above is fundamental to the translation of an

In our particular view of event scheduling, a future event list (FEL) is
used in the scheduling of future events. It is composed of a list of records
called event notices. Each contains a future event name that identifies a
future event and a time attribute that defines the time when it must occur.
Event notices are ordered on the FEL according to their time attribute. A
notice contains, as a minimum, the future event name and a value for the
time attribute. The future event name serves primarily to reference a future
event routine (FER) that carries out the actions specified in the future
event.TP.

1
PT

entities or other values required by the FER.
Essential to executing a simulation model is a time advance routine. An

algorithm for such a routine is provided in the flowchart of Figure 5.2. The
routine contains a loop that processes the event notices on the FEL until a
stop event notice or stop condition is encountered. The processing of an
event notice has two steps: the clock is advanced to the value of the time
attribute, and the referenced FER is called to change the model’s state and
possibly add notices to the FEL. The notice at the head of the FEL is the
next one to be processed and is called the imminent event notice.

The handling of an input function (exogenous events) is generally
achieved by creating event notices based on the times prescribed by some
input domain sequence (the timing map M[]). Consider the arrival of
sandwich customers at Kojo’s Kitchen. An event notice for the first customer
arrival is placed on the FEL with a time attribute value that is greater than or
equal to the left boundary of the observation interval (see Table 5.12).

TP

1
PT It is sometimes convenient to use the future event name as a reference to the

event notice itself. Such usage is always clearly apparent.

a conditional event that have been previously introduced (see section 4.2.4). In
some respects a future event can be regarded as a composite of these two notions.

162 5. DEDS Simulation Model Development

A future event is composed of a sequence of actions whose impact on the model

conditional events, and this cascade may continue. This can lead to

is captured by a status change specification (SCS). This sequence begins

additional future events being scheduled (i.e., placed on the future
event list) as becomes apparent in the discussion that follows.

preconditions for one or more conditional events which then cause further

conditional event). The changes to the model that result may enable more

to implement the event-scheduling approach.

ABCmod conceptual model to an event-scheduling simulation model. The
rest of this section describes the programming mechanisms that are required

 The notice may also contain a third element that references model

changes to the model (recall that the starting event of an Activity is a

When this notice becomes the imminent event notice the referenced FER
will:

Generate an interarrival time, say a*, using a data model

Establish the time of the next arrival as t* = t + a* (t* corresponds
to the next time in the domain sequence CS BD B[U BwB]).
Insert into the FEL a new arrival event notice having t* as the
value of the time attribute.

This procedure (which we call bootstrapping) results in a stream of
customer arrivals for the simulation model.

Start Simulation Run

Call

referenced

FER

Stop Event

Notice?

Get imminent

event notice

Stop

Condition

True?

End Simulation Run

YN

Y

N

Set system clock

time attribute

FIGURE 5.2. Time advance algorithm for event scheduling.

The same procedure is used for generating most inputs for a simulation
model. Consider a manufacturing problem with machines that have a
‘down-time’ (e.g., they become unserviceable and require repair). An
initial breakdown event notice is created and placed on the FEL. When the
breakdown event notice is processed, an end-of-repair event notice is

 163

to event notice

associated the input variable UW (t) (see Table 5.6).

5.4 Transforming an ABCmo d Co n c e p t u a l M o d e l . . .

164 5. DEDS Simulation Model Development

scheduled to bring the machine back into service. When the end-of-repair
event notice is processed, then another breakdown event notice is placed
on the FEL which indicates the end of the ‘up-time’, and so on.

Stopping the simulation run can be achieved using one of two methods.
The first is to run the simulation until a predetermined time. In this case, a
stop event notice is placed on the FEL. Its time attribute value is the
prescribed termination time for the simulation run. In our considerations
below of the Kojo’s Kitchen project, a stop event notice with the event
name StopEvent and time attribute value of 660 minutes (11 hours) is
placed on the FEL.

The second method for stopping a simulation run is to specify some
condition for termination, such as the production of the 100Pth P component,
the occurrence of a catastrophic system failure (suitably defined), or the last
carton shipped by a distribution centre. The actual time of termination is
not known at the start of the simulation run, and the state of the model
must be checked after the processing of the imminent event to determine if
the conditions for termination have been established.

FERs contain the specifications for the required changes to the model’s
status. There are two main steps in the FER’s execution:

1. Carry out the changes to the model’s status associated with a scheduled
event.TP

2
PT Typically, this would correspond to carrying out the SCS of

some Activity’s terminating event.
2. Check the various preconditions to determine if any conditional events

(i.e., starting events) can be activated. This involves testing the preconditions
for all Activities (more efficient approaches are possible). For each
precondition that is found to be TRUE, the FER

a) Carries out state changes associated with that conditional event
(i.e., the SCS of the corresponding Activity’s starting event).

b) Schedules a future event derived from the SCS of the corresponding
Activity’s terminating event.

As an illustration of the various possible interactions between the FEL
and the FER we examine the processing that is associated with the
handling of a customer at Kojo’s Kitchen. Consider the situation where the
imminent event notice on the FEL is an EndServing event notice. We
assume that such a notice is associated with the scheduled event that
corresponds to the completion of some customer’s service at the counter.
As many as two (or three) event notices called EndServing can
simultaneously exist on the FEL because there can be two (or three)

TP

2
PT

that are TRUE.
Generally, Step 2 needs to be repeated until there are no preconditions

 Data output operations may also be carried out.

 165

customers at the counter.TP

3
PT Each such notice would have been placed on the

The next subsection outlines how the event-scheduling routine can be
implemented using Java.

Event-scheduling simulation models and simulation programs are typically

for supporting this development. They provide functions for random
number generators, random variate functions, list processing, and so on.

TP

3
PT

When an endServing event notice is processed, then the corresponding FER would
simply decrement the attribute N; that is, the customer attribute-tuple serves no
purpose once it is removed from the customer queue. Any time a customer is

original attribute-tuple could be required for future processing once it left the
counter (e.g., could be interested in the operation of the whole fast-food court).

 In this simple project, the counterGroup List attribute is not necessary. Only the

created using general programming languages. Often libraries are available

attribute N is required to give the number of customers being serviced at the counter.

brought to the counter the attribute N is incremented. In more complex models, the

customers simultaneously there.

is waiting in the queue to be served:
a)

terminating event of the enabled Activity) by:
i. Determine the serving time s (using the appropriate data

model) for the customer entity instance newly placed at the
counter and establish the end of service time as tBend B = t + s.

ii. Insert a new event notice in the FEL with time attribute set
to tBend B, with name EndServing, and with a reference to the
customer entity instance placed at the counter.

 5.4 Transforming an ABCmo d Co n c e p t u a l M o d e l . . .

5.4.2 Java-based Tools for Event Scheduling

must necessarily contain a reference to the specific customer entity

FEL when the customer arrived at the counter.

instance to be removed from the counter because there can be two (or three)

The following processing is carried out by the FER.

counter. This could enable either a ServingW Activity or a ServingU
Activity (see Table 5.15 and Table 5.16). If a customer entity instance

Remove the customer entity instance from the queue and place it at
the counter i.e., in the CounterGroup.

2. In the case of the EndServing event, space becomes available at the

b) Insert that customer’s computed wait time into the PHI[WaitTime]
sample set.

1. The customer just served leaves the model. Note that the event notice

c) Schedule another EndServing event notice (based on the terminating

166 5. DEDS Simulation Model Development

Most if not all conceptual model entities can be mapped directly into Java
classes (the following section provides some suggested mappings). This

scheduling simulation models and the time advance algorithm (for creating
TP

4
PT

Java supports Abstract classes.TP

5
PT Such classes cannot be instantiated as

executing objects, but provide the mechanism for supplying an abstract
definition for extension to create classes that can be instantiated. An
EvSched Abstract class (see the UML class diagram in Figure 5.3) is
presented for creating Java event-scheduling simulation models. The class

event scheduling. The class is intended for use with other classes
(EventNotice, ESAttributeList, and ESOutputSet) used to define future

classes used by EvSched are summarised in Table 5.17 and include the
following.

fel variable references a PriorityQueue object TP

6
PT to implement

the FEL. This class provides the functionality to rank event notices
in a list (see EventNotice class below).

time0 and timef correspond to the boundaries of the
observation interval. The timef variable is set when the simulation
execution ends. Its value will only be known at that point when the
right-hand boundary of the observation interval is implicit. These
values are required for calculating DSOV values for trajectory
sets.

TP

4
PT Many books are available on the subject (e.g., [5.2], [5.3]) and complete reference
material for Java version 5.0 is offered by Sun Microsystems [5.5].

TP

5
PT A Java class provides the specification for creating instances of objects. Thus an

object corresponds to memory being allocated in a computer program that
contains data and can be executed. The class is much like a data type whereas
the object is much like the variable declared using the data type.

TP

6
PT The PriorityQueue class is provided by the Java Collections Framework.

The indent of this section is to demonstrate how event scheduling

model. Java is an object-oriented language that offers many predefined classes.

section presents an overall approach to using Java for implementing event-

simulation programs). It is expected that the reader is familiar with Java.

programming tools can be developed using the Java programming language.

contains the variables, abstract methods, and methods for implementing

These tools will be used in the next section in the presentation of the translation
process from an ABCmod conceptual model to an event scheduling simulation

event notices, attribute-tuples, and collecting output. Abstract methods
must be defined when extending the class. These components and other

a) The

b) The clock variable is the implementation of the simulation clock.
c) The variables

 167

TABLE 5.17. The EvSched Abstract class.

 Name Description
fel The Future Event List implemented

as a PriorityQueue object
clock The simulation clock
time0, timef These two variables define the

boundaries of the observation interval

Variables

StopEvent A numeric identifier representing the
future event name in the event notice
for implementing the explicit right-
hand boundary of the observation
interval

initEvSched Used to initialise the simulation clock
and timing. There are two versions –
one with the time for the end of the
observation interval and one without

setTimef Used to change the right- hand
boundary of the observation interval

runSimulation This method implements the event-
scheduling time advance algorithm
and controls the execution of the
simulation

addEventNotice The method provides the means to
fel

Methods

removeEventNotice fel.
This method allows implementation
of interrupts and pre-emption

processEvent This method is used to execute the
FERs associated to the future event
names

Abstract
methods

implement the implicit right-hand
boundary of the observation interval

EventNotice Class used to instantiate event notice
objects added to fel

ESAttributeList Class used to instantiate attribute-
tuples for implementing consumer
and resource entities

Other classes

Class to instantiate an output set
(either trajectory set or sample set).
The class provides methods to
compute DSOV values (i.e., values
for a scalar output variable)

add an event notice to
Used to remove a notice from

 5.4 Transforming an ABCmo d Co n c e p t u a l M o d e l . . .

implicitStopCondition This method can be used to

ESOutputSet

event name in an event notice to schedule termination of the
simulation at a predefined time (explicit right-hand boundary of

method that implements the time advance algorithm (see Figure

clock, time0 variable, and optionally sets up a StopEvent notice.

time0 to its startTime argument. The second form provides
endTime that is used to create an event notice on fel with the
name StopEvent and timeAttr set to endTime.

setTimef provides the means to change the right-hand
boundary of the observation interval. Its effect is to add an event
notice containing the StopEvent constant. This method can be used
to handle warm-up periods or to increase the run length as
described in Chapter 6.

addEventNotice provides the means to instantiate an

attribute are provided and the other where in addition to these two
parameters, a reference to an object is provided. In the first case,
the obj variable of the event notice object is simply set to null.

such interventions terminate ongoing Activities. Terminating an Activity
is equivalent to removing the event notice that corresponds to the
Activity's terminating event from fel (see Section 5.4.4 for details).

out the SCS associated with the events. The runSimulation method
calls processEvent with arguments evName

the observation interval. This method should evaluate the model
variables to determine when the condition for terminating the
simulation exists. For example, the method could return TRUE
when the 100 Pth P widget was completed in a manufacturing model.

168 5. DEDS Simulation Model Development

d) The constant StopEvent (integer constant set to –1) serves as the

the observation interval).

f) The method initEvSched initialises the fel variable, the simulation

The two forms of the method initEvSched initialise clock and

e) The simulation model execution is centered on the runSimulation

g) The method

h) The method

are available, one where only a future event name and time

j) The processEvent is an abstract method (to be created when
extending the EvSched Class) for calling future event routines that carry

5.2) for processing event notices on fel.

event notice object and add it to fel. Two forms of the method

interrupts and pre-emption. Recall from the previous Chapter that
i) The removeEventNotice method supports the implementation of

associated with the event). obj (reference to objects
 (event name) and

k) The implicitStopCondition abstract method provides the mecha-
nism for implementing an implicit right-hand boundary of

 169

+initEvSched(in startTime : double) : void

+initEvSched(in startTime : double, in endTime : double) : void
+setTimef(in endTime : double) : void

+runSimulation() : void

+addEventNotice(in name : int, in tm : double) : void

+addEventNotice(in name : int, in tm : int, in obj : Object) : void

+removeEventNotice(in name : int) : void
+processEvent(in evName : int, in obj : Object) : void

+fel : PriorityQueue

+clock : double = 0

+StopEvent : int = -1

+time0 : double
+timef : double

EvSched

+EventNotice(in evName : int, in tm : double)

+EventNotice(in evName : int, in tm : double, in o : Object)

+compareTo(in evn : Object) : int
+equals(in evn : Object) : boolean

+eventName : int

+timeAttr : double
+obj : Object

EventNotice

1

-Q
u
e
u
e
s

*

java.util.PriorityQueue

+indexOfName(in ty : String) : int
+setCharValue(in attName : String, in c : char) : void

+setIntValue(in attName : String, in i : int) : void

+setBooleanValue(in attName : String, in b : boolean) : void

+setDoubleValue(in attName : String, in d : double) : void

+setStringValue(in attName : String, in s : String) : void
+setESAttributeListValue(in attName : String, in l : ESAttributeList) : void

+charValue(in attName : String) : char

+intValue(in attName : String) : int

+booleanValue(in attName : String) : boolean

+doubleValue(in attName : String) : double
+stringValue(in attName : String) : String

+esAttributeListValue(in attName : String) : ESAttributeList

ESAttributeList

javax.management.AttributeList

1

+
C

o
n
ta

in
s

0..*

«interface»

java.lang.Comparable

1

-C
o
n
ta

in
s

1

javax.management.Attribute

1

-Contains1..*

+ESOutputSet(in name : String)

+put(in tm : double, in val : double) : void

+computePhiDSOVs() : void

+clearSet() : void

+rewindSet() : boolean

+get(out timVal : double[2]) : void

+number : long

+sum : double

+mean : double

+sumSquares : double

+variance : double
+stdDev : double

+meanSquares : double

+max : double

+maxTime : double

+min : double
+minTime : double

ESOutputSet

1

-Outputs To1..*

FIGURE 5.3. The EvSched Abstract class and other related classes.

notices. An EvSched object queues one or more of the EventNotice
Three variables are defined in the class:

attribute), and obj (reference to any object associated to the event).
The EventNotice class implements the Comparable Interface
which is a requirement for use with the PriorityQueue class.

objects on fel.

l) The EventNotice class supports instantiation of future event

5.4 Transforming an ABCmo d Co n c e p t u a l M o d e l . . .

 The equivalent numeric identifier of the future event name is stored in the

EventNotice object. For examples, see Table 5.20.

 (future event name), (event notice time eventName timeAttr

7

7

+computeTrjDSOVs(in time0 : double, in timef : double) : void

+implicitStopCondition () : void

170 5. DEDS Simulation Model Development

that can represent consumer and resource entities. This class
extends the AttributeList class T P… P T The AttributeList object
manipulates a list of Attribute objects that relate a name to any
Java object. Extensions to the AttributeList and Attribute classes

(the indexOf method provided by AttributeList matches both the
name and value during a search) and for setting/getting the values
of attributes based on their names. The ESAttributeList provides
the method indexOfName and a set of methods for setting attribute
values (e.g., setIntValue(attName,i)
(e.g., intValue(attName)).

during the simulation run (with the method put T P P T) and then to
compute derived scalar values (using methods computeTrjDSOVs
or computePhiDSOVs
file with the name provided in the constructor’s argument
(ESOutputSet(File-Name)). The class also provides a number of
other methods to facilitate collection and analysis of the output
data:

TP PT The AttributeList and Attribute classes are provided by Java Management

Extensions (JMX).
TP PT

to order the event notices according to their timeAttr attribute.
The method compareTo is used by the PriorityQueue class methods

m) The ESAttributeList class supports instantiation of attribute-tuples

). The PSOV values are recorded in a

) and getting attributes values

i. clearSet: This method removes all data currently recorded.

(see Chapter 6) or to re-initialise the simulation program.
ii. rewindSet: This method provides the means to point to the

beginning of the recorded data (i.e. beginning of the file that
contains the data). This method is required before making calls
to the get method.

iii. get:

This method can be used to accommodate warm-up periods

a PSOV so that project specific operators can be applied when

 Note that collecting data for either a trajectory set or a sample set uses the same
method; both a time value and data value are stored in both cases.

This method allows access to output data collected for

that contain DSOV values after computeTrjDSOVs or
 computePhiDSOVs is called.

 offers access to the variable number that contains the number
of elements in the output data set. Table 5.18 shows the variables

8

9

8

are necessary to find the index of an Attribute with a specific name

9

the project has distintive DSOV requirements. The class

n) The ESOutputSet class provides the means to collect output data

 171

The complete listings for the classes EvSched.java, ESAttribute.java,
ESOutput.java, and EventNotice.java can be downloaded from the

execution of this method relates to the various elements in the algorithm as
follows.

a) The fel.poll() method removes the event notice (EventNotice

Object reference returned by the method to an EventNotice object
reference.

b) The clock is updated with the value of the event notice attribute
nxtev.timeAttr. This implements the time advance mechanism of
the algorithm.

d) If no stop event is detected, the event name nxtev.eventName and
objectnxtev.obj are passed as an argument to the processEvent
method. This method will be specific to the simulation model (see
the next section for an example of how this abstract method is
used). The function of this method is to call the FER associated
with the event name.

e) Finally the implicitStopCondition abstract method is called to test
for an implicit stop condition, that is, some state of the model that
indicates the end of the simulation. When this method returns
TRUE,runSimulation will break out of its processing loop. As
with the processEvent method, this method is specific to the model
being implemented.

f) The timef variable is set to the current value of the clock after
breaking out of the main processing loop. At the end of a
simulation run, the variables time0 and timef represent the
boundaries of the observation interval.

textbook Web site. The method runSimulation is shown in Figure 5.4. The

object) at the head of fel. A cast is necessary to cast the

event. Calling either initEvSched(double startTime, double endTime)
or setTime(double endTime) places on fel an event notice with the
name StopEvent (-1) and with its timeAttr set to the value of
endTime. When such an event notice is found at the head of fel, the
runSimulation method breaks out of its processing loop (while
loop). This logic accommodates the case where the observation
interval has an explicit right-hand boundary, that is, the simulation
runs must stop at a predetermined time.

c) A check is then made to see if the event id corresponds to a stop

 5.4 Transforming an ABCmo d Co n c e p t u a l M o d e l . . .

172 5. DEDS Simulation Model Development

The stage has been set to create an event-scheduling simulation model
from a conceptual model developed using the ABCmod framework
described in Chapter 4. The next Section describes this translation,
illustrating it using the conceptual model of the Kojo’s Kitchen project

TABLE

Variable
computeTrjDSOVs computePhiDSOVs

sum K

i

iiiKfK ttytty

1

11)()(

K

i

iy

0

sumSquares K

i

iiiKfK ttytty

1

1
2

1
2)()(

K

i

iy

0

2

mean

0tt

sum

f K

sum

Maximum value in
the sample set (with
time it was recorded)

Minimum value in the Minimum value in
the sample set (with
time it was recorded)

meanSquares

0tt

sumSquares

f K

sumSquares

variance 2meansmeanSquare 2meansmeanSquare

stdDev variance variance

B iB B iB

B0B B B

computeTrjDSOVs arguments time0 and timef.

 ESOutputSet 5.18. Computing DSOV values in the

ESOutputSet

max,

from Section 5.3 and the Abstract class EvSched from this Section.

maxTime

mi n, minTime

trajectory set and the time
it was recorded

trajectory set and the time

Maximum value in the

it was recorded

of recorded pair values (i.e., equals number), and t , , are the two

10 The pair (t ,y) represents the recorded time/value pairs, K equals the total number

class.10

tf

 173

FIGURE 5.4. Code for the runSimulation method.

structural components consisting of the entities, constants, parameters,

simulation model. Components representing behaviour will be translated to
routines.

// Run simuation
public void runSimulation()
{
 while(true) // set up loop
 {
 EventNotice nxtev = (EventNotice) fel.poll();
 if(nxtev == null)
 { // This is a safety check, in case system is not properly specified
 System.out.println("FEL is empty - terminating");
 break;
 }

 clock = nxtev.timeAttr; // update the clock

 if(nxtev.eventName == StopEvent) // Check for a timed stop event
 {
 System.out.println("Encountered stop event - terminating");
 break;
 }

 processEvent(nxtev.eventName, nxtev.obj); // Call referenced FER

 if(implicitStopCondition())
 {
 System.out.println("Implicit stop condition is true - terminating");

 }
 }
 timef = clock;
}

 break;

input variables, and output sets are represented by data structures in the

5.4.3 Translating to an Event-Scheduling Simulation Model

scheduling simulation model. The ABCmod conceptual model
ABCmod conceptual model and how they relate to those of the event-
of a DEDS model. Figure 5.5 shows the various components in an
An ABCmod conceptual model provides a specification of the behaviour

 5.4 Transforming an ABCmo d Co n c e p t u a l M o d e l . . .

174 5. DEDS Simulation Model Development

FIGURE 5.5. Relating ABCmod components to event-scheduling model
components.

Translating the structural components is relatively straightforward.
Typically there is a one-to-one correspondence between data structures and
the conceptual model component. Table 5.19 lists a set of possible Java
classes that can be used and extended to represent the various ABCmod
entities. It is by no means complete and the reader is encouraged to review

Translating the behavioural components consisting of the Action
Sequences, Activities, data modules, and user-defined modules, is not as
straightforward. Dealing with data modules and user-defined modules is
relatively easy because they are typically coded as routines (e.g., Java
methods). Often libraries provide a number of routines for supporting
simulation functionality such as random variate generation and list
processing. For example, a Java package, cern.colt, TP PT provides a number of

TP PT T T

of Java packages as Open Source Libraries for High Performance Scientific and
Technical Computing in Java [5.4]. It provides a number of classes that
implement stochastic data models. Version 1.2.0 was used during the writing of
this textbook.

11

available Java classes for representing entities.

 CERN (European Organisation for Nuclear Research) makes available a number

11

 175

objects for implementing random variates. The challenge in translating

TABLE 5.19. Representing ABCMod entities with Java objects.

ABCmod
Entities

Java Object Class

Consumers/ ESAttributeList – This class, developed in Section 5.4.2,
is a subclass of the AttributeList class that creates and
manipulates a list of Attribute objects. The Attribute class

Java Class – The Java class provides the means to define
attributes (as class variables) and methods to manipulate
these attributes

Queues Queue Interface with a number of Queue classes:
ArrayBlockingQueue (bounded FIFO queue)
ConcurrentLinkQueue (Thread-safe FIFO queue using
linked nodes)
DelayQueue (unbounded queue of delayed elements –
when elements delay is expired, they are presented at the
head of the queue in FIFO fashion)
LinkedBlockingQueue(bounded queue implemented with
linked nodes)
ProrityBlockingQueue(similar to PriorityQueue, but
offers also blocking retrieval functions when queue is
empty)
PriorityQueue(unbounded queue that orders elements
according to priority)
SychronousQueue (queue that provides a rendezvous

and take)
Groups Set Interface with a number of Set classes:

HashSet – This class is an extension of the AbstractSet
and supports the set methods using a hash table. This
class provides constant performance for basic operations
such as add, remove, contains, and size. But the time for
construction of the HashSet object depends on the size of
the hash table
LinkedHashSet – Similar to the HashSet class but stores
objects in the set using a doubly linked list. This provides
an order to the added objects; that is, it is possible to read
the objects in the same order they were stored

associates a name with any type of object.

is capturing the Activity specifications in a set of FERs.
behaviour from an ABCmod conceptual model to the simulation model

5.4 Transforming an ABCmo d Co n c e p t u a l M o d e l . . .

Resources

mechanism – does not collect but implements single put

176 5. DEDS Simulation Model Development

FIGURE 5.6. Creating FERs.

 177

modular approach is adequate for our introductory discussion. In
general, it is not efficient because checking all preconditions in each FER may

limited number of preconditions. As well, the precondition routine can
become quite long when the model is complex.

Each Activity in the ABCmod conceptual model is separated into its constituents;
namely, the precondition, the SCS of the starting event, the SCS of the
terminating event and the duration. These are re-organised into a precondition
routine and a collection of FER’s. Fortunately, there exists a pattern in this re-
organisation as shown in Fig. 5.6.
 A FER is created for each Activity in the ABCmod conceptual model. The
program code of a FER has two parts, the first is an implementation of the SCS
that is associated with the terminating event of the Activity and the second is an
invocation of the precondition routine.
 A simple modular approach can be taken in organizing the program code for
the precondition routine as illustrated in Figure 5.6. Each segment of the routine
is associated with some particular Activity and encompasses its precondition, the
SCS of its starting event and its duration. The segment is entered only if the
precondition of the Activity is TRUE. The program code for the segment has two
parts. The first is an implementation of the SCS that is associated with the starting
event of the Activity and the second is code that schedules a future event at time
(t+D) where t is the current value of (simulated) time and D is the duration of the
Activity. The future event is, in fact, the invocation of the FER that is associated
with the Activity in question.
 A FER is likewise created for each action sequence in the ABCmod
conceptual model. However the structure of each such FER is different from the
FER that evolves from an Activity. In part this is because an action sequence has
no terminating event. The FER in this case has three parts. The first is an
implementation of the SCS of the Action Sequence’s starting event. The second is
program code that schedules a future event that is the FER’s own invocation at
some a (future) time determined by a bootstrapping approach. The bootstrapping
references the timing map that is associated with the action sequence. The third
part is an invocation of the precondition routine. There is no segment needed in
the precondition routine for an action sequence.

FER but does give rise to a segment in the precondition routine. This segment is
entered only when the precondition for the Action is TRUE. The segment has only
one part which is the program code that implements the SCS of the Action’s
starting event.

 The transformation of an Action is straightforward. It does not give rise to a

Kojo's Kitchen project. The corresponding FER carry's out
 ServingW Activity (remove the

 Recall the example of the EndServing future event of the

not be necessary inasmuch as any particular SCS will typically affect only a

the SCS of the terminating event of the

presence of a C.Customer in the customer queue (the precondition for

5.4 Transforming an ABCmo d Co n c e p t u a l M o d e l . . .

C.Customer from the A.CounterGroup aggregate) and then tests for the

In Figure 5.6 the precondition routine is called from all FERs. This

178 5. DEDS Simulation Model Development

routine. In Java, data models usually correspond to available

class constructor provides the ideal place for initialising the
simulation model object and including initialisation code specified

However, for trajectory set output, the requirement is implicit and program

variable associated with the trajectory set changes in value.

entity instances are represented in Java as ESAttributeList objects with
two attributes; namely Type (value is a Character object with possible
values W or S) and TimeEnterQu (double value corresponding to the time
the customer enters the queue). The counterGroup object is defined as a
variable of the KojoKitchen class and implemented as a HashSet object
(see Figure 5.7). The HashSet class provides the methods to add an object

specified in the conceptual model together with an initialisation

in the ‘Initialise table’ of the ABCmod conceptual model.

User-defined modules are implemented as Java methods. The Java

each FER is
implemented as a Java method.

objects. For example the classes Exponential and Uniform

 In Java,

Step 4 – Develop a precondition routine to start Activities or

conceptual model explicitly state what is required (i.e., SM.Put()).

code must be formulated to provide time/value pairs each time the

ation model. Table 5.19 was used to

Let’s examine how these steps can be applied to the ABCmod conceptual
model for Kojo’s Kitchen (see Tables 5.2 through 5.16) to create a Java simul-

the group of customers being served at the counter (A.CounterGroup)

output data. For generating sample set output, the SCSs in the ABCmod

 select Java classes for

and the queue at the counter (A.CustQue). The C.Customer

The steps for creating an event-scheduling simulation model from an

 Step 1 – Define appropriate data structures to accommodate the
entities, constants, parameters, and input variables within the

ABCmod conceptual model can be summarised as follows.

with these data structures.
ABCmod conceptual model. The status of the model will be identified

Step 3 – Develop a FER for each Activity and each Action Sequence
within the ABCmod conceptual model.

 S

Step 2 – Develop the required data modules and user-defined modules

tep 5 – Develop appropriate program code to generate the required

representing the consumer entity instances (C.Customer),

ServingW and precondition for ServingU). If a precondition is TRUE, the
C.Customer is moved to the counter (starting event for ServingW or
ServingU), and another EndServing event is scheduled (i.e., the
terminating event for the ServingW or ServingU Activity).

Actions when their precondition is TRUE. In Java the precondition

implement, respectively, exponential and uniform distributions.

routine is implemented as a method.

 179

EvSched

+KojoKitchen(in totime : double, in tftime : double, in addE : int, in sd : Seeds)

-processEvent(in eventNum : int, in obj : Object) : void

-implicitStopCondition() : boolean

-addSandwichCust() : void
-addSushiCust() : void

-schedEmployees() : void

-finishServing(in customer : Object) : void

-getMUw() : double
-getMUu() : double

-getMempNum() : double

+getPropGT(in val : double) : double

-WMean1 : double = 15

-WMean2 : double = 3
-WMean3 : double = 12

-WMean4 : double = 4

-WMean5 : double = 10

-UMean1 : double = 22

-UMean2 : double = 4
-UMean3 : double = 15

-UMean4 : double = 7

-UMean5 : double = 12

-STWMin : double = 3

-STWMax : double = 5

-STUMax : double = 8

-NumEmpBusy : double = 3

-NumEmpReg : double = 2

-empNum : int

-counterGroup : HashSet

-custQue : ConcurrentLinkedQueue
-sandwichInterArrDist : Exponential

-suchiInterArrDist : Exponential

-wSrvTm : Uniform

-uSrvTm : Uniform

-phiWaitTime : ESOutputSet

KojoKitchen

FIGURE

Step 1 is completed by encoding the constants, parameter, and input
variable found in the conceptual model into the KojoKitchen class:

Case1 : int = 1

-STUMin : double = 5

Case2 : int = 2

-preConditions() : void

 5.7. The KojoKitchen class.

5.4 Transforming an ABCmo d Co n c e p t u a l M o d e l . . .

EmpSchedCase

to the set (add), remove an object from a set (remove), and get the number
of elements in the set (size). Finally the queue A.CustQue is defined as a
ConcurrentLinkedQueue object called custQue that implements an unbounded
FIFO queue.

180 5. DEDS Simulation Model Development

UMean1, UMean2, UMean3, UMean3, UMean5
STWMin, STWMax, STMin, STMax

 NumEmpReg (2 – regular number of employees), NumEmpBusy
(3 – number of employees during the busy period)

 Case1 (1 indicating base case for executing the model), Case2 (2
indicating alternate case for executing the model)

 EmpSchedCase – (parameter) An int variable set to AECase1 for
the base case (only two employees serving at the counter) and
AECase2 when an additional employee is added during busy
periods

 EmpNum – (input variable) An integer variable that represents the
number of employees at Kojo’s Kitchen

Exponential objects sandwichInterArrDist and sushiInterArrDist) and two
others for service times (i.e., the two Uniform objects coldCutSrvTm and
sushiSrvTm). Three user-defined modules, getMUw, getMUu, and

BW B BU B

M[EmpNum](t) functions, that is, the timing maps for the three Action
Sequences. The class constructor KojoKitchen contains all necessary code
to set up the various data model objects as well as the required
initialisation. Step 2 is now complete.

The class variables provide the set of data structures for representing the model
structure. Methods are created to operate on these data structures in Step 3

In Step 3, future events and corresponding FERs are defined. Table 5.20
lists the four future events for the Kojo’s Kitchen model and the
corresponding FERs implemented as Java methods. The processEvent
method, implemented with a simple switch statement as shown in

Figure 5.8, is responsible for calling these methods. Recall from Section
5.4.2 that this method is called by runSimulation.

Future Event
Name

Identifier Java Method ABCmod
Activity

Constructs
SandwichArrival 1 addSandwichCust WArrivals
SushiArrival 2 addSushiCust UArrivals
SchedEmp 3 schedEmployees SchedEmp
EndServing 4 finishServing ServingW

ServingU

Four objects serve as data modules: two for arrivals (i.e., the two

getMEmpNum, implement, respectively, the M[U] (t), M[U] (t), and

and 4 to capture model behaviour specified in the ABCmod conceptual model.

TABLE 5.20. Future events for the Kojo’s Kitchen simulation model.

WMean1, WMean2, WMean3, WMean4, WMean5

 181

The addSandwichCust and addSushiCust methods are almost identical
as can be expected when examining the corresponding conceptual model
Action Sequences, WArrivals and UArrivals. Figure 5.9 shows the code
for the addSandwichCust and getMUw methods.

FIGURE 5.8. Implementation the processEvent method for Kojo’s Kitchen.

Figure 5.11 shows the code for the finishServing method (the
endServing FER). Note that in this simple project, both terminating events
for the Activities ServingW and ServingU are identical and thus
implemented using a single FER. Normally two separate future events
would be used. This method illustrates how a reference to an object in the
EventNotice is used. As shown in Figure 5.12, when an event notice for the

public void processEvent(int eventNum, Object obj)
{
 switch(eventNum)
 {
 case SandwichArrival: addSandwichCust(); break;
 case SushiArrival: addSushiCust(); break;
 case SchedEmp: schedEmployees() ; break;
 case EndServing: finishServing(obj) ; break;
 default:

 System.out.println("Error: Bad event identifier" + eventNum); break;
 }
}

In addSandwichCust a C.Customer entity is instantiated as an
ESAttributeList
initialised respectively, to a Character object (with value W) and a

object is then added to the customer queue using the custQue.add method.
Bootstrapping is used in addSandwichCust to create a stream of arriving
customers using the getMUw method and scheduling the next arrival with
the addEventNotice method. Arrival event notices are placed on the FEL
as a SandwichArrival event. Finally the method invokes the preConditions
method to test Activity preconditions (more on this later).

Fig. 5.10 show the schedEmployees method (that uses the getMempNum
method) to implements the Action Sequence SchedEmp. The input variable
EmpNum is updated according to the current time per the conceptual
model SCS. Again, bootstrapping is used to schedule the next update of
the input variable. Note that in this case however, getMempNum generates
the timing map deterministically. Note also that preConditions is not called at the
end of the method because this Action Sequence will not cause any Activity

5.4 Transforming an ABCmo d Co n c e p t u a l M o d e l . . .

 object and the and TimeEnterQu attributes are

Type

Double object (whose value is the current time). The C.Customer

 to start.

182 5. DEDS Simulation Model Development

finishServing event is created, a reference to the customer added to
the counterGroup is included in the notice. When processEvent (see
Figure 5.8) is called by runSimulation, this reference is passed on until it
reaches the finishServing method that will use the reference to remove the
appropriate customer object from counterGroup. Finally, the method

Step 3.

FIGURE 5.9. Implementation of the WArrivals Action Sequence.

private void addSandwichCust()
{
 // WArrival Action Event SCS
 ESAttributeList customer = new ESAttributeList();
 customer.add(new Attribute(Type,new Character('W')));
 customer.add(new Attribute(TimeEnterQu,new Double(clock)));
 custQue.add(customer);
 addEventNotice(SandwichArrival,getUw());// Schedule next arrival

}

private double getMUw() // for getting next value of Uw(t)
{
 double nxtInterArr;
 double mean;

 if(clock < 90) mean = WMean1;
 else if (clock < 210) mean = WMean2;
 else if (clock < 420) mean = WMean3;
 else if (clock < 540) mean = WMean4;
 else mean = WMean5;

 return(nxtInterArr+clock);
}

preConditions is called to test Activity preconditions. This completes

 preConditions(); // check preconditions

 nxtInterArr = sandwichInterArrDist.nextDouble(1.0/mean);

Step 4 includes adding code for testing the preconditions of starting
events. Because of the simplicity of Kojo’s Kitchen project, all testing of
preconditions has been collected in a single method preConditions that is
called by the methods addSandwichCust, addSushiCust, and finishServing
(these methods correspond to FERs as discussed in Step 3). As shown in
Fig. 5.12, the custQue.peek method is used to examine the head of the
queue first to test the various Activity preconditions. The code
implementing the starting events includes a statement calling the poll
method to remove the head of custQue (note it is possible to use the poll
method in place of the peek method making the code more efficient but
this would deviate from the ABCmod conceptual model specifications).
The starting event includes the logic to generate the output and is

 183

FIGURE 5.10. Implementation of the SchedEmp Action Sequence.

private void schedEmployees() // SchedEmp event
{
 double mEmpNum; //Timing map value

 {
 case Case1: return; // no changes when addEmpCase is 1
 case Case2:
 if((clock==90) || (clock==420)) empNum = 3;
 else empNum=2;

 // Schedule next change
 mEmpNum = getMempNum();
 if(mEmpNum != -1) addEventNotice(SchedEmp,mEmpNum);

 break;
 default:

 }
}

private double getMempNum() // for getting next value of EmpNum(t)
{
 if(clock == 90.0) return(210.0);
 else if(clock == 210.0) return(420.0);
 else if(clock == 420.0) return(540.0);
 return(-1); // no more
}

implemented as the method phiWaitTime.put method (more on this in the
discussion of Step 5). The addEventNotice method implements the
Activity durations, that is, schedules the future event that corresponds to
the Activity’s terminating event.

Step 5 deals with the collection of sample set and trajectory set data.
However, there is no requirement for trajectory set output in the Kojo’s
Kitchen project (a relevant illustration is provided in the following

starting event SCS’s of ServingW and ServingU Activities (Tables 5.15
and 5.16) is achieved using the phiWaitTime.put method as shown in
Figure 5.12. The phiWaitTime.put method records the customer waiting
time calculated by subtracting the time a C.Customer exits the queue from
the time the C.Customer entered the queue as recorded in its timeEnterQu
attribute. The put method records the output data in the file created when
the phiWaitTime object was instantiated. A new method getPropGT is
added to the KojoKitchen object to compute, from this recorded data, the
proportion of customers that waited longer than five minutes.

 System.out.println("Invalid empSchedCase:"+empSchedCase);

 5.4 Transforming an ABCmo d Co n c e p t u a l M o d e l . . .

Section). The acquisition of sample set data indicated by the SM.Put in the

 switch(empSchedCase)

184 5. DEDS Simulation Model Development

FIGURE 5.11. Implementation of the ServingW and ServingU Terminating Events.

private void finishServing(Object customer) // finishServing event

 if(counterGroup.remove(customer)==false)
 System.out.println("Error: Customer not in counterGroup");
 preConditions(); // start Activities
}

// Check for starting events of ServingW and ServingU
private void preConditions()
{
 char typeCh;
 ESAttributeList customer;
 if(counterGroup.size() < empNum) // Space at counter
 {
 customer = (ESAttributeList)custQue.peek(); // check head of queue
 if(customer != null) // not null when customer is present
 { // Get the Type attribute object
 typeCh = customer.charValue(Type);
 switch(typeCh)
 {
 case 'W': // ServingW starting event

 customer = (ESAttributeList)custQue.poll();
 counterGroup.add(customer);
 phiWaitTime.put(clock,

 clock-customer.doubleValue(TimeEnterQu));
 addEventNotice(EndServing,

clock+sandwichSrvTm.nextDouble(),
 (Object)customer);
 break;
 case 'U': // ServingU starting event

 customer = (ESAttributeList)custQue.poll();
 counterGroup.add(customer);
 phiWaitTime.put(clock,

 clock-customer.doubleValue(TimeEnterQu));
 addEventNotice(EndServing,
 clock+sushiSrvTm.nextDouble(),
 (Object)customer);
 break;
 default:
 System.out.println("Invalid customer type found "
 + typeCh + " ignored\n");
 break;
 } //switch
 }//if
 }//if
}

{// ServingW and ServingSU terminating event SCS

FIGURE 5.12. Implementation of Activity preconditions and starting events.

 185

TABLE 5.21. Future events for the port simulation model.

Future Event
Name

Identifier Java Method ABCmod Activity
Construct

TankerArrival 1 addTanker TankerArrival
BerthingDone 2 addToBerth Berthing
DeberthingDone 3 tankerExits Deberthing
ReachedHarbour 4 atHarbour MoveToHarbour

ReturnToHarbour
ReachedBerths 5 atBerths MoveToBerths
LoadingDone 6 addToDeberthQue Loading

This Section focuses on some event scheduling functionality

e.g., handling triggered activities and interrupts. For this, we return to our
discussions of the Port project in Chapter 4. In particular, we examine
some aspects of the ABCmod conceptual model called ABCmod.Port.ver2

.
Table 5.21 show the future events defined for the event scheduling

simulation model corresponding to the activity constructs of the conceptual
model given by ABCmod.Port.ver2.

We first consider the implementation of Triggered Activities. Typically,
a method for implementing the starting event,s SCS and scheduling the future
event associated with the terminating event needs to be created. Then, a
reference to TA.Name becomes a call to that defined method.

In the Port project the reference to TA.Loading in the Berthing Activity

LoadingDone future event as shown in Fig. 5.14. Because there is no
starting event in the Loading Activity, no future action is needed.

The method loadingTime shown in Fig. 5.15 illustrates an
implemention of a user defined module. It generates a loading time for
a given tanker.

There is a requirement to observe the berth group size and this gives rise
to the need for trajectory set output. Appropriate code for this task is
shown in Figure 5.16. The class variable lastBerthGrpN is used to
represent the last recorded value for the berth group size. Whenever a
change in the size of the berthGrp aggregate is detected, it is recorded
using the put method.

available at the Web site for this textbook. The file is called PortVer2.java. The reader
is encouraged to examine this program and identify how the five translation
steps outlined in the previous section have been carried out.

requirements not illustrated in the discussion of the Kojo Kitchen project:

that was formulated in Example 2 in Section 4.1.2

5.4 Transforming an ABCmo d Co n c e p t u a l M o d e l . . .

 Note that an event scheduling Java based program for ABCmod.port.ver2 is

5.4.4 Implementing Other Functionalities

is implemented as a call to the addEventNotice method that schedules the

12

12

186 5. DEDS Simulation Model Development

+PortVer2Model(in t0time : double, in numBerths : int, in sd : Seeds)

+processEvent(in eventNum : int, in obj : Object) : void
+addTanker() : void

+addToBerth() : void

+addToDeberthQue() : void

+tankerExits() : void

+atHarbour() : void
+atBerths() : void

+checkPreCond() : void

+getMUtk() : double

+loadingTime(in size : int) : double

-BERTHING_TIME : double = 2

-DEBERTHING_TIME : double = 1

-EMPTY_TRAV_TIME : double = 0.25
-AVGARR : double = 8.0

-PERSML : double = 0.25

-PERMED : double = 0.25

-PERLRG : double = 0.5

-SMLMIN : double = 8
-SMLMAX : double = 10

-MEDMIN : double = 10

-MEDMAX : double = 14

-LRGMED : double = 15

-LRGMAX : double = 23
-BERTHING : int = 0

-DEBERTHIHNG : int = 1

-TOHARBOUR : int = 2

-TOBERTHS : int = 3

-PAUSEH : int = 4
-PAUSEB : int = 5

-SMALL : int = 0

-MEDIUM : int = 1

-LARGE : int = 2

-numBerth : int
-loadTimeSml : Uniform

-loadTimeMed : Uniform

-loadTimeLrg : Uniform

-tankerSize : EmpiricalWalker

-getUTk : Exponential
-tug : ESAttributeList

-berthGrp : HashSet

-harbourQue : ConcurrentLinkedQueue

-deberthQue : ConcurrentLinkedQueue

+phiTankerTW : ESOutputSet
+trjBerthGrpN : ESOutputSet

-lastBertheGrpN : double

PortVer2

EvSched

FIGURE 5.13. The PortVer2 class (corresponding to ABCmod.Port.ver2).

 187

FIGURE 5.14. Implementation of the Triggered Activity Loading(C.Tanker).

FIGURE LoadingTime.

FIGURE 5.16.

private double loadingTime(int size)
{
 switch(size)
 {
 case SMALL: return(loadTimeSml.nextDouble());
 case MEDIUM: return(loadTimeMed.nextDouble());
 case LARGE: return(loadTimeLrg.nextDouble());
 default: break;
 }
 return(0); // bad value
}

public void processEvent(int eventNum, Object obj)
{
 switch(eventNum)
 {

.
 }

 double n = (double) berthGrp.size();
 if(lastBerthGrpN != n)
 {

 lastBerthGrpN = n;
 }
}

private void addToBerth() // BerthingDone event
{

 ESAttributeList tker = (ESAttributeList) tug.esAttributeListValue("Ship");
 berthGrp.add(tker);
 // Start Loading Activity (TA.Loading(T.Tug.Tnkr))
 addEventNotice(LoadingDone,clock+loadingTime(tker.intValue("Size")),tker);
 // R.Tug.Status <- PAUSEB
 tug.setIntValue("Status", new Integer(PAUSEB));
 checkPreCond(); // check for other preconditions to start next Activities
}

 // Berthing Activity terminating event SCS

 5.15. Implementation of user-defined module

method.

model’s status. Recall from Section 4.2.4 that the difference between

The implementation of interrupts and pre-emption requires the termination
of some Activity’s duration and carrying out an event SCS to update the

 5.4 Transforming an ABCmo d Co n c e p t u a l M o d e l . . .

 trjBerthGrpN.put(clock,n);

Implementation of the processEvent

// Update the trjBerthGrpN Trajectory set

188 5. DEDS Simulation Model Development

interruption and pre-emption is that the former is invoked when a

In both cases, the challenge is to correctly terminate the duration of an

TP PT

 presented in Section 5.4.2 is used to

FIGURE

TP PT It may be possible that the Activity is not terminated, but the duration is

modified. For example, when a tug is towing a tanker into a port and a storm
sets in, the tug could simply slow down instead of dropping anchor. In such a
case, the event notice is removed from the FEL and replaced with a new event

// Check for Activity preconditions
private void checkPreCond()
{
 int tugSt; // tug state
 double dbl1;

 // get state of tug
 tugSt = tug.intValue(“Status”);
 . . .
 . . .
 . . .

 // precondition for interrupting the MoveToBerths Activity
 if((tugSt == TOBERTHS) && (harbourQue.size() > 0))
 {
 // find out how close we are to the Berths
 dbl1 = tug.doubleValue("TimeLeftHarbour"); // get TimeLeftHarbour
 if((clock-dbl1) < (0.7 * EMPTY_TRAV_TIME))
 {
 // Terminates MoveToBerths Activity
 removeEventNotice(ReachedBerths);
 // Start the ReturnToHarbour Activity
 tug.setIntValue("Status",new Integer(TOHARBOUR));

 // Schedule end of ReturnToHarbour - same as MoveToHarbour
 addEventNotice(ReachedHarbour, clock+(clock-dbl1));

 }
 }
}

precondition becomes TRUE whereas the latter is explicitly invoked in an

implement this functionality.

SCS of some other Activity.

Activity. In any event-scheduling simulation model, the duration of an
Activity is implemented by placing an event notice on the FEL to indicate
the point in time when the duration ends. Thus to terminate the duration
before its "natural ending'', this event notice must be removed from the FEL.

removeEventNoticeThe method

 5.17. Implementing the interrupt in the MoveToBerths Extended Activity of

Table 4.32.

notice that takes into account the slowing down of the tug.

13

13

the tug is returning to the berths with no tanker in tow and
a tanker arrives in the port. If no tanker is waiting to be deberthed or the tug

preconditions for Activities. In the port simulation model, the method

5.5.1 Process-Oriented Simulation Models

process specifications. Each of these is formulated as an interconnection

specification. Each process
specification has a graphical representation which we illustrate below.

It is important to realise that specifying a process for a consumer entity
class means that each consumer entity instance in the model will ‘live’ its
own lifecycle, in other words, its own process instance. Each of these
individual process instances can interact with each other, often by sharing
(usually competing for) the various resources in the model. Consider again
the example of the shoppers as shown in Figure 4.2. The process for the
shopper entity class has several distinct phases: arrival in the store,
followed by movement between browsing activities and payment
activities, and finally departure from the store.

 189

Recall that in Example 2 the MoveToBerths Extended Activity can be
interrupted when

has not travelled more than 70% of the way back to the berths, the tug will
return to the harbour to berth the tanker that has just entered the port.
The event associated with the interrupt triggers the ReturnTo Harbour
Activity (a Triggered Activity) and explicitly terminates the MoveToBerths
Activity (the Terminate ‘instruction’).

5.5 Transforming an ABCmod Conceptual Model into a
Process-Oriented Simulation Model

The interrupt precondition is checked in the same fashion as are

checkPreCond contains the code for testing both Activity preconditions

The process view for a simulation model begins with a collection of

and interrupt precondition (see Figure 5.17).

at least one process specification. Sometimes

cation are organised to reflect the lifecycle of one of the consumer entity

of some of the Activities within an ABCmod conceptual model. In one of
the most common circumstances, the interconnections in a process specifi-

classes that have been identified. The implication here is that there
generally is a process specification for each consumer entity class. A basic
(and natural) requirement is that every Activity in the ABCmod conceptual
model needs to be included in

to be captured in a process
specification; that is, the resource participates

involving consumer entity
classes are also typically captured in a process

this gives rise to a situation where one of the resources in the ABCmod
conceptual model exhibits a lifecycle that needs

in an Activity that is in-
dependent of consumer entities. Inputs not

5.5 Transforming an ABCmod Conceptual Model . . .

190 5. DEDS Simulation Model Development

An entity’s flow from one Activity to another within a process depends

then flow is interrupted and a delay occurs. This status can, however,

Activities
 within the various process instances. This is how processes interact with
 each other. This situation is illustrated by the shopper that must wait in
 a queue before acquiring the service desk resource. The desk

entities, consider the Port project discussed in Chapter 4. The Activities
MoveToHarbour and MoveToBerths involve only the tug resource entity.
Because they do not involve the tankers, these Activities are not part of the
tanker lifecycle. Thus it is necessary to define a process for the tug

specification. Furthermore, the tanker process instances will interact with
this tug process. For example, the arrival of the tanker in the port changes

involves a tanker) a Berthing Activity could be initiated to move a waiting
tanker in the harbour to the berths. Activities such as Berthing and
Deberthing that involve both the tug and a tanker become part of both the

processes can occur.
The formulation of a process-oriented simulation model from an

diagrams. These provide the means for organising the
 Activities in the

be easily transformed into the
 process construct of the programming

 following subsection outlines the construction procedure for these process
 diagrams.

 over time, of an arbitrary instance of some entity type within the model.

on the status of the ‘downstream’ Activity’s precondition. If it is FALSE

As an illustration of how processes can also be defined for resource

But what changes the model? In the ABCmod framework changes
 to the model result from the occurrence of events. When some on-
going Activity terminates, the SCS of its terminating event changes the
status of the model and this could enable many pending

becomes
 available to a specific shopper only when that shopper is at the head of
 the

resource such that these two Activities become part of a tug process

the model’s status and this could result in a TRUE value for the

Similarly when the tug completes the Deberthing Activity (which always
precondition of the MoveToHarbour Activity, thereby initiating it.

tanker process and tug process. This also illustrates how interaction
between

ABCmod conceptual model is best carried out by first developing a
group of process

ABCmod conceptual model into a collection of process
 specifications. Each of these can then

5.5.1.1 Formulating Process Diagrams from an ABCmod
 Conceptual Model

A process diagram organises a subset of the Activities in the ABCmod
conceptual model into a directed graph which then serves as a process

 specification. The purpose of the directed graph is

environment being used. The

queue and a server becomes available.

change from FALSE to TRUE when a change in the model occurs.

 to represent the flow,

 191

ation model (in whatever programming environment that is to be used).

diagrams and this reflects the inherent interaction among
 entity types. All

The directed graph has two node types: namely, labelled rectangles and
unlabelled circles. A labelled rectangle corresponds to an Activity in an

a directed arc may connect two rectangles signifying
 that the downstream Activity is immediately initiated upon completion of
 the upstream Activity (as in the case where a Triggered Activity is
 invoked). However, in most cases, a path between two Activities is
 constructed from two directed arcs that are interconnected through a
 circle. The circle, which is called an interaction point, indicates a
 potential interruption in the flow of time between the completion of the
 upstream Activity and the initiation of the downstream Activity.

Recall that the unit of behaviour that is embedded in an Activity can
begin only when its precondition is TRUE. Generally the precondition is a
Boolean expression that incorporates attributes from a number of different

Activity within the process diagram there is no
 assurance that the conditions required to initiate a sequel Activity are
 necessarily in place; in

Activities are satisfied. Consider, for example,
 a shopper who has

immediately begin a payment activity
 because the server may be busy with another shopper and/or other shoppers

 may be waiting in a queue to participate in their own payment
 activities. The interaction point in a process diagram provides the
 means for representing such a potential delay. It can be viewed as a
 point where the flow of the entity to the next

Activity is satisfied.
In Section 5.3 we introduced the Kojo’s Kitchen project and an

a process-oriented view requires the specification of three
 processes, hence three process diagrams. These are shown in Figure
 5.18. Notice that all five Activity constructs summarised in Table 5.10 are
 included.

Activities in an ABCmod conceptual model must be found
in at least one process diagram.

ABCmod conceptual model and the label is the name of that Activity. In
some special cases,

entity types within the ABCmod conceptual model. When an entity
 instance completes an

other words, the precondition requirements for none
 of its potential sequel

completed his or her Browsing activity. He or
 she is not necessarily able to

Activity is interrupted until
 the precondition for some possible sequel

ABCmod conceptual model was formulated (see Tables 5.1 to Table 5.16).
 The transition to

5.5 Transforming an ABCmod Conceptual Model . . .

Any particular Activity within a ABCmod conceptual model is typically included

These specification set the stage for the development of a process-oriented simul-

in multiple process

192 5. DEDS Simulation Model Development

WArrivals

ServingW

UArrivals

ServingU

Process for

Sandwich Customer

Process for

Sushi Customer

Add Employee

Process

SchedEmp

FIGURE 5.18. Process diagrams for Kojo’s Kitchen project.

The Sandwich Customer process and the Sushi Customer process are
essentially identical. A Customer arrives (either WArrivals or UArrivals),
waits for service (the circle), receives service (ServingW or ServingU),
and then leaves the model. The Activity SchedEmp (an Action Sequence)
whose purpose is to appropriately modify the input variable EmpNum,
gives rise to its own distinct process,

Our notion of process diagrams is further illustrated in the following

process diagrams are then used in Section 5.5.2 as the
 basis for developing a GPSS simulation model.

5.5.1.2 Process Diagrams for the Port Project

process diagrams are sufficient to capture the complete behaviour of the
model: one for the tanker consumer entity class and another for the tug
resource entity. As we indicated earlier, the need for the latter specification
arises because the MoveToHarbour and MoveToBerths Activities involve
only the tug and make no reference to a tanker.

We begin by observing that a tanker which has arrived in the harbour
must participate in a sequence of three Activities before leaving the port
(and hence leaving the simulation model): namely, berthing, loading, and
deberthing. The Berthing Activity can begin only when the tug is available

subsection within the context of the Port project. Process diagrams are

We begin with Version 1 of the Port project (see Section 4.3.1). Two

derived from the ABCmod conceptual model developed for this project in
Chapter 4. These

 193

and the specific tanker in question is eligible for its service (i.e., it is at the
head of the harbour queue). An interaction point is thus required between
the Arrival Activity and the Berthing Activity. The Loading Activity is a
Triggered Activity and can be immediately initiated upon the completion
of the Berthing Activity. The Deberthing Activity parallels the Berthing

point is needed; that is, the path from Loading to Deberthing requires an
interaction point. The resulting process diagram for the Tanker process is
shown in Figure 5.19.

The lifecycle associated with the tug is circular; that is, the tug moves in
an endless loop between the harbour and the berth area over the course of
the observation interval. If the tug is at the berths, it will move to the
harbour area in one of two possible ways (i.e., with or without a tanker in
tow) depending on conditions that exist with respect to the tanker
population. Likewise, when the tug is in the harbour area, it will move to
the berths in one of two possible ways (again, with or without a tanker in
tow). This circular flow is apparent in the process diagram shown in Figure
5.20. Note the various interaction points that are necessary to reflect the
conditions superimposed by the tanker population.

FIGURE 5.19. Tanker process diagram.

Activity in terms of the existence of a precondition, hence an interaction

5.5 Transforming an ABCmod Conceptual Model . . .

TankerArrivals

Loading

Berthing

Deberthing

194 5. DEDS Simulation Model Development

MoveToHarbour Deberthing

Berthing MoveToBerths

Initialisation

FIGURE 5.20. Tug process diagram.

Possible interventions in the flow of an Activity need to be reflected in

interrupted. Figure 5.21 shows the additional ReturnToHarbour Activity
that is invoked (as a triggered Activity) when the MoveToBerths is

 added to illustrate this behaviour. Consider

be over.
 When the storm is over, the Deberthing Activity is started again

 The tug’s movement to the berths with no tanker in tow can be interrupted if a
tanker arrives in the harbour and, if there is no tanker ready for deberthing or the
tug has not travelled more that 70% of the way back to the berths.

reaction to an interrupt (or to a pre-emption).
Consider now Version 3 of the Port project, where a storm can interrupt

the Activities that involve the tug’s movement. Figure 5.22 shows the tug
 process diagram for this version of the Port project. When an Activity

the Deberthing Activity. When
 interrupted, this Activity is terminated and the tug is placed in a state (R.
Tug.Anchored = TRUE) during which it waits for the storm to

(see the
 precondition of the Deberthing Activity).

 is interrupted by a storm, its duration is terminated.

interrupted. A dashed exit path from an Activity is used to identify the

process diagrams. This is achieved with the use of dashed arrows. Recall

 of the Port project under consideration, the state of the tug also
 changes inasmuch as it drops anchor interrupted. Activity will

 In the context

 restart when the storm is over.

that in Version 2 of the Port project the MoveToBerths Activity can be

Points of interaction have been

14

14

 195

MoveToHarbour Deberthing

Berthing MoveToBerths

Initialisation

ReturnToHarbour

FIGURE 5.21. Tug process diagram with possible interrupt of the MoveToBerths
Activity.

Similar interaction points representing the delay caused by the storm
MoveToBerths

 Activities in Figure 5.22. It is not necessary to add such a point for the
 Berthing Activity because a suitable interaction point already

MoveToHarbour Activity

MoveToHarbour Deberthing

Berthing MoveToBerths

Initialisation

ReturnToHarbour

FIGURE 5.22. Tug process diagram with possible interruptions caused by storms.

d

exists.
 When the ReturnToHarbour is interrupted, the

It is interesting to note that the
MoveToHarbour Activity can be interrupted in either of two ways: by the

 storm or by a tanker arriving in the harbour.

 is started after the storm is over.

5.5 Transforming an ABCmod Conceptual Model . . .

have been associated with the M oveToHarbour an

196 5. DEDS Simulation Model Development

Process diagrams are not linked to any simulation language or
environment. Their purpose is to simplify the transition from an ABCmod

the process diagrams developed in this section are used
 in formulating a simulation model in GPSS.

5.5.2 Overview of GPSS

We provide a brief introduction to the GPSS simulation environment.
More extensive background material is provided in the GPSS primer given
in Annex 2. Readers who are not familiar with GPSS should take the time
to review Annex 2.

GPSS provides a process-oriented environment for developing
simulation models. These models are formulated in terms of processes for
GPSS Transactions. A Transaction is composed of a collection of

Transaction includes several standard
 parameters that support GPSS processing, for example, a time
 parameter for scheduling and two references to GPSS Blocks (one that
 references the current Block in which the Transaction resides and the
 other the next Block the Transaction wishes to enter).

GPSS manages Transactions on a number of lists using list-processing
techniques. Two lists are especially important in GPSS: namely, the future
event chain (FEC) and the current event chain (CEC). The FEC contains a
list of Transactions ordered according to a standard time parameter. To
advance time the GPSS Scheduler will move the Transaction at the head of
the FEC to the CEC and update the simulation clock to the Transaction’s
standard time parameter (see Annex 2 for details). Transactions are
scheduled by placing them on the FEC with a future time value stored in
its time parameter. The Scheduler processes the Transactions on the CEC
by invoking the functions of the Block referenced in the Transaction Next
Block parameter. When the CEC becomes empty, the Scheduler returns to
the FEC for another Transaction.

GPSS Blocks are associated with specific functions and they provide the
basic processing elements for executing a simulation model. Conceptually,
Transactions trigger these functions as they traverse the Blocks. For
example, when a Transaction enters an ADVANCE Block, it will be
delayed for some defined time before exiting the Block. This Block
provides a natural mechanism for implementing an Activity’s duration. TP PT

TP PT The ADVANCE Block in fact schedules the entering Transaction on the FEC.

conceptual model to any process-oriented language or environment. Section
5.5.2 shows how

parameters (this corresponds to an attribute-tuple in an ABCmod
conceptual model). Each

15

15

The GPSS Block functions act on structural entities (representing
internal data structures). It is important to be aware of such structural
entities when creating a GPSS simulation model. For example, when a
Transaction traverses the ENTER Block, the Block inserts the Transaction
in a Storage structural entity. Table 5.22 shows possible mapping from
ABCmod consumer entity classes and service entities to the most common
GPSS structural entities (see Annex 2 for a complete list of GPSS
structural entities).

TABLE 5.22. Mapping ABCmod entities to GPSS structural entities.

ABCmod Entity GPSS Structural Entity Options
Transaction

Resource Facility or Transaction
Group aggregate Storage or Transaction Group
Queue aggregate User Chain

The mapping is not perfect. For example, consider the case where a
resource is represented by a Transaction and it is necessary to attach a
consumer entity instance, also represented by a Transaction, to the

section.
Development of a structure diagram as presented in Annex 2 is a

recommended first step in creating a simulation model in GPSS. GPSS

Elements of behaviour in a GPSS simulation model are expressed in
terms of sequences of GPSS Blocks, each of which is called a GPSS Block
segment (or simply a segment). A process in GPSS is formulated in terms
of one or more such segments and has a graphical representation (see
Figure 5.23). In most cases a process has a single segment. Segments start
with a GENERATE Block through which Transactions enter the
simulation model (this provides the means for handling input entity
streams) and end with the TERMINATE Block when Transactions leave
the simulation model. An example is shown in Figure 5.23. It is shown
later that additional segments are needed to implement interventions. The

be regarded as a GPSS process.

 197

Consumer entity instance

resource. In the ABCmod framework, the cei is assigned to an attribute of
the resource. In GPSS, Transaction parameters are simple numeric
values and consequently it is not possible to assign the Transaction

Blocks operate on the structural entities that appear in this diagram.

representing the cei to a parameter in the resource Transaction.
An alternate mechanism to accommodate this attachment needs‘ ’
to be identified and possible approach is outlined in the following

collection of segments that completely implement a process diagram (as
outlined in Section 5.5.1.1) can

5.5 Transforming an ABCmod Conceptual Model . . .

198 5. DEDS Simulation Model Development

A GPSS simulation model is a collection of GPSS processes. Each
Block within the graphical view of a GPSS process corresponds to a GPSS
statement thereby facilitating the construction of the corresponding GPSS
program code. As an illustration, Figure 5.24 shows the GPSS program

Type,"W"

ASSIGN

TimeEnterQu,AC1

ASSIGN

ENTER

CounterGroup

LEAVE

CouterGroup

TERMINATE

GENERATE

(getMUw()),,(getMUw())

TEST

L S$CounterGroup,X$EmpNum

ADVANCE

(UNIFORM(3,STWMin,STWMax))

ASSIGN

WaitTime ,(AC1-P$TimeEnterQu)

WRITE

P$WaitTime,PHIWaitTime ,,OFF

WArrivals ServingW

FIGURE 5.23. GPSS process for a sandwich customer at Kojo’s Kitchen.

fragment that corresponds to the GPSS process shown in Figure 5.23.

199

There are many situations where a TERMINATE Block is not part of a
process because the entity never leaves the simulation model. This is

(see Figure 5.29).

FIGURE 5.24. GPSS code for the GPSS process shown in Figure 5.23.

In this section we illustrate the procedure for transforming an ABCmod

1. The consumer entity classes and service entities specified in the

2.

must carefully consider how the ABCmod constructs affect the GPSS
structural entities and then implement the action using GPSS Blocks.
When an Activity appears in multiple process diagrams, its various
components need to be separated and translated into Blocks within
different segments. These segments appear in the GPSS processes that are

**

* Sandwich Customer Process

**

***WArrivals Activity

WCust GENERATE (getMUw()),,(getMUw()) ; Bootstrap. Block

 ; Action Sequence SCS

 ASSIGN Type,"W" ; Update type

 ASSIGN TimeEnterQu,AC1 ; Mark with current time

***ServingW Activity

 ; Precondition

 TEST L S$CounterGroup,X$EmpNum ; Precondition

 ; Starting Event SCS

 ASSIGN WaitTime,(AC1-P$WaitTime)

 WRITE P$WaitTime,PHIWaitTime,,OFF ; To Sample Set

 ENTER CounterGroup ; Enters the group

 ; Duration

 ADVANCE (UNIFORM(3,STWMin,STWMax))

 ; Terminating Event SCS

 LEAVE CounterGroup ; Leaves the counter

 TERMINATE ; Leave

5.5.2 Developing a GPSS Simulation Model from an ABCmod

Blocks are used to implement the preconditions, SCSs, and durations

conceptual model (augmented with process diagrams) into a process-

process. There are two basic steps:
priented simulation model in GPSS. Each process diagram becomes a GPSS

Each process diagram and the ABCmod behaviour constructs that

ABCmod conceptual model are mapped to GPSS structural entities
(the result is a GPSS Structure Diagram).

that appear in the ABCmod Activities. The GPSS simulation modeller

they reference are transformed into a GPSS process.

5.5 Transforming an ABCmod Conceptual Model . . .

Conceptual Model

illustrated in the tug process for the Port project that is examined later

200 5. DEDS Simulation Model Development

the counterparts to the several processes where the Activity is located.
These various notions are illustrated in the discussion that follows which is

D R

Storage

Max

A.BerthGrp

3

Members

User Chain : A.HarbourQue

User Chain : A.DeberthQue

User Chain : R.Tug.Tnkr
T8

T7

T9

T5 T6

T6

R.Tug

provides a GPSS-oriented representation of the ABCmod entities: R.Tug,
A.HarbourQue, A.BerthGrp, and A.DeberthQue and, as well,
representative tanker Transactions called (T1, T2, T3, . . .). Note that
R.Tug is represented using a Transaction (R.Tug) and a User Chain to

fact that GPSS cannot attach a tanker Transaction to the tug Transaction
parameter).

C.Tanker. It can be directly translated into the first section of the

model. The section begins with the GENERATE Block that provides the
necessary function to create an input stream of tanker Transactions. The

Notice how the DM.TankerSize data model is implemented using the

an argument in the first ASSIGN Block. The rectangle backdrop in Figure
5.26 represents the Action sequence rectangle from the tanker process
diagram of Figure 5.19. The main rectangle is divided into two parts that
correspond to the standard components of an Action Sequence; namely,

handle the R.Tug.Tnkr attribute (this is an approach for dealing with the

based on the Port project introduced in Section 4.3.

FIGURE 5.25. Components of the GPSS structure diagram for the Port project.

Figure 5.25 shows a GPSS structure diagram for the Port project. It

generate the arrival of tanker Transactions into the GPSS simulation

Let’s consider first the ABCmod Action Sequence TankerArrivals
(C.Tanker) that defines arrivals of the consumer entity class called

GPSS Function Entity with the same name (FN$TankerSize) and is used as

 The reference to the SM.InsertQue procedure becomes an LINKBlocks.
 Block which adds the tanker Transaction to the HarbourQue User

Chain (see Figure 5.25).

the precondition (PR) and the Action Sequence Event (E).

GPSS process as shown in Figure 5.26. The task of this section is to

TankerArrivals() servesSCS of the event of the Action Sequence called
 to initialise the three tanker attributes: it is transformed into three ASSIGN

201

FIGURE 5.26. Translating the TankerArrival Action Sequence.

In subsequent figures that illustrate the GPSS processes, a backdrop of
rectangles and circles is added to help illustrate Step (b) (as in Figure
5.26). The rectangles and circles are organised to reflect process diagrams
where a rectangle corresponds to an Activity. These rectangles are broken
down into the components of the ABCmod constructs and the following
labels are used to identify these components.

PR – Precondition
E – Event (for Action Sequences)
SE – Starting Event
DU – DUration
TE – Terminating Event
IPR – Interrupt PRecondition
IE – Interrupt Event
PMPR- PreeMpt Precondition
PME – PreeMpt Event

5.5 Transforming an ABCmod Conceptual Model . . .

202 5. DEDS Simulation Model Development

Now we consider the case where a particular Activity appears in
more than one process diagram. The Deberthing Activity is such a case
because it is found in both the tanker and tug process diagrams (see
Figures 5.19 and 5.20). Figure 5.27 shows how this ABCmod
Activity is translated into GPSS Blocks located within the GPSS
tanker and tug processes. The following comments elaborate on this
translation.

a) Precondition: The tanker Transactions are placed in the De-
berthQue User Chain waiting for the availability of the tug (see
Figure 5.25). Consequently the tug Transaction is responsible for
initiating the Deberthing Activity, that is, implements the
precondition using a TEST Block in the tug process. The
BV$DeberthingCnd is the GPSS Variable entity that represents the
expression (CH$DeberthQu 'NE' 0). Note that checking the tug
Status parameter is not required in the expression because it tries
to enter the TEST Block only when its Status parameter is set to
PauseB (see Figure 5.29).

b) Starting event: Parts of the starting event’s SCS apply to the tug
whereas others apply to the tanker. The parts that apply to the tug
are implemented in the tug process; for example, setting the Status
parameter to DEBERTHING and correspondingly, those that apply
to the tanker are implemented in the tanker process; for example,
manipulation of the tanker attributes (i.e. Transaction parameters).
The WRITE Block saves the value of the WaitTime parameter in a
data stream labeled PHITotalWait that represents the output sam-
ple set, called PHI [Tanker.TotalWait]. Removal of the tanker
from the A.BerthGrp, SM.RemoveGrp(A.BerthGrp, R.Tug.Tnkr),
is implemented by having the tanker Transaction traverse a
LEAVE Block that references the BerthGrp Storage entity.

The SM.RemoveQue in the starting event’s SCS is more com-
plex because it carries out two actions. The first removes the
tanker from A.DeberthQue and the second attaches the tanker to
the tug. This corresponds to removing a tanker Transaction from
the DeberthQue User Chain and placing the Transaction in the
Tug_Tnkr User Chain (see Figure 5.25). Two different Blocks
are required; the UNLINK Block, traversed by the tug Transac-
tion carries out the first action, and a LINK Block, traversed by
the tanker Transaction, places the tug Transaction in the
Tug_Tnkr User Chain.

c) Duration: Because tanker Transaction is in the Tug_Tnkr User
Chain, the ADVANCE Block required for implementing the dura-
tion is placed in the tug process.

 203

S
E

T
ED
U

P
R

T
E

S
T

E
,B

V
$

D
eb

er
th

in
g

C
n

d
,T

R
U

E

A
S

S
IG

N

S
ta

tu
s,

D
E

B
E

R
T

H
IN

G

U
N

L
IN

K

D
eb

er
th

Q
u
,T

o
T

u
g
B

rt
h
s,

1

A
D

V
A

N
C

E

D
eb

er
th

in
g
T

im
e

U
N

L
IN

K

T
u
g
_
T

n
k
r,

L
ea

v
eH

b
r,

1

S
ta

tu
s

,
P

au
se

H

A
S

S
IG

N

G
P

S
S

 S
eg

m
en

t
fr

o
m

th
e

T
an

k
er

 P
ro

ce
ss

P
o
rt

io
n
 o

f
G

P
S

S

S
eg

m
en

t
fr

o
m

 t
h

e

T
u

g
 P

ro
ce

ss

S
E

T
E

D
U

P
R

T
o

T
u

g
B

rt
h

s

L
ea

v
eH

b
r

A
S

S
IG

N

T
o
ta

lW
ai

t+
,(

A
C

1
-P

$
S

ta
rt

W
ai

t)

L
E

A
V

E

B
er

th
G

rp

L
IN

K

T
u
g_

T
n

k
r,

F
IF

O

T
E

R
M

IN
A

T
E

W
R

IT
E

P
$
T

o
ta

lW
ai

t,
P

h
iT

tw
,,

O
F

F

D
eb

er
th

in
g

D
eb

er
th

in
g

A
ct

iv
it

y:
 D

eb
er

th
in

g
P

re
co

nd
it

io
n

(R
.T

ug
.S

ta
tu

s
=

 P
au

se
B

)&
(A

.D
eb

er
th

Q
ue

.N
 •

 0
)

E
ve

nt

R
.T

ug
.S

ta
tu

s
 D

E
B

E
R

T
H

IN
G

R

.T
ug

.T
nk

r
 S

M
.R

em
ov

eQ
ue

(A
.D

eb
er

th
Q

ue
)

R
.T

ug
.T

nk
r.

T
ot

al
W

ai
t +

 (
t –

 R
.T

ug
.T

nk
r.

S
ta

rt
W

ai
t)

)

S
M

.R
em

ov
eG

rp
(A

.B
er

th
G

rp
, R

.T
ug

.T
nk

r)

D
ur

at
io

n
D

eb
er

th
in

gT
im

e
E

ve
nt

L

ea
ve

(R
.T

ug
.T

nk
r)

R

.T
ug

.S
ta

tu
s

 P
au

se
H

FI
G

U
R

E
 5

.2
7.

T
ra

ns
la

tin
g

th
e

D
eb

er
th

in
g

A
ct

iv
ity

.

5.5 Transforming an ABCmod Conceptual Model . . .

SM
.P

ut
(P

H
I[

T
an

k
er

.
T

o
ta

lW
ai

t]
, R

.T
ug

.T
nk

r.
T

ot
al

W
ai

t)

 204 5. DEDS Simulation Model Development

d) Terminating Event: The part of the terminating event’s SCS that up-
dates the Status attribute becomes an ASSIGN Block in the tug proc-
ess. Leave(R.Tug.Tnkr) specifies that the tanker leaves the ABCmod
conceptual model. The UNLINK Block in the tug process is used to
remove the tanker Transaction from the Tug_Tnkr User Chain and
send it to the TERMINATE Block (label TnkrLeave) that removes it
from the GPSS simulation model.

The complete GPSS process for the tanker derived from the tanker
Process Diagram of Figure 5.19 (and associated ABCmod constructs) is
given in Figure 5.28. Similarly the GPSS process for the tug is given in
Figure 5.29 (based on the Process Diagram of Figure 5.20). The transla-
tion is based on the principles described in the previous paragraphs. By
way of additional clarification, we note the following

a) From the process diagrams presented earlier, it’s apparent that the
Loading Activity and the TankerArrivals Action Sequence are spe-
cific to the tanker process and the MoveToHarbour and MoveTo-
Berths Activities are specific to the tug process. These Activities are
consequently implemented in only one GPSS process.

b) The Berthing Activity, like the Deberthing Activity examined in detail
earlier, is distributed into both the GPSS tanker and GPSS tug proc-
esses.

c) Movement of a Transaction from a LINK Block to a subsequent
Block requires a number of actions (as represented by the grey arrows in
Figure 5.28); A LINK Block moves the tanker Transaction into one
of the User Chains shown in Figure 5.25. The Transaction is moved
out of a User Chain by another Transaction (in this case the tug
Transaction) when it traverses an UNLINK block. The tanker Trans-
action is then “sent” (see Annex 2 for details) to some GPSS Block.
The grey arrows in Figure 5.28 represent both the action of the LINK
Block that moves the tanker Transaction into the referenced User
Chain and the action of the UNLINK Block traversed by the tug
Transaction to move the tanker Transaction out of the referenced User
Chain to the referenced GPSS Block. For example, the grey arrow
leading from the TankerArrival Action Sequence to the Berthing Ac-
tivity represents the following actions:

i. Upon entering the LINK Block, the tanker Transaction is moved
into the HarbourQue User Chain.

ii. When the tug Transaction enters the appropriate UNLINK Block,
the tanker Transaction is moved from the HarbourQue User

Chain to the ASSIGN Block labelled: To TugHrb (see Figure 5.29).

 205

d) The Loading Activity is implicitly triggered because the tanker Trans-
action moves automatically from the ENTER Block to the AD-
VANCE Block that implements the duration of the Loading Activity.
No explicit action is required (this is the commonly used GPSS coun-
terpart for a Triggered Activity).

e) The UM.LoadingTime User Module in the ABCmod conceptual
model is implemented using a GPSS Plus Procedure with the same
name.

f) The GPSS tug process has only one GPSS Block segment in which
the tug Transaction circulates without ever leaving the simulation
model. Testing preconditions of the ABCmod Activities is imple-
mented using TEST Blocks as shown in Figure 5.29. Each precondi-
tion is implemented with Boolean Variable Entities that are refer-
enced by the GPSS TEST Blocks. The definitions for these Variable
Entities are as follows (as previously noted, testing the Status parame-
ter is not required).

i. MvTHarbPreCnd BVARIABLE ((CH$HarbourQu 'NE' 0) 'AND'
(S$BerthGrp 'L' MaxBerth) 'AND' (CH$DeberthQu 'E' 0))

ii. BerthPreCnd BVARIABLE (CH$HarbourQu 'G' 0))
iii. DeberthPreCnd BVARIABLE (CH$DeberthQu 'NE' 0)
iv. MvTBerthsPreCnd BVARIABLE (CH$HarbourQu 'E' 0) 'AND'

(R$BerthGrp 'G' 0))

g) Note the use of the BUFFER Block in the TE area of the Berthing
segment of the tug process. When the tug Transaction enters this
Block, it allows the tanker Transaction to be processed first in order to
ensure that the tanker Transaction traverses the ENTER Block (and
hence becomes member of the BerthGrp Storage entity), before the
tug Transaction moves on. This is important because the tug Transac-
tion eventually tries to enter the TEST Block that implements the
MoveToHarbour Activity’s precondition. This precondition includes
evaluating the number of tankers in the BerthGrp Storage entity.

5.5 Transforming an ABCmod Conceptual Model . . .

206 5. DEDS Simulation Model Development

SE

TE

DU

PR

SE

SE

TE

DU

PR

ToTugHarb

enterBerth

SE

TE

DU

PR

ToTugBrths

TnkrLeave

GENERATE

(Exponential(1,0,AvgArr))

ASSIGN

Size,FN$TankerSize

ASSIGN

StartWait ,AC1

ASSIGN

TotalWait ,0

LINK

HarbourQu,FIFO

ASSIGN

TotalWait+,(AC1-P$StartWait)

LINK

Tug_Tnkr,FIFO

ENTER

BerthGrp

ADVANCE

(LoadingTime(P$Size))

ASSIGN

StartWait ,AC1

LINK

DeberthQu,FIFO

ASSIGN

TotalWait+,(AC1-P$StartWait)

LEAVE

BerthGrp

LINK

Tug_Tnkr,FIFO

TERMINATE

WRITE

P$TotalWait ,PhiWaitTime ,,OFF

Deberthing

Berthing

Loading

FIGURE 5.28. GPSS Tanker process.

TankerArrivals

 207

SE

TE

DU

PR

SE

TE

DU

PR

SE

TE

DU

PR

SE

TE

DU

PR

Status,PauseB

ASSIGN

TRANSFER

ASSIGN

Status,TOHARBOUR

ADVANCE

EmptyTravTime

ASSIGN

Status,PauseH

TRANSFER

TEST

E,BV$BerthingPreCnd,TRUE

Status,BERTHING

ASSIGN

UNLINK

HarbourQu,ToTugHarb,1

ADVANCE

BerthingTime

UNLINK

BUFFER

Status,PauseB

ASSIGN

TEST

E,BV$MvTHarbPreCnd,TRUE TEST

E,BV$DeberthingPreCnd,TRUE

ASSIGN

Status,DEBERTHING

UNLINK

DeberthQu,ToTugBrths,1

ADVANCE

DeberthingTime

UNLINK

Tug_Tnkr,LeaveHbr,1

Status , PauseH

ASSIGN

TEST

E,BV$MvTBerthsPreCnd,TRUE

Status,TOBERTHS

ASSIGN

ADVANCE

EmptyTravTime

Status,PauseB

ASSIGN

GENERATE

,,,1

TRANSFER

Tug_Tnkr,enterBerths,1

Initialisation

MoveToHarbour

Berthing

MoveToBerths

Deberthing

FIGURE 5.29. GPSS Tug process.

5.5 Transforming an ABCmod Conceptual Model . . .

F I
G

U
R

E
.

208 5. DEDS Simulation Model Development

 5
.3

0
T

ra
ns

la
tin

g
th

e
M

ov
eT

oB
er

th
s

E
xt

en
de

d
A

ct
iv

ity
.

 209

FIGURE 5.31. GPSS implementation of an ABCmod interrupt (Port Version 2).

interventions that may occur within an ABCmod Extended Activity. In
particular, PREEMPT and RETURN Blocks can be used to implement
pre-emption, whereas the DISPLACE Block can be used to implement an

tions that are on the FEC as a result of having entered an ADVANCE

5.5 Transforming an ABCmod Conceptual Model . . .

, ,

interrupt. Both the PREEMPT and DISPLACE Blocks remove Transac-

A number of Blocks in GPSS are especially relevant for implementing

Block, that is, Transactions whose duration is currently in progress.

210 5. DEDS Simulation Model Development

about the operation of these Blocks can be found in
Annex 2 or in the GPSS references that are provided there.
Additional details

Version 2 of the port project introduces the possibility of an interrupt.
In this case the tug, while carrying out its MoveToBerths Activity can
(under certain conditions) become obliged to return to the Harbour to ser-
vice a tanker that has arrived. Because of this interrupt possibility, the
ABCmod Extended Activity construct is required and Figure 5.30 shows
how it is translated into two GPSS segments that make up the GPSS tug
process. An additional segment is required for a special Transaction,
called the interrupt Transaction, to monitor the interrupt condition because
the tug Transaction cannot monitor itself when scheduled on the FEC dur-
ing the Extended Activity’s duration. The interrupt precondition and inter-
rupt event are implemented within this additional segment.

The MoveToBerths interrupt precondition is implemented with the
TEST Block that the interrupt Transaction traverses only when the inter-
rupt condition becomes TRUE TP �P This can occur when the tug is involved
in the MoveToBeths Activity (has entered the corresponding ADVANCE
Block and is scheduled on the FEC).

The DISPLACE Block implements MoveToBerths Interrupt Event’s
SCS (i.e., TA.ReturnToHabour and Terminate). The DISPLACE Block
uses the X$TugId argument to identify the tug (it contains the tug Transac-
tion identifier) to be displaced from the FEC and the ReturnToHarbour
argument as the label of the destination Block for the displaced Transac-
tion. Thus the Block sends the tug Transaction to the first Block of the
realisation of the ReturnToHabour Activity and by doing so halts the
MoveToBerths Activity. The BUFFER Block that follows the DISPLACE
Block allows the tug Transaction to move so that the interrupt condition
becomes FALSE (the tug Status is changed) before the interrupt Transac-
tion can test the state of the model. Figure 5.31 shows how the above
changes fit into the overall GPSS implementation of the tug process.

TP PT A PLUS procedure, IsMvToBerthInt, is called to evaluate the status of the

model. Using a procedure provides a clearer means of expressing the pre-
condition than Boolean Variable entity. All SNAs needed for testing are
passed as arguments to the Procedure. Note that it is necessary to represent
the tug attributes as SaveValue entities instead of Transaction parameters to
support the testing of these attribute values. GPSS places the interrupt
Transaction on the Retry chains of the Tug_Status SaveValue entity,
Tug_StartTime SaveValue entity, HarbourQu User Chain entity, and Deber-
thQu User Chain entity. Whenever any of these entities changes, GPSS
moves all transactions from the corresponding retry chain to the CEC, in-
cluding the interrupt Transaction which will try again to traverse the TEST
Block, that is, re-evaluate the TEST.

16

16

211

TP PT

TP PT A GPSS simulation program for version 3 can be downloaded from the textbook

Web site.
TP PT The Queue Entities are dedicated to collecting statistics and can be used, for

example, to collect statistics on the delay chains of the various structural
entities, on the time Transactions spend in the model, and so on. See Annex 2
for details.

TP PT A GPSS data stream can either be an internal data stream stored in internal
memory or a file data stream store within a system file.

Version 3 of the Port project introduces the occurrence of storms which
represent inputs to the SUI. The ABCmod conceptual model that is formu-
lated in Chapter 4 handles the situation by the use of interrupts in the various
Activities that are affected by storms. Implementation of these various interrupts

5.5.1.3 Generating Output

in the GPSS simulation model can be accomplished using the same approach
that is outlined above. Details are left as an exercise for the reader.

GPSS automatically provides data relating to the entitiesTP PT found in a
simulation model; this data can be accessed using GPSS SNA’s (see An-
nex 2). Often these SNA’s correspond directly to values for ABCmod de-
rived scalar output variables (DSOV’s) that are stipulated in the project
goals.

To determine values for DSOV’s that are not automatically provided by
GPSS, a two step process is proposed:

1. Save the sample set or trajectory set output into a GPSS data stream.
2. When the simulation run has finished, use a Plus Procedure to com-

pute the DSOV value using the contents of the data stream and store
the results in a SaveValue entity.

Figure 5.32 illustrates the above two step method for the case of Kojo’s
simulation model to collect customer wait times in the PHI[WaitTime]
sample set and then compute a value for PropLongWait using the values
in this set. The WRITE Block records customer wait time values in the
PHIWaitTime data stream (i.e. in the PHI[WaitTime] sample set). The
data stream is set up as a file, PHIWaitTime.txt, during initialisation by the
OPEN Block (the first segment shown in the figure is traversed by a single
Transaction to initialise the simulation model).

The Plus procedure propGT (shown in Figure 5.32) executes at the end
of the simulation run and its returned value is stored in the SaveValue en-
tity called PropLongWait. This is accomplished by the second segment
shown in Figure 5.32. A Transaction is generated at the end of the obser-
vation interval, that is, at time 660 minutes (11 hours) after the start of the
simulation run. The Transaction traverses a WRITE Block to add a -1

5.5 Transforming an ABCmod Conceptual Model . . .

17

18

19

17

18

19

212 5. DEDS Simulation Model Development

to the end of the PHIWaitTime data stream and then the SAVEVALUE
and store the results in

PropLongWait. A similar approach is used for computing the
AvgWaitTime
code available on the textbook Web site provides details).

5.6 Exercises and Projects

5.1 Develop an event-scheduling simulation program (and/or process-
oriented simulation program) based on the ABCmod conceptual model
formulated in Problem 4.1 of Chapter 4.

**

* Initialisation

**

 GENERATE 0,,,1

 OPEN ("PHIWaitTime.txt"),PHIWaitTime

 TERMINATE

* Stop simulation after 660 minutes (11 hours)

**

 GENERATE 660

 WRITE "-1",PHIWaitTime,,OFF

 CLOSE ,PHIWaitTime

 TERMINATE 1

 SEEK(PHIWaitTime,1); /* go to start of stream */

 totalCount = 0;

 sample=READ(PHIWaitTime);

 WHILE(StringCompare(sample,"-1") 'NE' 0) DO BEGIN

 wtm=VALUE(sample);

 totalCount=totalCount+1;

 sample=READ(PHIWaitTime);

 END;

END;

 DSOV in the Port simulation model (the Port Project GPSS

 SAVEVALUE PropLongWait,(propGT(5))

PROCEDURE propGT(5) BEGIN

 TEMPORARY totalCount, countGT;

 countGT = 0;

 return(countGT/totalCount);

IF(wtm > val) THEN countGT=countGT+1;

FIGURE 5.32. Output collection for the Kojo’s Kitchen project.

Block to invoke propGT

SAVEVALUE EmpNum,2 ; Initialise for experiments

5.7 References 213

5.2 Develop an event-scheduling simulation program (and/or process-
oriented simulation program) based on the ABCmod conceptual model
formulated in Problem 4.2 of Chapter 4.

5.3 Develop an event-scheduling simulation program based on the
ABCmod conceptual model formulated in Problem 4.3 of Chapter 4.

5.4 Assume that the development of the conceptual model of Problem 4.3
and the development of the simulation program of Problem 5.3 have
been carried out by two teams where Team A has the primary
responsibility for the ABCmod conceptual model and Team B has the
primary responsibility for the simulation program. Carry out a
verification exercise by:

a) Giving Team B the task of reviewing the conceptual model before
developing the event-scheduling simulation program.

b) Giving Team A the task of reviewing the simulation program once
it has been completed.

5.5 Develop a process-oriented simulation program based on the ABCmod
conceptual model formulated in Problem 4.3 of Chapter 4.

5.6 Repeat the verification exercise of Problem 5.4 in the context of
Problem 5.5.

5.7 Develop an event-scheduling simulation program (and/or process-
oriented simulation program) based on the ABCmod conceptual model
formulated in Problem 4.4 of Chapter 4.

5.8 Develop an event-scheduling simulation program (and/or process-
oriented simulation program) based on the modified ABCmod
conceptual model formulated in Problem 4.5 of Chapter 4.

5.7 References

5.1. Banks, J., Carson II, J.S., Nelson, B.L., and Nicol, D.M., (2005), Discrete-
Event System Simulation, 4th edn., Prentice-Hall, Upper Saddle River, NJ.

5.2. Horatmann, C., (2003), Computing Concepts with Java Essentials, 3rd edn.,
John Wiley and Sons, New York.

5.3. Liang, Y.D., (2007), Introduction to Java Programming: Fundamentals First,
6th edn., Prentice-Hall, Upper Saddle River, NJ.

5.4. CERN, The Colt Project, (2004), Version 1.2.0, http://dsd.lbl.gov/~hoschek/-
colt/.

5.5. Sun Microsystems, Java 2 Platform Standard Edition 5.0, TUhttp://java.sun.
com/j2se/1.5.0/docs/index.htmlUT.

Chapter 6 Experimentation and Output Analysis

6.1 Overview of the Issue

In this chapter we explore the activities of experimentation and output
analysis, which are both central to the success of any modelling and
simulation project. In other words, we examine the process of correctly
formulating and carrying out goal-directed experiments with the
simulation program and then extracting meaningful information from the
data acquired via its output variables. The underlying complexity here
arises from the uncertainty that is superimposed on all variables in any
DEDS model by the random nature of input variables and by the random
behaviour of ‘internal’ processes (e.g., message service time at the nodes
of a communications network or failure characteristics of machines in a
manufacturing plant). As we have previously noted, these random
phenomena represent one of the essential differences between models
arising from the DEDS context and those arising from the realm of
continuous-time dynamic systems.

A simulation program provides an observation window onto a variety of
random phenomena that unfold as a result of the model’s execution. Each
can be linked to a random variable and some of these random variables are
of special interest from the perspective of the project goals.

The notion of output variables was explored in the discussions of both
Chapters 2 and 4 where it was stressed that any model necessarily has one
or more such variables associated with it. This follows simply because
they serve as the conduits for the data that are essential for the resolution
of the project’s goals. In these earlier discussions we introduced two
categories of output variable called point-set output variables (PSOVs) and
derived scalar output variables (DSOVs).

There are two types of variable in the PSOV category; namely, time
variables and sample variables. These share a common means for

216 6. Experimentation and Output Analysis

delivering data from any particular execution of the simulation program,
namely, through the accumulation of a finite set of (possibly) time-indexed
values. However, the specific values in such a set are rarely of interest.
Instead what is of interest is typically some property of these accumulated
data, for example, minimum, maximum, average, or number (a count of
the number of values in the set). Such a value is computed and assigned to
a designated scalar variable. Such variables are necessarily random
variables and they fall into the category of DSOVs. Our interest
throughout this chapter is primarily with DSOVs and for convenience we
refer to these simply as output variables.

Let’s consider some examples of DSOVs that might arise at the level of
the ABCmod conceptual modelling framework as discussed in Chapter 4.
The list below demonstrates the most fundamental feature of any such
variable; namely that it always has a ‘definition’, that is, a meaning in
terms of the behaviours that are represented within the conceptual model.
Although this may appear obvious, it is a feature that must be
unambiguously documented in the statement of project goals.

An output variable YA which represents the proportion of customers that
waited for more than five minutes for service at Kojo’s Kitchen in the
food court
An output variable YB, which represents the average time spent waiting
for tugboat service by the tankers that pass through an ocean port
model
An output variable YC, which represents the maximum number of
messages in the input buffer of a particular node P of a
communications network, over a 24 hour period
An output variable YD, which represents the portion of time that all the
attendants in a full-service gas station are busy, over the course of a
business day

Some details for these four variables are presented in Table 6.1 in terms

these variables by carrying out an operation on some underlying output set
of data values.

of the notions in our ABCmod framework as discussed in Chapter 4. In
particular the table shows how a value might be established for each of

6.1 Overview of the Issue 217

T
A

B
L

E
6.

1.
E

la
bo

ra
tio

n
of

 r
ep

re
se

nt
at

iv
e

ou
tp

ut
 v

ar
ia

bl
es

.

O
ut

pu
t

V
ar

ia
bl

e
(D

SO
V

)

SU
I

C
on

te
xt

U

nd
er

ly
in

g
T

im
e

V
ar

ia
bl

e/
Sa

m
pl

e
V

ar
ia

bl
e

(P
SO

V
)

O
ut

pu
t

Se
t

(T
ra

je
ct

or
y

or

Sa
m

pl
e

Se
t)

O

pe
ra

to
r

on
 O

ut
pu

t
Se

t
Y

A
K

oj
o’

s
K

itc
he

n

A
ttr

ib
ut

e
C

us
to

m
er

.W
ai

tT
im

e
of

 t
he

C

us
to

m
er

 c
on

su
m

er
 e

nt
ity

 c
la

ss
 t

ha
t

re
pr

es
en

ts

th
e

cu
st

om
er

s
fl

ow
in

g
th

ro
ug

h
K

oj
o’

s
K

itc
he

n

PH
I[

C
.C

us
to

m
er

.W
ai

tT
im

e]

Pr
op

G
T

Y
B

O
ce

an
 p

or
t

T
an

ke
r

co
ns

um
er

 e
nt

ity
 c

la
ss

 i
s

us
ed

to

 a
cc

um
ul

at
e

th
e

tim
e

sp
en

t
by

 e
ac

h
ta

nk
er

in

st
an

ce

w
ai

tin
g

fo
r

tu
gb

oa
t

se
rv

ic
e

Y
C

C
om

m
un

ic
at

io
n

ne
tw

or
k

A
ttr

ib
ut

e
Pn

od
e.

N

of

th
e

qu
eu

e
re

pr
es

en
tin

g
th

e
in

pu
t

bu
ff

er
 o

f
th

e
pa

rt
ic

ul
ar

 n
od

e
of

 in
te

re
st

T
R

J[
A

.P
no

de
.N

]
M

A
X

Y
D

Fu
ll-

se
rv

ic
e

ga
s

st
at

io
n

A
ttr

ib
ut

e
A

tte
nd

.A
llB

us
y

of

th
e

re
so

ur
ce

en

tit
y

as
so

ci
at

ed

w
ith

th

e
at

te
nd

an
ts

w

ho
se

va

lu
e

is

se
t

to

1
w

he
n

al
l

at
te

nd
an

ts
 a

re
 b

us
y

an
d

is

ze
ro

 o
th

er
w

is
e

 T
R

J[
R

.A
tte

nd
.A

llB
us

y]

A
V

G

A
ttr

ib
ut

e
T

an
ke

r.
T

ot
al

W
ai

t
of

th

e
PH

I[
C

.T
an

ke
r.

T
ot

al
W

ai
t]

A

V
G

218 6. Experimentation and Output Analysis

Any particular output variable listed in Table 6.1 acquires a value as a
consequence of the execution of its respective simulation program (i.e., as
a consequence of a ‘simulation run’ or simply a ‘run’). However, this
value is not a direct outcome of the experiment but rather is obtained by
carrying out an operation on a set of data values as illustrated in Figure
5.1. In the case of YA the data set is the sample set
PHI[C.Customer.WaitTime] which is populated by values of the sample
variable Customer.WaitTime (an attribute of the consumer entity class
called Customer). Each Customer instance that passes through Kojo’s
Kitchen contributes a value to PHI[C.Customer.WaitTime], and for any
particular simulation run, the value acquired by YA is obtained as
PropGT(5,PHI(C.Customer.WaitTime)). Here PropGT(Val,SampleSet) is a

p1,1, p1,2, ...p1,m1 p2,1, p2,2, ...p2,m2 pn,1, pn,2, ...pn,mn

Simulation

Run

PSOV Data

1 2 n• • •

• • •

Set

Operator

y1

Set

Operator

y2

Set

Operator

yn

Output Data

(DSOV)

Ouput Set

• • •

Ouput Set Ouput Set

FIGURE 6.1. Generation of data from multiple simulation runs.

As previously observed, any DSOV is a random variable. There are
certainly circumstances where interest in a random variable can focus
simply on a particular value (e.g., the sum of the dots showing on a pair of
dice when the dice are thrown during a game of chance). However, the
value of a DSOV acquired from a single simulation run generally falls far
short of providing useful information from the perspective of the
requirements of project goals. The information that is needed typically

mean value estimate that appears to coincide directly with some DSOV

 1 Strictly speaking, this is not entirely correct. In the context of a steady-state
study, there does exist an approach called the method of batch means where all

user-defined module specified in the ABCmod conceptual model for the
Kojo's Kitchen project in Chapter 5 (see Table 5.10).

A frequent misunderstanding occurs when the project goals require a

relates to the values of the parameters of the distribution of the DSOV (e.g.

organised to yield independent observations.

required data are generated from a single long simulation run. A brief discussion
can be found in Section 6.3.2.

 1
formulated from results obtained from multiple runs that have been
mean, variance) and meaningful estimates of such parameters can only be

6.2 Bounded Horizon Studies 219

(for definiteness, let’s call it Y) that is defined as an average. Consider, for
example, our port project where the mean waiting time of tankers is
required. A particular simulation run will yield a sample set whose
members are the waiting times of the tankers that passed through the port
during that run. The average of the values in this sample set (which we

ˆ

For the most part, our interest in experimentation focuses on the mean
values of designated output variables within the simulation program. It
needs to be recognised, however, that the determination of an exact value
for these is rarely feasible. Experiments with the simulation program can,
at best, deliver the data from which an estimate of the mean (called a point
estimate) can be formulated together with an assessment of the quality of
the estimate (i.e., a confidence interval). Guidance for determining what
experiments need to be carried out and how the acquired data need to be
handled in order to obtain credible estimates are provided by some of the
fundamental results from probability theory. An overview of these can be
found in the latter sections of Annex 1. The topic is explored in the
discussions below.

6.2 Bounded Horizon Studies

y) would represent a single observation of the DSOV, Y.

We now consider the basic problem of analysing the values acquired by an

zon study. From a collection of values acquired from n simulation runs,
we determine a point estimate of the mean (i.e., a single number whose
validity has some credible basis) and then formulate an interval in which
the point estimate lies with a prescribed degree of confidence.

One might be tempted here to use as an estimate of the mean value
that we seek (namely, the mean waiting time of tankers that pass through
the port). However there generally is a correlation among the values be-
cause, for example, a long wait by some tanker will likely result in long
waits by succeeding tankers thereby introducing a bias in the collected
data. This circumstance precludes the use of the standard methods of sta-
tistics which depend on the assumption of independence, for example. for
the determination of the confidence interval that we discuss below. It is
for this reason that suitably replicated simulation runs (or other equivalent
approaches) are required which will generate a collection of independent
observations of Y from which the desired mean value estimate and a con-
fidence interval can be formulated. This is achieved by proper manage-
ment of the seeds used in the random variate generation procedures that
are embedded in the simulation model.

output variable in the simulation program in the case of a bounded hori-

ŷ

denote by

220 6. Experimentation and Output Analysis

The considerations that follow rely heavily on the results presented in
Annex A1, in particular the results in Sections A1.5 through A1.7.

6.2.1 Point Estimates

n

k
kY

n
nY

1

1
)(

and we regard the Yks as surrogate random variables for Y that are
associated with a sequence of n correctly replicated experiments with M
(the variable Yk is associated with experiment k). All have the same
distribution as Y because they reflect the same process (namely the
simulation program M). Furthermore, because they are linked to a
sequence of correctly replicated experiments, we can assume that the

Correctly replicated simulation runs are a key requirement in
formulating the estimate that we seek. The implication here is that there is
appropriate management of the seeds used to initialise the various random
number generators from run to run to create a meaningful set of
independent and identically distributed observations (initial conditions,
however, must remain invariant except when their values are part of the
random envelope).

On the basis of the above, a point estimate of µ can be obtained in the
following way.

1. Choose a suitable value for n, the number of replications (in principle,
n needs to be large, but a value in the order of 30 is generally
satisfactory).

2. Collect the n observed values y1, y2, . . . , yn for the random variables
Yk, k = 1, 2, . . . , n, that result from n replicated simulation runs of the
simulation program M.

3. Compute:

n

k
ky

n
ny

1

1
)(.

The numerical value that results for)(ny is then taken to be the point
estimate for µ = E[Y] that we seek.

Suppose Y is an output variable (i.e. DSOV) of the simulation program M

estimate of µ = E[Y]. The fundamental result from probability theory upon

Annex A1). The interpretation in our context is that)(nY approaches µ as
n becomes large where:

and we seek an estimate of the mean of the distribution of Y, namely an

Yk’s

Yk’s
are independent. Hence the Yk can be taken to be a set of independent
identically distributed (IID) random variables.

which we rely is the strong law of large numbers (see Section A1.5 of

6.2 Bounded Horizon Studies 221

6.2.2 Interval Estimation

The procedure is outlined below and is based entirely on the discussion

1. Choose values for C, and
as well, an initial value for n that is not smaller than 20.

2. Collect the n observed values y1, y2, . . . , yn for the random
variables Yk , k = 1, 2, . . . , n, that result from n replicated
simulation runs of the simulation program, M.

3. From tabulated data for the Student t-distribution, determine tn-1,a

where a = (1 – C)/2.
4. Compute:

n

nst
n

n

nyy

ns

y
n

ny

n

n

k

k

n

k

k

)(
)(

1

))((

)(

1
)(

,1

1

2

2

1

(6.1)

in Section A1.7 of Annex 1 (Equation (A1.36) has particular relevance).

r and for the confidence level parameter

We now expand our task by undertaking to find a suitable value for the

, ,

estimate)(ny . We know from Section A1.7 that an interval (called the
confidence interval) can be established within which µ falls with a

n-1,a ns /)(

on the Student t-distribution
 value tn-1,a.

The quality criterion we introduce is the requirement that, with
confidence 100C% (0 < C < 1), |)(ny µ| < *. In other words, we want
to ensure that (with a prescribed level of confidence) the interval half
length (n) is less than a specific value denoted by *. A possible choice
for * is r)(ny where r is a value chosen in the range (0, 1). With this
choice, the maximum displacement of the estimate from µ is proportional
to the value of the estimate itself. Note that our quality measure can be
interpreted as

r
ny)(

number of replications n which will ensure a particular quality for the

[y(n) (n), y(n) (n)] where (n) = (t

prescribed level of confidence. This interval has the form

n)(

n), and s(n) is

(n) the confidence inter-
val half length. Its value is clearly dependent
an estimate of the standard deviation . We call

222 6. Experimentation and Output Analysis

5. If (n) < * = r)(ny (or (n) /)(ny < r) then accept)(ny as the
point estimate of µ and end the procedure, otherwise continue to
Step 6.

6. Choose n no smaller than 3 and collect additional
observations yn+1, yn+2, . . . , yn+ n through a further n replications,
replace n with n + n, and repeat from Step 3.

6.2.3 Output Analysis for Kojo’s Kitchen Project

This section examines how the analysis techniques described in Section
6.2.2 can be applied to achieving the goal set out in the Kojo’s Kitchen
project. Recall that the goal set out in Chapter 5 was to investigate the
impact on the output variable PropLongWait (i.e., the proportion of
customers waiting longer than five minutes) of adding an additional
employee. The Java event-scheduling simulation program presented in
Section 5.4.2 is used to experiment with the simulation model and generate
data for analysis. The collected data are analysed using a number of useful
data analysis tools available in Microsoft Excel.

Figure 6.2 shows the Java method used to carry out multiple simulation

 The first part of the method generates the random seeds used in all the
simulation runs. The CERN Java package offers a Class Random-
SeedGenerator that provides the means to generate appropriate
(uncorrelated) random seeds. This ensures that the different simulation
runs provide independent values for the PropLongWait output variable.
Note also that the seeds are stored in an array of Seeds objects.

 Thus they can be
 reused when executing the runs for the alternate case. This is important
 for comparing the two cases as discussed in Section 6.4.

Also
 note that four seeds make up a Seedsobject, one for each random
number generator used in the simulation program.

 For each simulation run, a new KojoKitchen object is created using the
Class constructor. The constructor provides the data necessary for the
simulation run, that is, specifies the observation interval (the first two
arguments specify the right- and left-hand boundaries of the interval), a
value for the empSchedCase parameter (either Case1 or Case2), and
finally a Seeds

 After each run, the value generated for PropLongWait is displayed
along with the run number. The output of the running program can be
redirected into a file and subsequently loaded into an Excel worksheet
for analysis.

runs with the Kojo’s Kitchen simulation model (see Section 5.3). Note the
following.

 object to seed the random number generators. Recall that
Case 1 is the base case and Case 2 is the situation where the third employee
is hired during busy periods.

6.2 Bounded Horizon Studies 223

FIGURE 6.2. Java method for experimentation with the Kojo’s Kitchen simulation
program.

class KojoExperiment1
{
 public static void main(String[] args)
 {
 final int NUMRUNS = 10000;
 int i;
 Seeds[] sds = new Seeds[NUMRUNS];
 KojoKitchen kojo; // simulation program
 double propLongWait;

 RandomSeedGenerator rsg = new RandomSeedGenerator();
 for(i=0 ; i<NUMRUNS ; i++)
 sds[i] = new Seeds(rsg.nextSeed(),rsg.nextSeed(),
 rsg.nextSeed(),rsg.nextSeed());

 // Loop for NUMRUN simulation runs for each case
 // Case 1
 System.out.println("Case 1 - no additional employee");
 for(i=0 ; i < NUMRUNS ; i++)
 {
 kojo = new KojoKitchen(0.0,660.0,KojoKitchen.Case1,sds[i]);
 kojo.runSimulation();
 propLongWait = kojo.getPropGT(5);
 System.out.println((i+1)+", "+propLongWait);
 }
 // Case 2
 System.out.println("Case 2 - add employee during busy times");
 for(i=0 ; i < NUMRUNS ; i++)
 {
 kojo = new KojoKitchen(0.0,660.0, KojoKitchen.Case2,sds[i]);
 kojo.runSimulation();
 propLongWait = kojo.getPropGT(5);
 System.out.println((i+1)+", "+propLongWait);
 }
 }
}

 // Get a set of uncorrelated seeds

224 6. Experimentation and Output Analysis

Table 6.2 shows the values for propLongWait for the first 20 simulation
runs for each of the two cases. The values for the point estimate ()(ny),
the standard deviation (s(n)), and the confidence interval half length ((n))
are shown in the table, with n = 20. These were computed by using

)()(nny and right boundary)()(nny of the confidence
 interval are given by CI Min and CI Max, respectively.

TABLE 6.2. Analysis of generated data from the first 20 simulation runs.

Run Case 1 Case 2

1 0.634 0.263

2 0.595 0.209

3 0.256 0.067

4 0.532 0.335

5 0.282 0.049

6 0.649 0.278

7 0.458 0.024

8 0.515 0.158

9 0.618 0.062

10 0.667 0.348

11 0.483 0.238

12 0.524 0.107

13 0.663 0.447

14 0.235 0.053

15 0.404 0.051

16 0.472 0.112

17 0.425 0.094

18 0.565 0.124

19 0.392 0.048

20 0.381 0.123

0.487 0.160

s(n) 0.134 0.121

(n) 0.052 0.047

CI Min 0.436 0.113

CI Max 0.539 0.206

)(ny

Equation (6.1) with a 90% confidence level (i.e C= 0.9). The left
boundary

6.3 Steady-State Studies 225

Table 6.3 shows for each of the two cases the values of)(ny , s(n), and

(n) (computed using Equation (6.1)) as well as the boundaries of the
confidence interval (CI Min and CI Max) and the ratio (n)/)(ny when n
(the number of simulation runs) is increased. Note from the rightmost
column how the ratio (n)/)(ny decreases as n increases. This is mainly a
consequence of a decreasing value for the confidence interval half length
(n).

Observe that for Case 1, with 20 runs the half length of the confidence
interval is essentially 10% of the point estimate (see rightmost column
where the value is 0.106). However with 20 runs, the interval half length in
Case 2 is almost 30% of the point estimate (value in rightmost column is
0.293). For Case 2, 100 runs are required to achieve a comparable
confidence interval as Case 1.

TABLE 6.3. Impact of number of runs on the confidence interval.

n s(n) (n) CI Min CI Max

20 0.487 0.134 0.052 0.436 0.539 0.106

30 0.503 0.125 0.039 0.464 0.542 0.077

40 0.502 0.119 0.032 0.471 0.534 0.063

60 0.504 0.116 0.025 0.479 0.529 0.049

80 0.499 0.129 0.024 0.475 0.523 0.048

100 0.503 0.132 0.022 0.481 0.524 0.044

1000 0.510 0.120 0.006 0.504 0.517 0.012

10000 0.508 0.126 0.002 0.506 0.510 0.004

n s(n) (n) CI Min CI Max

20 0.160 0.121 0.047 0.113 0.206 0.293

30 0.192 0.124 0.039 0.153 0.230 0.201

40 0.193 0.119 0.032 0.161 0.225 0.165

60 0.187 0.115 0.025 0.162 0.211 0.133

80 0.185 0.121 0.023 0.162 0.207 0.122

100 0.187 0.123 0.020 0.167 0.207 0.109

1000 0.188 0.121 0.006 0.181 0.194 0.034

10000 0.184 0.120 0.002 0.182 0.186 0.011

Case 1

Case 2

(n)y (n)y
(n)

(n)y (n)y
(n)

6.3 Steady-State Studies

The fundamental requirement in a steady-state study is the postponement
of data collection during a simulation run until it is apparent that the

226 6. Experimentation and Output Analysis

simulation model is operating under steady-state conditions; that is, the
stochastic processes associated with the output variables of interest have
become stationary. A necessary (but not sufficient) condition for steady-
state behaviour of the simulation model is the requirement that the
underlying random variables associated with autonomous stochastic
processes, such as arrival rates and service rates, are themselves stationary.
But even when this is the case, the model’s initial conditions usually give
rise to circumstances that cause dependent stochastic processes in the
simulation model to pass through a transient phase at the start of a
simulation run.

Recall that for steady-state studies, the right-hand boundary of the
observation interval is not specified. This provides the flexibility to
execute a simulation run for as long as necessary in order to first reach
steady-state conditions and then acquire sufficient data to permit
meaningful conclusions. Consequently the execution of experiments for
steady-state studies must address two important issues:

Determining a warm-up period: A transient period is always present at
the beginning of any simulation run. Behaviour data from this interval
are (by definition) incompatible with the steady-state requirements of
the study. The implication here is that a warm-up period that precedes
the collection of data needs to be recognised. The duration of this
period cannot be predicted and hence a mechanism for determining the
end of the warm-up period must be incorporated into the
experimentation procedure. Data collection can begin only after this
transient, or warm-up period, has come to an end.
Establishing confidence in the conclusions. A single simulation run

estimate of the mean of the output variable (or
 variables) of interest can be calculated. Provided the length of the
 run has generated a sample of sufficiently large size, the estimate
 can have reasonable credibility (e.g., on the basis of the law of large
 numbers) However, a confidence interval for any such estimate
 requires a collection of independent observations in order to apply
 the techniques described in Section 6.2.2.

6.3.1 Determining the Warm-up Period

Considerable research effort has addressed the problem of establishing a
suitable warm-up period for a simulation run, that is, an interval which
allows sufficient time for the dependent stochastic process of interest to

average method is one of the many available approaches. It is graphically

can be executed for an extended observation interval to yield data
from which a point

reach a steady-state (see, e.g., [6.4], [6.6], [6.7], [6.8]). The Welch moving

6.3 Steady-State Studies 227

oriented, relatively straightforward, and provides reasonable estimates.
This section outlines the application of this method (a more extensive
presentation can be found in Law and Kelton [6.5]).

The Welch moving average method relies on a relatively small number
of simulation run replications (e.g., five to ten). The duration of each
replication needs to be sufficiently long so that it extends beyond the
transient period. A typical replication is shown in Figure 6.3 which
illustrates a representative transient condition at the start of the simulation
run (e.g., a case where the simulation model begins without any consumer

(simulated) time which has been compartmentalised into m
 time cells. The vertical axis shows how the average value for some output
 variable might change if separate averages were computed within the
 time cells. The

time cell D, changes in average value no longer occur and hence steady-
state can be assumed.

Selecting the size of the time cells and the number of time cells (which
is equivalent to establishing the length of the simulation run) depends on
the underlying nature of the simulation model. The size of the time cell
should be large enough to be provide reasonable results (i.e., enough data
points to compute a credible average within the cell), and yet short enough
to be able to detect the existence of the transient.

Replication j generates an output set of nj values; for example, {yk,j: k =
1, 2, . . . , nj}. The average of those values that fall into time cell i is
computed to produce jiy , which is the ith cell average for the jth

replication. Thus n replications will produce the set of n averages { jiy , : j =

1, 2, . . . , n} where i is the time cell index. The following steps are carried
out to obtain an estimate of the time cell index where the system transient
terminates, in other words, the system reaches steady-state.

1. i

 averages (jiy ,); that is,

n

j

jii y
n

a

1

,

1
.

entity instances being present). The horizontal axis in Figure 6.3
corresponds to

changing shape of a hypothesised distribution function
for this output variable is superimposed. The Figure shows that starting at

Obtain the value a as the average over the n replications of the ith cell

228 6. Experimentation and Output Analysis

1 2 3 D
i

m{

Time cell 2

1y

sy my

2y

3y

iy

Transient State Steady State

FIGURE 6.3. Reaching steady-state.

2. The values ia , i = 1, 2, . . . , m usually vary considerably. If
plotted against index i the resulting graph is ‘choppy’ and difficult
to interpret. A smoothing operation is required in order to smooth

the trend. For this purpose, the moving-average values
)(wai are computed using Equation (6.2). The parameter w

represents a window size that controls the smoothing operation. Its
selection is by trial and error. Usually a number of values for w
need to be tried. The objective is to find as small a value as
possible that provides the desired smoothing effect.

wmwi
w

a

wi
i

a

wa
w

wl

li

i

il

li

i

,,1
12

,,1
12

)(

1

)1(

 . (6.2)

3. Equation (6.2) is not as complex as it might appear. When i > w
there are w cell averages on either side of ia that are averaged to
produce the running average value)(wai . When i w there are
not enough values preceding time cell ito fill the window. In this

out rapid variations to obtain a smoother curve that captures

6.3 Steady-State Studies 229

averages are computed for the case where w = 3.

 The values)(wai are plotted against the cell index i and it should be

practice is to extend the apparent length of the warm-up period (say by
30%). The idea here is to err on the safe side by making the warm-up

TABLE 6.4. Welch running average with w = 3.

i)3(ia Equation)3(ia Expansion

1

1

0

0l

lia

1

1a

2

3

1

1l

lia

3

321 aaa

3

5

2

2l

lia

5

54321 aaaaa

4

7

3

3l

lia

7

7654321 aaaaaaa

5

7

3

3l

lia

7

8765432 aaaaaaa

.

.

.

.

.

.

.

.

.

m – 3

7

3

3l

lia

7

123456 mmmmmmm aaaaaaa

case w is replaced with (i – 1). Table 6.4 shows how the running

apparent from this graph when steady-state has been achieved. A good

period somewhat longer than necessary rather than inappropriately short.

230 6. Experimentation and Output Analysis

We illustrate the use of the Welch moving average method using

variables of interest are berth group size and the tanker total wait time.
Figures 6.4 and 6.5 show the results of 10 simulation runs (n = 10) each of
duration 15 weeks. The time cells have a width of 1 week which means
that m = 15. The following observations are noteworthy.

 In the case of the berth group size, there is no apparent transient. Even
without the use of running averages (see Figure 6.4a), the graph is
relatively smooth. This result can be attributed to the small size of the
group (namely, three) which results in the available berths being quickly
filled by the first few arrivals of tankers.

 A transient is certainly apparent for the tanker total wait time as shown
in Figure 6.5 and moving averages are required to smooth out the graph.
A window size of five provides a suitable result and shows that the
transient lasts for approximately three weeks. Either four or five weeks
can be selected as a suitable warm-up period.

 The warm-up period has relevance for the elimination of the transient in
the tanker total wait time output variable. However, this does not
preclude the collection of berth group size data during the warm-up
period.

data to be collected during a simulation run and this provides the basis for
a number of methods for generating the necessary data for analysis (i.e., a

experimentation with the port simulation program as presented in Section
6.3.3. An overview of the method of batch means is also given. A more
comprehensive presentation of the available options can be found in Law
and Kelton [6.5].

version 1 of our port project (no intervention and no storms). The output

Extending the right-hand boundary of the observation interval allows more

set of IID values for the output variable). We examine two approaches.

 Our problem continues to be the determination of an estimate

as previously noted, in steady-state studies we must reduce the effect of

6.3.2 Collection and Analysis of Results

of the mean of an output variable Y , i.e. = E[Y]. However,

The replication–deletion method is described and illustrated using

µ

transient data, and ideally eliminate it.

6.3 Steady-State Studies 231

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Week

A
v
e
ra

g
e
 B

e
rt

h
 G

ro
u

p
 S

iz
e

(a) ia

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Week

A
v
e
ra

g
e
 B

e
rt

h
 G

ro
u

p
 S

iz
e

(b))1(ia

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12

Week

A
v
e
ra

g
e
 B

e
rt

h
 G

ro
u

p
 S

iz
e

(c))3(ia

FIGURE 6.4. Welch method applied to berth group size.

232 6. Experimentation and Output Analysis

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Week

A
v
e
ra

g
e
 T

a
n

k
e
r

T
o

ta
l

W
a
it

 T
im

e

(a) ia

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12

Week

A
v
e
ra

g
e
 T

a
n

k
e
r

T
o

ta
l

W
a
it

 T
im

e

(b))3(ia

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

Week

A
v
e
ra

g
e
 T

a
n

k
e
r

T
o

ta
l

W
a
it

 T
im

e

(c))5(ia

FIGURE 6.5. Welch method applied to tanker total wait time.

6.3 Steady-State Studies 233

observation interval (i.e., tf) is simply taken to be the value of (simulated)
time when a sufficient amount of data has been collected to generate a

It does, however, have the computing time overhead
 of repeating the warm-up period for each of the replications.

This approach resembles the experimentation and output analysis

the output data, a point estimate and confidence interval can be obtained
using Equation (6.1). In the discussion of Section 6.2.2 it was noted that
increasing the number of simulation runs (i.e., replications) reduced the
confidence interval half length (n) and increased the quality of the point
estimate. This equally applies in the replication–deletion approach for a
steady-state study. However, in a steady-state study, (n) can also be
reduced by increasing the length of the simulation run, that is, by adjusting
the right-hand boundary tf of the observation interval. Based on these
observations the procedure for the replication–deletion method can be
formulated as a straightforward extension of the earlier procedure
presented in Section 6.2.2. It is as follows.

1.
well an initial reasonable value for tf , and an initial value for n that
is not smaller than 20.

2. Collect the n observed values y1, y2, . . . , yn for the random
variables Yk , k = 1, 2, . . . , n, that result from n replicated
simulation runs of the simulation program M that terminate at time
tf.

3. From tabulated data for the Student t-distribution, determine tn-1,a

where a = (1 – C)/2.
4. Compute)(ny and (n) using Equation (6.1).
5. If (n) < r)(ny (or (n)/)(ny < r) then accept)(ny as the estimate

of µ and end the procedure, otherwise continue to Step 6.

observations yn+1, yn+2, . . . , yn+ n through a further n replications,

The right boundary of the

In fact a
sequence of n
valid and meaningful collection of output observations.

simulation runs is executed to produce a set of n output
values.

An important feature of this method is that it naturally generates a
set of IID values.

previously outlined for a bounded horizon study (see Section 6.2). From

A practical approach in the replication–deletion method is to
determine the right boundary of the warm-period (using methods

output set data generated prior to tw.

Choose values for r, and for the confidence level parameter C, and as

6. EITHER choose n no smaller than 3 and collect the additional

(Note that the output set, from which yi 's are obtained, include only
data collected after the end of the warm-up period)

such as the one described in Section 6.3.1) and to delete any
 tw

replace n with n + n and repeat from Step 3
 OR increase the value of tf by at least 50% and repeat from Step 2.2

2 In some environments (e.g., Java), it may be possible to save the state of the

simulation program for each replication so that simulations runs can be
continued from the previously specified tf.

234 6. Experimentation and Output Analysis

The batch means method is an entirely different approach that requires
only a single (but potentially ‘long’) simulation run. An advantage of this
approach is economy of computing time because the warm-up period only
needs to be accommodated once. The end of the observation interval tf is

autocorrelation of the output data must be dealt with in order to generate

p0,0, p0,2, ...p0,m0 p1,0, p1,2, ...p1,m1 p2,0, p2,2, ...p2,m2 pn,0, pn,2, ...pn,mn

t0 t
tw tc1 tc2 tc(n-1) tf Observation

Interval

PSOV Data

Warm-up

period
Time cell 1 Time cell 2 Time cell n• • •

• • •

Set

Operator

y1

Set

Operator

y2

Set

Operator

yn

Output Data

(DSOV)

Batch 1 Batch 2 Batch n

• • •

the
 warm-up period is divided into n time cells as shown in Figure 6.6. The

i

this method (and also other methods which use a single
 simulation run),

6.3.3 Experimentation and Data Analysis for the Port Project

The Java program given in Figure 6.7 illustrates how the required

Welch’s method). The major steps include:

can be found in Law and Kelton [6.5].

obtain

selected to generate all the data necessary for analysis. However possible

the necessary IID data.

To generate a set of IID values, the observation interval beyond

result is a
set of n batches. A DSOV output value is then computed for each batch,
 providing a set of output values y for i = 1, 2, . . .
 be used to a point estimate of the mean value of the distribution of
 the output variable of interest, together with the corresponding confidence
 interval.

implemented. The replication–deletion method is being used to generate
 the necessary output data with a warm-up period of five weeks (previously
 determined by

FIGURE 6.6. Output values using method of batch means.

n. Equation (6.1) can then

experiments for the steady-state study of the Port project can be

 Details about

One of the challenges of the batch means method is the proper
selection of the length of the time cells. If the length is too short the

PSOV values that fall into a time cell is called a batch. The end

iy values may be correlated. Appropriate checks therefore need to be incorporated.

6.3 Steady-State Studies 235

1. The main method obtains the value of tf (the right-hand boundary of
the observation interval expressed in weeks) from the command line
arguments (arg[0]). A simulation run termination time expressed in
hours is assigned to endTime.

2. A set of uncorrelated seeds is generated (to ensure independent
replications) and saved into an array. The seeds are reused when
carrying out the simulation runs for the alternative case of the port
project (this implements the use of common random numbers
described in Section 6.4).

3. Two sets of simulation runs are carried out, one set where
numBerths = 3 (base case), and one set where numBerths = 4
(alternate case). This is implemented as a loop that increments
numBerths.

4. A simulation run consists of instantiating the PortVer1System object
that is initialised with the start time, number of berths, and random
number generator seeds. The termination time of the
PortVer1System object is first set to warmUpTime (using the
setTimef method) and the simulation program executes for the
warm-up period. The output set for the tanker total wait time is
cleared. The termination time of the PortVer1System object is now
set to endTime and continues execution until the end of the
observation interval.

5. The output data values are then computed by the ESOuputSet
methods,computeTrjDSOVs, and computePhiDSOVs. The values
are then printed.

For each of the two cases (number of berths equals three and four),
output data for each of the output variables (the average group size and

f

of increasing values of n (number of replications). For each of the output

(s(n)), and confidence interval half length ((n)) values computed from the
recorded data using Equation (6.1). The last column shows the ratio of
(n)/)(ny which gives a measure of the quality of the point estimate. As

expected, increasing the number of runs (n) reduces the confidence interval
half length (n). Increasing the simulation run length also improves the
quality of the results. A comparison of the three and four berth options is
undertaken in Section 6.4.1 using an appropriate statistical framework.

tanker total wait time) using t equal to 10, 20, and 30 weeks are
generated and analysed. In each case results are obtained for a sequence

variables, Table 6.5 shows point estimate (y n)), standard deviation

236 6. Experimentation and Output Analysis

public static void main(String[] args)

{

 double week=(7*24);

 double startTime=0.0;

 double warmUpTime=5*week;

 double endTime

 int NUMRUNS=10000;

 Seeds [] sds = new Seeds[NUMRUNS];

 // Find end time, tf, from command argument

 if(args.length != 1)

 {

 System.out.println("Usage: PortV1Exp2 <endTime>");

 System.exit(1);

 }

 endTime=Double.valueOf(args[0])*week;

 // Lets get a set of uncorrelated seeds

 RandomSeedGenerator rsg = new RandomSeedGenerator();

 for(int i=0 ; i<NUMRUNS ; i++)

 sds[i] = new Seeds(rsg.nextSeed(),rsg.nextSeed(),

 rsg.nextSeed(),rsg.nextSeed(),

 rsg.nextSeed());

 // Simulation Runs

 System.out.println("End Time = "+ args[0] +

"("+endTime+")");

 // Run for 3 berths and then 4 berths

 for(int numBerths=3 ; numBerths<=4 ; numBerths++)

 {

 System.out.println("Number of berths = "+numBerths);

 for(int i=0 ; i<NUMRUNS ; i++)

 {

 PortVer1System portSys = new PortVer1System(

 startTime,numBerths,sds[i]);

 portSys.setTimef(warmUpTime); // end of warmup

 portSys.runSimulation();

 portSys.tankerTW.clearSet(); // clear output set

 portSys.setTimef(endTime); // now run to tf

 portSys.runSimulation();

 // compute DSOV

 portSys.berthGrpN.computeTrjDSOVs(

 portSys.time0,portSys.timef);

 portSys.tankerTW.computePhiDSOVs();

 System.out.println(portSys.berthGrpN.mean+", "+

portSys.tankerTW.mean);

 }

 }

}

Example 1 of Section 4.3.1).
FIGURE 6.7. Experiments with the Java port simulation program (corresponds to

6.4 Comparing Alternatives 237

TABLE

(a) Number of berths = 3.

t f :

n s(n) (n) s(n) (n) s(n) (n)

20 1.845 0.138 0.053 0.0290 1.858 0.072 0.028 0.0149 1.866 0.066 0.025 0.0137

30 1.820 0.139 0.043 0.0237 1.833 0.088 0.027 0.0149 1.842 0.078 0.024 0.0132

40 1.824 0.138 0.037 0.0201 1.833 0.095 0.025 0.0138 1.838 0.071 0.019 0.0103

60 1.827 0.147 0.032 0.0173 1.833 0.099 0.021 0.0117 1.828 0.077 0.017 0.0090

80 1.828 0.138 0.026 0.0141 1.834 0.102 0.019 0.0103 1.833 0.076 0.014 0.0077

100 1.823 0.138 0.023 0.0126 1.834 0.101 0.017 0.0091 1.830 0.078 0.013 0.0071

1000 1.834 0.130 0.007 0.0037 1.833 0.094 0.005 0.0027 1.833 0.077 0.004 0.0022

10000 1.826 0.132 0.002 0.0012 1.832 0.095 0.002 0.0009 1.833 0.078 0.001 0.0007

20 7.144 2.387 0.923 0.1292 7.196 1.937 0.749 0.1041 7.256 1.543 0.597 0.0822

30 6.815 2.432 0.754 0.1107 7.042 1.695 0.526 0.0747 7.268 1.394 0.432 0.0595

40 6.703 2.482 0.661 0.0987 7.099 2.020 0.538 0.0758 7.320 1.487 0.396 0.0541

60 7.958 5.733 1.237 0.1554 7.451 2.626 0.567 0.0760 7.324 1.727 0.373 0.0509

80 7.857 5.243 0.976 0.1242 7.454 2.438 0.454 0.0609 7.410 1.762 0.328 0.0442

100 7.844 5.148 0.855 0.1090 7.665 2.498 0.415 0.0541 7.456 1.781 0.296 0.0397

1000 7.613 4.518 0.235 0.0309 7.682 2.817 0.147 0.0191 7.700 2.299 0.120 0.0155

10000 7.449 4.510 0.074 0.0100 7.686 2.926 0.048 0.0063 7.729 2.293 0.038 0.0049

10 weeks 20 weeks 30 weeks

Berth Group Size

Tanker Total Waiting Time

(n)y (n)y (n)y
(n)y

(n)
(n)y

(n)
(n)y

(n)

(b) Number of berths = 4.

t f :

n s(n) (n) s(n) (n) s(n) (n)

20 1.859 0.149 0.058 0.0310 1.872 0.075 0.029 0.0154 1.877 0.068 0.026 0.0140

30 1.835 0.146 0.045 0.0247 1.847 0.090 0.028 0.0152 1.854 0.079 0.025 0.0132

40 1.839 0.145 0.039 0.0210 1.847 0.096 0.025 0.0138 1.850 0.071 0.019 0.0103

60 1.844 0.155 0.033 0.0181 1.846 0.101 0.022 0.0118 1.840 0.078 0.017 0.0092

80 1.844 0.146 0.027 0.0147 1.847 0.105 0.019 0.0105 1.845 0.077 0.014 0.0078

100 1.839 0.144 0.024 0.0130 1.847 0.104 0.017 0.0094 1.841 0.080 0.013 0.0072

1000 1.850 0.135 0.007 0.0038 1.846 0.097 0.005 0.0027 1.845 0.079 0.004 0.0022

10000 1.842 0.136 0.002 0.0012 1.845 0.098 0.002 0.0009 1.846 0.080 0.001 0.0007

20 2.533 1.045 0.404 0.1595 2.534 0.641 0.248 0.098 2.533 0.422 0.163 0.0644

30 2.488 0.938 0.291 0.1170 2.556 0.569 0.177 0.069 2.598 0.450 0.140 0.0537

40 2.452 0.885 0.236 0.0962 2.554 0.564 0.150 0.059 2.582 0.422 0.112 0.0435

60 2.769 1.562 0.337 0.1217 2.601 0.705 0.152 0.059 2.547 0.487 0.105 0.0412

80 2.709 1.432 0.267 0.0984 2.582 0.691 0.129 0.050 2.549 0.499 0.093 0.0364

100 2.711 1.379 0.229 0.0845 2.624 0.683 0.113 0.043 2.552 0.496 0.082 0.0323

1000 2.539 1.114 0.058 0.0228 2.557 0.639 0.033 0.013 2.559 0.508 0.026 0.0103

10000 2.501 1.094 0.018 0.0072 2.557 0.662 0.011 0.004 2.564 0.512 0.008 0.0033

Berth Group Size

Tanker Total Waiting Time

10 weeks 20 weeks 30 weeks

(n)y(n)y(n)y (n)y
(n)

(n)y
(n)

(n)y
(n)

6.4 Comparing Alternatives

A frequently occurring requirement among the goals of a modelling and
simulation project is the evaluation of several alternate system designs. For
example, what reduction in maximum patient waiting time could be
expected in the emergency admitting area of a large hospital if an
additional orthopaedic specialist were hired or what might be the impact
on traffic flow in the downtown core of a large city if a network of one-
way streets were implemented? There can be a large number of such

 6.5. Results from experiments with the Java port simulation program of
Figure 6.7.

238 6. Experimentation and Output Analysis

design alternatives that need to be evaluated but we first examine the case
where there are only two.

In principle the problem solution is straightforward. Develop a
simulation program for each of the scenarios (alternatives), obtain a value
for some common performance measure applied to each scenario (e.g., a

There is, however, a serious complication that
 emerges, namely, what assurance is there that any observed difference
 between the performance measure values is a consequence of the design
 difference being studied and not simply a consequence of the inherent
 random behaviour within the model?

A number of different approaches have emerged for dealing with this
problem and comprehensive discussions can be found in the literature

straightforward is called the paired-t confidence interval method The
objective here is to first establish a confidence interval for an estimate of
the mean of a random variable that is the difference between the output
variables associated with each of the scenarios. A decision about relative
superiority is then based on the position of the confidence interval relative
to zero. Some details are provided below.

6.4.1 Comparing Two Alternatives

Suppose that Y is the output variable to be used for the evaluation and let’s
assume that we seek as large a value as possible for this variable. The
simulation program for each of the design alternatives is replicated n times
with appropriate care taken to ensure that in each case the n observations
of Y can be assumed to be independent (i.e., by proper management of the
random number streams that ‘drive’ the simulation models). Suppose that
y1k is the value of Y obtained for case 1 on the kth replication and suppose
that y2k is the value for case 2 on the kth replication. Let:

n

nst

n

ndd

ns

d
n

nd

nkyyd

n

n

k

k

n

k

k

kkk

)(

1

))((

)(

1
)(

,2,1

,1

1

2

2

1

12

(6.3)

mean value estimate for the distribution of some DSOV), and compare
 the values obtained.

(e.g., Banks et al. [6.1] and Goldsman and Nelson [6.2]). One of the most

6.4 Comparing Alternatives 239

where tn-1,a is a value from the Student t-distribution (see Table A1.4) that
corresponds to (n – 1) degrees of freedom and a = (1 – C)/2 with C the
confidence level parameter. Here)(nd is a point estimate of the mean of

the differences and)(2 ns is the sample variance. (The similarity of these
results with those given in Equation (6.1) is worth noting.) The associated

confidence interval is])([)(ndnCI .
There are three possible outcomes based on CI(n); namely,

a) If CI(n) lies entirely to the right of zero then the result of case 2
exceeds the result of case 1 with a level of confidence given by
100C%.

b) If CI(n) lies entirely to the left of zero then the result of case 1
exceeds the result of case 2 with a level of confidence given by
100C%.

c) If CI(n) includes zero then at the level of confidence, 100C%.,
there is no meaningful difference between the two cases.

The procedure outlined above is best carried out in conjunction with a
technique called common random numbers (CRN). When undertaking the
comparison of the data that flow from the two simulation programs that
embody the two design alternatives, there is reason to be concerned about
the extent to which any observed difference is a genuine reflection of the
design alternatives or is simply the result of a lack of symmetry in the
random phenomena that take place within the respective simulation
models.

The common random number technique seeks to establish this
symmetry and thus enhance the reliability of the conclusions. The
application of the technique corresponds to endeavouring to ensure that,
insofar as possible, the random phenomena within the two simulation
programs are co-ordinated; for example, comparable entities flowing in the
two models are subjected to the same sequence of delays. In principle, this
can be achieved by the strict management of the random variate generation
procedures within the two programs. This coordination is straightforward
for input data models. The coordination task can also be easily achieved
with all data models when the simulation model is relatively simple.
However, except for input data models, the coordination task can become
increasingly more difficult as the simulation model complexity increases.
Often the design differences themselves may inhibit a rigorous application
of the approach.

The common random number procedure outlined above has the effect of
establishing correlation between the output data generated in
corresponding simulation runs with the two alternative designs. This, in

240 6. Experimentation and Output Analysis

turn, has a quantitative manifestation; more specifically, the procedure,
when operating as intended, should yield the inequality:

)()()(2
2

2
1

2 nsnsns , (6.4)

where)(2
1 ns and)(2

2 ns are the variances for the data obtained for Case 1

We return now to our experiments with the port project as outlined in
Section 6.3.3. For the two cases where the number of berths is 3 and
4, Table 6.6 shows the output data for each of the output variables (the
average group size and tanker total wait time) from a sequence of
experiments with tf = 20 weeks and n = 30. The difference column is
obtained as (numBerths=4) – (numBerths=3). The comparison of the two
alternatives is carried out using Equation (6.3) and the results are
provided at the bottom of Table 6.6 (CI min and CI max are the boundaries

follows.

1. It is clear that increasing the number of berths from three to four does

2. Although the confidence interval for the berth group size is to the
right of zero, the point estimate of the difference is so small
relative to the individual point estimates we are obliged to
conclude that increasing the berth group size has no meaningful effect

 on this output variable. This is somewhat counterintuitive but is a
 consequence
 tug’s cycle time (time to deberth and berth a tanker), and the
 tanker loading times.

measure that would
 be interesting is the percentage of time that all available berths are
 occupied. The interested reader is encouraged to experiment with
 the simulation program by exploring the effects of changing these

Table 6.7 shows the data obtained from equivalent experiments which
do not use common random numbers (CRN) for the two cases of interest,
that is, numBerths=3 and numBerths=4. This was achieved by not using
the same seeds for the random number generators that implement the
data modules in the experiments. Note that the confidence interval half
length (n) increases for both output variables when compared to the

and Case 2, respectively and s (n) is the value obtained from Equation (6.3). 2

of the confidence interval). Some interpretation of the data is as

decrease the mean tanker total wait time (by almost 4.5 hours).

For example, experimentation with the model
 has shown that when the loading times are increased, the average
berth group size does increase. An alternate

 various times in the simulation

 results in Table 6.6. Note also that it can be shown that the Tanker Total
Wait Time data in Table 6.7 is not consistent with the inequality of
Equation (6.4).

of the relative values of tanker arrival rate, the

 model (The PortVer 1 simulation
model is available from the textbook Web site).

6.4 Comparing Alternatives 241

TABLE

n = 30).

Run numBerths=3 numBerths=4 Difference numBerths=3 numBerths=4 Difference

1 1.721 1.729 0.008 5.981 2.182 -3.799

2 1.847 1.862 0.014 7.433 3.182 -4.251

3 1.911 1.920 0.008 7.594 2.758 -4.836

4 1.876 1.888 0.011 6.299 2.039 -4.260

5 1.897 1.917 0.020 7.177 2.483 -4.694

6 1.833 1.843 0.011 4.589 1.679 -2.910

7 1.866 1.888 0.023 8.234 3.411 -4.823

8 1.864 1.877 0.013 9.310 2.995 -6.315

9 1.790 1.796 0.006 6.398 2.580 -3.819

10 1.949 1.969 0.020 7.131 2.403 -4.728

11 1.952 1.956 0.003 9.387 2.950 -6.438

12 1.830 1.846 0.016 7.776 2.548 -5.229

13 1.720 1.743 0.023 4.764 1.719 -3.046

14 2.004 2.044 0.039 12.640 4.030 -8.610

15 1.811 1.819 0.008 4.678 1.623 -3.055

16 1.834 1.852 0.018 6.126 2.446 -3.680

17 1.932 1.941 0.009 9.013 3.127 -5.887

18 1.836 1.841 0.005 5.782 1.731 -4.050

19 1.828 1.833 0.004 5.795 2.017 -3.778

20 1.856 1.870 0.014 7.816 2.782 -5.035

21 1.921 1.924 0.003 7.344 2.853 -4.490

22 1.744 1.754 0.011 6.092 2.491 -3.601

23 1.636 1.658 0.023 6.183 2.659 -3.524

24 1.823 1.856 0.032 6.797 3.126 -3.672

25 1.747 1.746 0.000 6.619 2.214 -4.405

26 1.843 1.848 0.005 7.074 2.422 -4.652

27 1.668 1.683 0.015 4.597 1.801 -2.795

28 1.699 1.715 0.015 7.429 2.920 -4.509

29 1.928 1.964 0.036 8.780 3.093 -5.686

30 1.828 1.833 0.005 6.410 2.417 -3.993

0.014 -4.486

s(n) 0.010 1.221

(n) 0.003 0.379

CI Min 0.011 -4.864

CI Max 0.017 -4.107

Berth Group Size Tanker Total Wait Time

(n)y

and

-

 6.6. Comparing alternative cases in the port project of Example 1 (with CRN

242 6. Experimentation and Output Analysis

TABLE
and n = 30).

Run numBerths=3 numBerths=4 Difference numBerths=3 numBerths=4 Difference

1 1.721 1.834 0.113 5.981 2.943 -3.038

2 1.847 1.881 0.033 7.433 2.591 -4.843

3 1.911 1.887 -0.024 7.594 2.507 -5.087

4 1.876 1.881 0.005 6.299 3.278 -3.021

5 1.897 1.862 -0.035 7.177 2.107 -5.070

6 1.833 1.835 0.002 4.589 3.588 -1.001

7 1.866 1.868 0.002 8.234 2.224 -6.009

8 1.864 1.923 0.059 9.310 2.527 -6.783

9 1.790 1.838 0.048 6.398 1.828 -4.570

10 1.949 1.811 -0.138 7.131 1.895 -5.236

11 1.952 1.905 -0.048 9.387 1.418 -7.969

12 1.830 1.876 0.047 7.776 3.003 -4.774

13 1.720 1.829 0.109 4.764 2.183 -2.581

14 2.004 1.879 -0.126 12.640 2.633 -10.007

15 1.811 1.822 0.011 4.678 2.741 -1.937

16 1.834 1.905 0.071 6.126 4.414 -1.712

17 1.932 1.925 -0.008 9.013 4.340 -4.673

18 1.836 1.854 0.018 5.782 1.658 -4.124

19 1.828 1.865 0.037 5.795 2.158 -3.637

20 1.856 1.878 0.022 7.816 2.346 -5.470

21 1.921 1.844 -0.077 7.344 2.360 -4.984

22 1.744 1.937 0.194 6.092 3.644 -2.448

23 1.636 1.709 0.073 6.183 2.934 -3.249

24 1.823 1.870 0.047 6.797 2.117 -4.680

25 1.747 1.712 -0.034 6.619 2.200 -4.419

26 1.843 1.868 0.026 7.074 2.472 -4.602

27 1.668 1.686 0.017 4.597 2.799 -1.798

28 1.699 1.769 0.070 7.429 1.895 -5.533

29 1.928 1.878 -0.050 8.780 1.786 -6.994

30 1.828 1.909 0.081 6.410 4.787 -1.623

0.018 -4.396

s(n) 0.069 2.003

(n) 0.021 0.621

CI Min -0.003 -5.017

CI Max 0.039 -3.775

Berth Group Size Tanker Total Wait Time

(n)y

6.4.2 Comparing More than Two Alternatives

The paired-t confidence interval method described above can be extended
to the case where multiple comparisons need to be carried out. The basis
for carrying out this extension is provided by the Bonferroni inequality
(sometimes called the Boole inequality). It states that:

 6.7. Comparing alternative cases in the port project of Example 1 (without
CRN

-

6.4 Comparing Alternatives 243

K

k

K

k
kk APKAP

1 1

][)1(][.

In our context, the Ak can be interpreted as the event (in a probability
context) that the kth confidence interval contains the kth mean in a
collection of K (pairwise) comparisons, The Bonferroni inequality, in
effect, places constraints on the individual comparisons in order to achieve
an overall result that has a prescribed level of confidence, 100C%. In other
words with 100C% confidence, the mean differences all fall into their
respective confidence intervals. The (simplified) result that flows from the
Bonferonni inequality is that each of the K comparisons should be carried
out with a confidence level parameter value of:

(6.5)

Note that the result given in Equation (6.5) is overly restrictive because it
has imposed the unnecessary (but simplifying) requirement that the
confidence level parameter of all constituent comparisons be equal.

The following is a typical scenario. There exists a ‘base case’ which
normally corresponds to the current status of the SUI. The project goals
introduce M alternate designs together with the requirement to identify the
best of the alternate designs by comparing each alternative to the base
case. Thus K = M comparisons need to be made. If an overall confidence
level of 100C% is stipulated then the K individual comparisons have to be
carried out with a confidence level parameter of CK as given in Equation
(6.5).

It may, on the other hand, be stipulated in the project goals that the M
alternative designs not only be compared to the base case but also be
pairwise compared to each other. In this case, there is a requirement for K
= M(M + 1)/2 comparisons. The number of comparisons can easily rise
quickly and the reliability of the procedure deteriorate. In addition, of
course, the computational overhead can become overwhelming.

Some illustrative results obtained using the multiple alternatives

Kojo’s Kitchen project. We consider a base case (Case 1) which
corresponds to the two employees working over the entire business day
(10:00 AM – 9:00 PM) and three alternative employee scheduling options
(Cases 2, 3, 4). These options allocate different numbers of employees to
various segments of the day. The employee scheduling schemes are

total number of employee-hours associated with each option. This is
relevant in the ultimate selection decision because it represents the ‘cost’

1
1K

C
C

K
.

procedure outlined above are given in Table 6.9. The results relate to the

summarised in Table 6.8. The rightmost column of this Table provides the

244 6. Experimentation and Output Analysis

of the option. The output variable of interest continues to be the percentage of
customers who wait more than five minutes before receiving service.

TABLE

Slow Busy Slow Busy Slow Emp-
(10:00am-

11:30am)

(11:30am-

1:30pm)

(1:30pm-

5:00pm)

(5:00pm-

7:00pm)

(7:00pm-

9:00pm)
Hours

Case 1 (Base Case) 2 2 2 2 2 22

Case 2 2 3 2 3 2 26

Case 3 1 3 1 3 1 19

Case 4 1 3 2 3 1 22.5

results shown for Diff21 are obtained by subtracting the results of the base
case (Case 1) from Case 2 and applying Equation (6.3), and similarly for
Diff31 and Diff41. These results were obtained using the Java simulation
program previously discussed in Section 6.2.3. In each case the results are
based on data from 100 replications (n = 100) and use of a confidence
level parameter value of Ck = 0.968 in the determination of the confidence
interval for the individual comparisons. This gives a value of C = 0.904
using Equation (6.5), that is, a confidence of 90.4% in the conclusions
from the comparison. Table 6.9 suggests that the scheduling alternative of
Case 2 provides the best improvement over the base case. (Unfortunately it
is also the most expensive! Note however that scheduling in Case 4
provides a significant improvement at very little additional cost).

Comparison

Point

Estimate

(n) s(n) CI Min CI Max / (n)

Diff21 -0.315 0.011 0.024 -0.340 -0.291 -0.076

Diff31 -0.127 0.013 0.028 -0.155 -0.099 -0.220

Diff41 -0.243 0.012 0.025 -0.268 -0.218 -0.105

6.5 Exercises and Projects

6.1 Use the program developed in Problem 5.1 to carry out experiments
that provide the values required for the graphs that are stipulated in the
goals of the project outlined in Problem 4.1. Write a short report that

 6.8. Multiple scheduling alternatives for Kojo’s Kitchen.

TABLE 6.9. Results for multiple scheduling alternatives (Kojo's Kitchen).

Table 6.9 provides a summary of the each of the three comparisons. The

6.6 References 245

outlines the problem, the goals of the modeling and simulation project,
and the conclusions obtained from the study.

6.2 Use the program developed in Problem 5.2 to carry out experiments
that provide the values required for the graphs that are stipulated in the
goals of the project outlined in Problem 4.2. Write a short report that
outlines the problem, the goals of the modeling and simulation project,
and the conclusions obtained from the study.

6.3 Use the program developed in Problem 5.3 to carry out experiments
that provide values for the proposed performance measures referred to
in part (a) of Problem 4.3. Write a short report that outlines the
problem, the goals of the modeling and simulation project, and the
conclusions obtained from the study.

6.4 Use the program developed in Problem 5.5 to carry out experiments
that provide values for the proposed performance measures referred to
in part (a) of Problem 4.3. Write a short report that outlines the
problem, the goals of the modeling and simulation project, and the
conclusions obtained from the study.

6.5 Use the program developed in Problem 5.7 to carry out experiments
that provide values for the proposed performance measures referred to
in part (b) of Problem 4.4. Write a short report that outlines the
problem, the goals of the modeling and simulation project, and the
conclusions obtained from the study.

6.6 Use the program developed in Problem 5.8 to carry out experiments to
evaluate the effects of balking introduced in Problem 4.5. Write a short
report that outlines the problem, the goals of the modeling and
simulation project, and the conclusions obtained from the study.

6.6 References

6.1. Banks J., Carson II, J.S., Nelson, B.L., and Nicol, D.M., (2005), Discrete-
Event System Simulation, 4th edn., Pearson Prentice Hall, Upper Saddle
River, NJ.

6.2. Goldsman, D. and Nelson, B.L., (1998), Comparing Systems Via Simulation,
in J. Banks (Ed.), Handbook of Simulation, John Wiley, New York, pp. 273–
306.

6.3. Goldsman, D. and Nelson, B.L., (2001), Statistical selection of the best
system, in B.A. Peters, J.S. Smith, D.J. Medeiros, and M.W. Rohrer, (Eds.),
Proceedings of the 2001 Winter Simulation Conference IEEE Press,
Piscataway, NJ, pp. 139–146.

6.4. Goldsman, D., Schruben, L.W., and Swain J.J., (1994), Test for transient
means in simulation time series, Naval Research Logistics Quarterly, 41:
171–187.

246 6. Experimentation and Output Analysis

6.5. Law, A.M. and Kelton, D.W., (2000), Simulation Modeling and Analysis, 3rd
edn., McGraw-Hill, New York.

6.6. Robinson S., (2002), A statistical process control approach for estimating the
warm-up period, in Proceedings of the 2002 Winter Simulation Conference,
IEEE Piscataway, NJ, pp. 439–446

6.7. Roth, E., (1994), The relaxation time heuristic for the initial transient problem
in M/M/K queuing systems, European Journal of Operational Research, 72:
376–386.

6.8. Welch, P., (1983), The statistical analysis of simulation results, in S.
Lavenberg (Ed.), The Computer Performance Modeling Handbook, Academic
Press, New York, pp. 268–328.

PART 3
CTDS Modelling and Simulation

There are several features that distinguish the modelling and simulation
activity within the continuous-time dynamic system (CTDS) domain.
Perhaps one of the most important is the dependence of the project’s
success upon the selection of the behaviour generation tool that is best
suited to the nature of the conceptual model. Because the conceptual model
in this domain always includes a set of differential equations, the tools in
question relate to the numerical procedures for solving these equations (we
restrict our discussions to the case where only ordinary differential
equations (ODEs) are included in the model).

Many families of approaches for the solution of ODEs can be found in
the literature and within each family there generally are numerous specific
options. The methods in these families have their characteristic strengths
and weaknesses and are often best suited for specific categories of
problems. Furthermore, the use of any of these methods usually involves
the specification of values for embedded parameters. The range of options
is indeed wide and can even become daunting. To embark on a modelling
and simulation project in this environment without some appreciation for
the issues involved can be foolhardy. Our objective in Part 3 of this
textbook is to provide a basic foundation for dealing with these issues.

In Chapter 7 we establish a context for the discussion by formulating a
range of simple CTDS conceptual models. For the most part, these have
their origins in the portions of the physical world where behaviour can be
readily characterised by familiar laws of physics. This central role of the
laws of physics is a typical circumstance in the CTDS domain and should
not be interpreted as a biased perspective. However, this is not to suggest
that CSTD models cannot be formulated in the absence of directly
applicable physical laws and we illustrate this point by providing an
example of the formulation of some credible CTDS models based entirely on
intuitive arguments. The final topic in Chapter 7 is a brief examination of
the problem of transforming a conceptual model that has evolved with
higher-order differential equations into an equivalent set of first-order
differential equations. Such a format is a frequently required by numerical
software.

In Chapter 8 we provide an overview of some of the basic numerical
tools for solving the ODEs of the CTDS conceptual model. The
presentation is relatively informal and is at an introductory level. Features
that have practical relevance, especially those that can lead to numerical
difficulties, are emphasised.

248

Because of our assumed absence of random affects in the CTDS models
which we treat in this textbook, it is conveniently feasible to include
classical optimisation requirements in the project goals. This topic is
examined in Chapter 9. The typical objective here is to find values for
parameters within the conceptual model which yield a minimum value for
a prescribed performance (or criterion) function. Such a function could, for
example, correspond to the operating cost of some chemical process. We
outline several minimisation procedures that could be applied in a CTDS
context.

As a concluding comment in this synopsis, we encourage the reader to
examine Annex 3 where we have provided an introduction to Open Desire
which is a software tool specifically designed to facilitate simulation
experiments with CTDS conceptual models.

7. Part 3 CTDS Modelling and Simulation

Chapter 7 Modelling of Continuous-Time
Dynamic Systems

7.1 Introduction

Our concern in this chapter is with exploring the modelling process within
the context of continuous-time dynamic systems (CTDS). From our
perspective, the essential distinguishing feature of this category of system
is the fact that a conceptual model can be formulated as a set of differential
equations, possibly augmented with a set of algebraic equations. For the
most part, such models emerge from a deductive process that has its basis
in physical laws that are known to govern the behaviour we seek to
explore, that is, the behaviour of the SUI. This is in contrast to an inductive
process whereby a model is developed on the basis of observed (or
hypothesised) behaviour, as is the case in the development of almost all
models in the realm of discrete-event dynamic systems (DEDS). The
deductive model building process is generally associated with systems that
have their origins in engineering or in the physical sciences. Because of the
availability of ‘deep’ knowledge provided by relevant physical laws, such
models can incorporate subtleties and a level of detail that are not usually
possible within the DEDS context. This enhances the scope of project
goals that are realistically achievable.

For convenience, we refer to conceptual models that have a differential
equation format as CTDS models. Although such models arise most
commonly from a deductive process, it needs to be stressed that this is not
a prerequisite. It is most definitely possible to develop credible and useful
CTDS models via an inductive process in certain cases where the SUI falls
outside the realm of established physical laws. The fields of biology and
economics provide many examples of such an approach.

CTDS models can be formulated in terms of either ordinary or partial
differential equations (or both). When the modelling power of partial
differential equations is required, the SUI is usually called a distributed
parameter system. Such systems arise in a wide variety of domains.
Included here are: heat transfer, hydrodynamics, electromagnetics, and
elasticity. The treatment of models that depend on this formalism is,
however, beyond the scope of this textbook. Our considerations are

250 7. Modelling of Continuous-Time Dynamic Systems

restricted to CTDS models that can be formulated exclusively within the
framework of ordinary differential equations. Nevertheless much of the
discussion in both this and the following chapter does have relevance to
the case of distributed parameter systems.

Frequently random effects are absent in continuous models. Although
this is not an essential property, we limit our considerations in this chapter
to this restricted (i.e., deterministic) case. One especially significant
feature associated with the deterministic context is that a search for
operating conditions that yield some prescribed behaviour for the SUI
becomes a significantly simpler task because there is no requirement to
assess efficacy of a candidate solution over some potentially vast
stochastic environment.

Another important difference between CTDS and DEDS models relates
to the nature of the time advance mechanism required in the simulation
program. In the case of CTDS models, the fundamental requirement is that
of solving the underlying differential equations within the conceptual
model and that process intrinsically incorporates a time advance procedure
thereby eliminating any need for additional considerations. The
mechanisms in question are explored in Chapter 8.

7.2 Some Examples of CTDS Conceptual Models

7.2.1 Simple Electrical Circuit

An electrical circuit consisting of a resistor (R), capacitor (C), inductor (L),
and a voltage source (E(t)) connected in series (see Figure 7.1) provides an
archetypical example of a system whose dynamics can be represented

The nature of CTDS models as outlined above, suggests a number of
differences from the class of DEDS models examined in Parts 1 and 2 in
this book. In effect, CTDS models exhibit a “smoothness” property in the
sense that the time trajectories of the variables within the model tend to
undergo only small changes in response to small changes in parameters or

of system behaviour at a relatively detailed level (resulting from the un-
derlying deep knowledge that is typically available) and the absence of
stochastic effects, permits the formulation of project goals that can be
more demanding in terms of expected precision and reliability. This, in

can, with reasonable confidence, provide the basis for system implementa-
tion. We examine this topic in some detail in Chapter 9.

in operating conditions. This feature, combined with the characterisation

particular, makes feasible credible optimisation studies whose outcome

7.2 Some Examples of CTDS Conceptual Models 251

using a CTDS model. An analysis of the circuit based on the application of
Kirchoff’s voltage law, yields the equation:

)(
)(

)()(''' tE
C

tq
tRqtLq , (7.1)

where q(t) is the charge on the capacitor C, and q t
circuit. If we denote by t0 the left-hand boundary of the observation
interval, then it is important to observe here that the solution of Equation
(7.1) (i.e., the behaviour generation process) requires the specification of
two initial conditions: namely, q(t0) and q (t0) as well as the explicit

variables for the model and E(t) is an input variable.

E(t)

R

L

C

q'(t)

+

-

FIGURE 7.1. A simple electrical circuit.

7.2.2 Automobile Suspension System

A vehicle of mass 4 M is traveling forward at constant velocity over a
road which is initially smooth and horizontal. It is in an equilibrium
condition and any particular point on the body has a constant vertical
displacement from the road surface. The body is connected to each of the
four wheels through a spring/shock absorber system and each wheel

At time t = t0 the vehicle begins to travel over a section of the road
which has an irregular surface (see Figure 7.2). This causes vertical motion
of the vehicle about its equilibrium position. If we use y(t) to represent this
vertical displacement, then from the application of Newton’s second law,
the trajectory of y(t) is defined by:

M y˝(t) + fb(t) + fa(t) = 0 , (7.2)

supports one quarter of the total mass.

specification of the function E(t). In other words, q(t) and q (t) are state

() is the current in the

 The prime superscript denotes differentiation with respect to time (d/dt).1

1

252 7. Modelling of Continuous-Time Dynamic Systems

where fa(t) and fb(t) represent the forces associated with the spring and the
shock absorber, respectively. We choose the variable u to represent the
vertical irregularities in the road surface, taken with respect to the road’s
smooth horizontal (equilibrium) condition. Although u is a function of
horizontal displacement from some reference point it can, from the
perspective of the vehicle moving over it at constant speed, be treated as a
function of time; that is, u = u(t). This time function u(t), in fact,
represents an input to the CTDS model being formulated. A particular
choice for u(t) that matches the presentation in Figure 7.2 is:

00
max

0

))(cos(1
2

0

)(
ttfortt

u

ttfor

tu , (7.3)

where is proportional to the vehicle’s horizontal velocity.
For definiteness, we assume that the spring is linear; hence fa(t) = k(y(t)

– u(t)) where k is the spring constant. On the other hand let’s assume that
the shock absorber is nonlinear and that the associated force is:

fb(t) = |v(t)| v(t) , (7.4)

where v(t) = (y (t) – u (t)) and is the shock absorber constant.
If we choose y(t) and y (t) to be the state variables for the model, then

the solution of the second-order differential equation, Equation (7.2),
requires the two initial conditions: y(t0) and y (t0). From the definition of
y(t) and as a direct consequence of the equilibrium assumption prior to t =
t0, both of these values are zero.

A possible goal for a modelling and simulation study associated with the
above model could be the determination of values for the spring and shock
absorber constants which yield a best value for some prescribed measure
of ride quality.

7.2 Some Examples of CTDS Conceptual Models 253

t = to

Road contour u (t)

t

Equilibrium position

Direction of motion

Mass 4M

y(t)

Shock
Absorber

Spring

FIGURE 7.2. Automobile suspension system.

7.2.3 Fluid Level Control

The cleaning solution required in an industrial process passes through two
holding tanks (see Figure 7.3). Valves control the inflow into each of the
tanks and the position of these valves is established by a control strategy
based on the height of the liquid in the respective tanks. The rate of change
of the volume of liquid in each tank is equal to the difference between the
inflow rate and the outflow rate. If we let A1 and A2 represent the cross-
sectional areas of Tank 1 and Tank 2, respectively; then:

A1 h1 (t) = w0(t) – w1(t)

A2 h2 (t) = w1(t) – w2(t) ,
(7.5)

where w0 (t), w1(t), and w2(t) are the volume flow rates (e.g., cubic meters
per second) into and out of the tanks as shown in Figure 7.3. (Note that the
solution of Equation (7.5) requires initial conditions for h1 and h2.)

254 7. Modelling of Continuous-Time Dynamic Systems

Flow Control Specifications
Tank 1: The valve V0 opens when the level in Tank 1 is decreasing and

falls below a value which corresponds to a half-full tank. More precisely,
V0 moves from a closed to an open position at time ta where h1 (ta) < 0 and
h1(ta) < H1/2. Once open, V0 stays open until h1(t) reaches the level H1

which is the full-tank condition. When V0 is open, the inflow rate is
constant; that is, w0(t) = K.

Tank 2: The control policy for valve V1 is analogous; that is, V1 moves
from a closed to an open position at time tb where h2 (tb) < 0 and h2(tb) <
H2/2. Once open, V1 stays open until h2(t) reaches the level H2 (the full-tank
condition). However, when valve V1 is open, the inflow rate is given by
w1(t) = k h1(t) where k is a constant. The outflow rate from Tank 2, w2(t), is
given by w2(t) = u(t) h2(t) where u(t) is a control input to valve V2 which
reflects the external demand for cleaning solution. Because of physical
limitations of the piping system, u(t) is constrained; that is, 0 < u(t) < umax.

The SUI outlined above clearly has a control system context. The
conceptual model for the SUI is given by Equation (7.5) together with the
(algebraic) equations implicit in the control strategy. A likely project goal
here could be the resolution of the design problem of choosing appropriate

Tank 1

(area = A1)

Tank 2

(area = A2)

w2(t)

w1(t)

w0(t)

V0

V1

h2(t)

h1(t)

H2

H1

FIGURE 7.3. Fluid level control.

values for the various parameters within the model (e.g.
H1,, H2 and K) based on assumptions about the external demand, u(t) and
some criterion for evaluating performance.

7.2 Some Examples of CTDS Conceptual Models 255

7.2.4 Population Dynamics

Often the model associated with a modelling and simulation project in the
domain of environmental studies must incorporate a representation of the
manner in which the population of various species evolves over time. In
many cases the model must reflect the interdependence of several species.
Perhaps the best example of the case of interacting populations is given by
predator/prey (or host/parasite) situations, for example, wolf/caribou or
lynx/hare populations. The characterisation of the behaviour of such
populations with a CTDS model implies that the variables representing
population values will acquire ‘real’ (i.e., fractional) values rather than
values that are strictly integer. This may appear counterintuitive but with
the assumption that the populations are ‘large’, the fractional parts of real
values have little consequence on the general features of the results
obtained.

based on essentially intuitive arguments. As demonstrated below, a
credible structure for such models can be formulated in a reasonably
straightforward manner. However, accommodating the associated data
requirements (parameter values) can present a challenge.

We consider first a single population model and let P(t) represent the
population at time t. A natural assumption is that the rate of change of
population is dependent on two effects: namely, the birth rate b(t) (births
per unit time) and the death rate d(t) (deaths per unit time). This yields the
basic equation:

P (t) = b(t) – d(t) . (7.6)

It is reasonable to assume that both b(t) and d(t) are dependent on the
current population. If this dependence is linear, that is, b(t) = kb P(t) and
d(t) = kd P(t), then the model becomes:

There is a distinctive aspect of this example that is worth noting. The
conceptual models for the SUIs outlined in Section 7.2.1 and Section 7.2.2
were formulated entirely on the basis of basic physical laws. In this exam-

superimposed by the technological artefact of the control policy (see Flow
Control Specifications above). This latter behaviour can be readily altered
by the control policy’s developer. In fact, its possible modification is
likely implicit in the project goals.

There are no underlying physical laws upon which to base the devel-
opment of such population models (unlike the circumstances in the exam-
ples discussed in Sections 7.2.1, 7.2.2 and 7.2.3). Consequently they are

,
ple, only part of the conceptual model has such

,

natural origins (namely
Equation (7.5)). The remainder of the model relates to behaviour that is

256 7. Modelling of Continuous-Time Dynamic Systems

P (t) = k P(t) , (7.7)

where k = (kb – kd). The solution to Equation (7.7) can be easily verified to
be

P(t) = exp(kt) P0 ,

where P0 is the population at some (initial) time t0. Clearly if k > 0, the
population will grow without bound whereas if k < 0, the population will
eventually vanish; hence the model is relatively rudimentary.

A possible refinement is to conjecture that k is indeed positive but that
there are external effects that prevent the population from exceeding a
value of Pmax. This behaviour can be achieved with a simple modification to
the model of Equation (7.7); that is,

P (t) = k [1 – (P(t)/Pmax)] P(t) . (7.8)

Now as P(t) approaches Pmax the growth rate approaches zero.
As an alternative, suppose we choose the dependence in the case of b(t)

to be linear but nonlinear in the case of d(t). Specifically, let’s choose:
b(t) = P(t)

d(t) = P2(t) ,

where and are constants whose values (necessarily positive) remain to
be determined as part of the data modelling phase. With the substitution of
these relations in Equation (7.8) and with some straightforward
manipulation, we obtain:

P (t) = P(t) [1 – K P(t)] . (7.9)

Here 1/K = / plays the role of an equilibrium value for the population,
P(t). In other words, the solution of Equation (7.8) approaches the value
1/K from any initial condition P0 = P(t0).

We now extend our considerations to the case of two populations that
function in a predator/prey framework. We use P1 and P2 to represent the
predator and the prey populations, respectively. The behaviour of each of
these populations can be assumed to be represented by an equation of the
form of Equation (7.9) but suitably augmented by some reflection of the
mutual interaction. We assume that the interaction can be characterised by
a term that is proportional to the product of the two population sizes.
Furthermore, it is reasonable to assume that the interaction is beneficial to
the predator population growth rate but is detrimental to the growth rate of
the prey population. Under these circumstances we obtain the following
CTDS model.

7.2 Some Examples of CTDS Conceptual Models 257

P1 (t) = 1 P1(t) [1 – K1 P1(t)] + 1 P1(t) P2(t)

P2 (t) = 2 P2(t) [1 – K2 P2(t)] – 2 P1(t) P2(t) ,
(7.10)

where the positive constants 1 and 2 reflect the ‘strength’ of the
interactions.

A common simplification to the model given in Equation (7.10) is to
ignore the effect of ‘natural’ death rates by setting 1 = 2 = 0, which then
results in K1 = K2 = 0. This gives:

P1 (t) = 1 P1(t) + 1 P1(t) P2(t)

P2 (t) = 2 P2(t) – 2 P1(t) P2(t) .
(7.11)

From a validation point of view it is reasonable to require that the predator
population P1(t) approach zero if the prey population vanishes (i.e., if P2 =
0). This requirement can be achieved only if 1 has a negative value. An
equivalent effect can be achieved by replacing 1 with – 1 (and then taking
both 1 and 2 to be positive). Our model then becomes:

P1 (t) = – 1 P1(t) + 1 P1(t) P2(t) = – 1 P1(t) [1 – (1/ 1) P2(t)]

P2 (t) = 2 P2(t) – 2 P1(t) P2(t) = 2 P2(t) [1 – (2/ 2) P1(t)].
(7.12)

Equation (7.12) has an equilibrium point given by P1

* = 1/ 1 and P2

* =

2/ 2. These values correspond to the case where both P1 (t) and P2 (t) are
zero. The equilibrium point, however, is unstable and any small
perturbation from it leads to an oscillatory trajectory for both P1(t) and
P2(t) about their respective equilibrium values. Representative trajectories
are shown in Figure 7.4.

The CTDS model of Equation (7.12) has been extensively studied and

An interesting study of predator/prey behaviour when harvesting is
the equations are known as the Lotka–Volterra equations (see, e.g., [7.2]).

introduced can be found in [7.1].

258 7. Modelling of Continuous-Time Dynamic Systems

Prey population

Predator population

t

Population

FIGURE 7.4. Predator/prey population.

7.3 Safe Ejection Envelope: A Case Study

Several CTDS models have been presented in the preceding section to
illustrate the nature of this family of conceptual models. In this section our
focus is on another SUI which gives rise (via a deductive approach) to a
CTDS model. However, in this case, we identify a specific goal and, in
effect, we formulate a modelling and simulation project.

The problem is one that has been frequently used in the modelling and
simulation literature relating to continuous-time dynamic systems. It
concerns the safe ejection of a pilot from the cockpit of a disabled fighter
aircraft. The specific situation we investigate concerns an aircraft that is
flying horizontally at an altitude H, with a constant speed of Va, when an
emergency situation arises and the pilot is obliged to activate the onboard
ejection mechanism and abandon the aircraft. Figure 7.5 shows the pilot’s
general trajectory following ejection.

7.3 Safe Ejection Envelope: A Case Study 259

FIGURE 7.5. Trajectory of the ejected pilot.

The ejection mechanism ensures that the pilot safely leaves the cockpit
and once disconnected from the aircraft, the pilot follows a ballistic
trajectory that is governed by two forces. One of these is a drag force and
the other is the force of gravity which will ultimately return the pilot to the
surface of the earth. Notice, however, that once the pilot leaves the aircraft,
the aircraft’s tail section becomes a projectile that can potentially strike the
pilot and cause serious injury. Our concern is with exploring the
circumstances that cause such a collision.

A prerequisite for achieving this objective is a model of the dynamic
behaviour of the pilot and the aircraft. The modelling perspective which
we adopt incorporates two important assumptions, namely,

 The motion is restricted to two dimensions; more specifically the pilot’s
trajectory stays in the plane defined by the cockpit and tail section (in
other words, wind forces that might alter this planar motion are
ignored).

 During a free-flight (ballistic) trajectory any object (in this case the
pilot) is subjected to a drag force D = D(t) which results from the
resistance introduced by air friction. This force acts in a direction
opposite to the velocity vector (see Figure 7.10) and we adopt the usual
assumption that it can be expressed as

D(t) = µ V2(t) , (7.13)

 For convenience, we usually refer simply to the trajectory of the pilot but it

should be recognized that upon leaving the aircraft, the pilot remains connected
to the seat and it is the trajectory of the pilot plus seat that is, in reality, being
studied. We assume that the seat is jettisoned at some point in time that is
beyond the observation interval of interest.

2

2

260 7. Modelling of Continuous-Time Dynamic Systems

where µ = D . Here D is a constant that depends on the physical shape
of the moving object and is the local air density which is dependent on
altitude. This relationship is known only in terms of a number of data
points as provided in Table 7.1.

TABLE 7.1. The altitude/air density relationship.

Altitude (feet) Air Density () (lbs/ft3)
0 2.3777 × 10-3

1000 2.208 × 10-3

2000 2.241 × 10-3

4000 2.117 × 10-3

6000 1.987 × 10-3

10,000 1.755 × 10-3

15,000 1.497 × 10-3

20,000 1.267 × 10-3

30,000 0.891 × 10-3

40,000 0.587 × 10-3

50,000 0.364 × 10-3

60,000 0.2238 × 10-3

There is a variety of factors that influence the form of the pilot’s

example, the orientation r of the ejection rail, the ejection velocity Vr, the
position of the tail assembly, the velocity Va of the aircraft, and the altitude
H at which the aircraft is flying. Note that the latter is a consequence of the
dependence of drag D(t), on air density that, in turn, depends on H.

The specific relationship we undertake to investigate in this project is
the one that exists between the constant horizontal velocity of the aircraft
(Va) and a variable we call Hmin. As is apparent from Equation (7.13), the
drag force D(t) acting on the pilot is dependent on the altitude at which the

aircraft is flying at an altitude o with horizontal velocity Va = . A

velocity , the altitude needs to be increased (air density and hence drag
force, both decrease as altitude increases, see Table 7.1) and the least
altitude (say) at which a collision is avoided is the Hmin value associated
with the velocity . Our project goal is to determine a value of Hmin,
corresponding to each of a selected sequence of values of Va. A graph of

trajectory and hence the possibility of a collision with the tail section; for

aircraft is flying (indirectly via the air density relationship). Suppose the

the data thus acquired.

collision will result if the drag force is too high. To avoid a collision at the

the form shown in Figure 7.6 would be a reasonable means for presenting

7.3 Safe Ejection Envelope: A Case Study 261

Va

Hmin

Hmin = least altitude for safe ejection

x

x

x

x

x

x

x

FIGURE 7.6. Generic form of the safe ejection envelope.

The ejection mechanism, once activated (at time t = 0), propels the pilot
over a short length of rail at a constant velocity Vr. This rail is inclined at
an angle r from the vertical (see Figure 7.7). The seat becomes disengaged
from the rail after it has risen a vertical distance of Yr. At that moment
(time t = tE) the pilot (and seat) begin a ballistic trajectory that may either
pass over or strike the tail section.

Vr

r

y

Yr

Va

FIGURE 7.7. Initial phase of the ejection trajectory.

There is a variety of ways in which the conceptual model for the
dynamic behaviour of interest can be formulated. In our approach, we

262 7. Modelling of Continuous-Time Dynamic Systems

choose Xp(t) and Yp(t) to represent the horizontal and vertical displacement,
respectively, of the pilot measured relative to a reference point in space Ao

whose location is fixed in time. A convenient choice for the Ao is the point
on the aircraft where the seat is initially anchored to the aircraft. If we
assume that the ejection process begins at time t = t0 = 0, then Xp(0) =
Yp(0) = 0.

We make the simplifying assumption that the leading edge of the tail
section is vertical and we let (XT(t), YT(t)) be the co-ordinates of the point at
the top of the leading edge. This particular point is of interest because it is
a reference point for our safe ejection study. We assume that the leading
edge of the tail is located a distance BT units behind the point where the
seat is anchored. Because the aircraft is moving with a constant horizontal
velocity of Va, it follows that (relative to the fixed point Ao), XT(t) = (Va t –
BT) for t 0. Similarly we assume that the top point of the tail section is
displaced a distance of HT above the anchor point; thus, YT(t) = HT for t
0. Both BT and HT are positive constants yet to be specified.

We use t* to denote the value of time when the pilot is located at the
leading edge of the tail section. The value of t* is implicitly defined by the
relation:

Xp(t
*) = XT(t

*) = Va t
* – BT . (7.14)

At t = t* the pilot is either passing over the leading edge of the tail section
(Yp(t

*) > YT(t
*) = HT) or is striking it (Yp(t

*) HT). It should also be
observed that Equation (7.14), in fact, provides an implicit definition of the
right-hand end of the observation interval.

Although, in principle, the collision boundary corresponds to Yp(t
*) = HT

it is realistic to adopt a more conservative criterion (a ‘safe miss’) which
we define to be one where the trajectory passes over the tail section with a
vertical displacement of a least (HT + Sf) where Sf is a ‘safety factor’. The
intent here is to accommodate inherent uncertainties in many of the
constants embedded in the dynamic model. Throughout the remaining
discussion, references to ‘missing the tail’ therefore implies Yp(t

*) > (HT +
Sf).

If we denote by V(t) the pilot’s velocity vector, then the generic form of
the pilot’s motion can be represented as shown in Figure 7.8, from which it
follows that

Vx(t) = V(t)cos (t)

Vy(t) = V(t)sin (t) .
(7.15)

7.3 Safe Ejection Envelope: A Case Study 263

FIGURE 7.8. Generic trajectory of the pilot/seat.

While on the rails, the pilot’s velocity vector V(t) is the sum of the
constant horizontal velocity of the aircraft Va, and the constant ejection
velocity Vr. The configuration is shown in Figure 7.9 from which it follows
directly that

Xp

’(t) = Vx(t) = Va – Vrsin r

Yp

’(t) = Vy(t) = Vrcos r .
(7.16)

Furthermore because both the magnitude and the orientation of V(t) are
constant while the pilot is on the rails, we have that Vx

’(t) = Vy

’(t) = 0.

FIGURE 7.9. Constrained motion on rails (Yp Yr).

Suppose we assume that the pilot/seat leaves the rails at time t = tE. It is
straightforward to establish that

tE = Yr/(Vrcos r)
Xp(tE) = (Va – Vrsin r) tE

Yp(tE) = Yr

Xp

’(tE) = Vx(tE) = Va – Vrsin r

Yp

’(tE) = Vy (tE) = Vrcos r .

(7.17)

Vy (t)

Vx (t)

V(t)

Trajectory of pilot/seat
(t)

r
r

Vr sin r

Vr Vr

Va

V

Va - Vr sin r

264 7. Modelling of Continuous-Time Dynamic Systems

Once the pilot/seat is ‘disconnected’ from the aircraft (i.e., leaves the
rails) its motion is governed by two forces, namely, the force of gravity
and the drag force D(t) as shown in Figure 7.10. Together these forces
create a trajectory that (from the perspective of an observer moving with
horizontal velocity of Va) arcs backwards over the rear of the aircraft (see
Figure 7.5).

FIGURE 7.10. Free-fall motion (ballistic trajectory).

Because two forces now act upon the pilot, there are acceleration effects
introduced as a consequence of Newton’s second law. In other words,
Vx(t) and Vy(t) are no longer constant. The dynamic model becomes (see
Figure 7.10):

Xp

’ (t) = Vx(t)

Yp

’ (t) = Vy(t)

Vx

’(t) = – (D(t)/m)cos (t)

Vy

’(t) = – (D(t)/m)sin (t) – g .

(7.18a)

(7.18b)

(7.18c)

(7.18d)

The conceptual model we seek is provided, in its most fundamental
form, by Equation (7.18). One shortcoming, however, is the dependence
on V(t) (through D(t)) and on (t). Two approaches are possible for dealing
with this. In the approach we adopt, this explicit dependence is eliminated
with some algebraic manipulation that incorporates Equation (7.15) and
the specification for D(t) (see Equation (7.13)). Equations (7.18c) and
(7.18d) then become:

Vx

’(t) = – (t) Vx(t)

Vy

’(t) = – (t) Vy (t) – g

where: (t) = [D (H + Yp(t)) (Vx

2(t) + Vy

2(t))0.5]/m.

There now remains the requirement of specifying the observation
interval IO that is pertinent to the project goal. The right-hand end of IO has,

mg
D

Vy

V(t)

(t)

(t)

Vx (t)

Trajectory of pilot/seat

7.3 Safe Ejection Envelope: A Case Study 265

in fact, been established earlier (see Equation (7.14)). The nominal left-
hand end of IO is the moment when the pilot initiates the ejection process
and we have previously associated this with t = 0. The values of the four
state variables (Xp, Yp, Vx, Vy) are certainly known at t = 0. Notice, however,
that values for the state variables are also known at the later time t = tE (see
Equation (7.17)). The fact that there is a severe discontinuity in the
derivatives Vx’(t) and Vy’(t) as t passes over the point t = tE suggests that t =
tE is a more practical choice for the left-hand boundary of IO (see Section
8.4.2). In view of this, we choose our conceptual model to be the set of
equations given in Equation (7.19).

Xp (t) = Vx(t)
Yp (t) = Vy(t)
Vx (t) = – (t) Vx(t)
Vy (t) = – (t) Vy (t) – g

where: (t) = [D (H + Yp(t)) V(t)]/m
 V(t) = (Vx

2(t) + Vy

2(t))0.5 ,

(7.19)

where the corresponding ‘initial’ conditions are at t = tE as prescribed in
Equation (7.17). A summary of the various constants associated with the
model is given in Table 7.2.

TABLE 7.2. Summary of constants.

It’s interesting to also formulate the alternate elaboration of Equations
(7.18c) and (7.18d). In this approach we begin with Equation (7.15) from
which it follows that

Constant Numerical
Value

Units Role

BT 30 ft

g 32.2 ft/sec2

HT 12 ft
m 7 slugs
Sf 8 ft

r 15 degrees
from vertical

Vr 40 ft/sec
Yr 4 ft

D

Horizontal displacement of tail section

5 Drag factor
Acceleration due to gravity
Vertical height of tail section

behind origin

Displacement angle of ejection rails

Safety factor for avoiding tail section

Seat velocity while on rails

Mass of the pilot/seat combination

Vertical height of rails

266 7. Modelling of Continuous-Time Dynamic Systems

)()(cos)()(sin)()(

)()(sin)()(cos)()(

tttVttVtV

tttVttVtV

y

x (7.20a)

(7.20b)

t t
substitution of Equations (7.18c) and (7.18d) yields:

V (t) = – (D(t)/m) – g sin (t) .

Similarly multiplication of (7.20a) by sin (t) and (7.20b) by cos (t),
addition, and again substitution of Equations (7.18c) and (7.18d) yields:

(t) = – (g cos (t))/V(t) .

Thus, an alternate conceptual model for the ballistic trajectory (t > tE) is:

Xp’ (t) = V(t)cos (t)
Yp (t) = V(t)sin (t)
V’(t) = – (D(t)/m) – g sin (t)

(t) = – (g cos (t))/V(t)

where: D(t) = D H + Yp(t)) V2(t) .

The safe ejection envelope project is revisited in Section 8.6 where a
procedure for its completion is presented together with an Open Desire
simulation program which carries out the procedure.

7.4 State Space Representation

7.4.1 The Canonical Form

The differential equations that evolve in the development of a conceptual
model for a CTDS can have a variety of formats; for example, they may be
linear or nonlinear, they may be a set of first-order equations, they may be
equations of higher order, they may be autonomous, or may instead have
input functions that reflect pertinent interaction with their environment.
Illustrations of these various alternatives can be found in the examples of
the previous discussion. The model developed for the electric circuit
(Equation (7.1)) is linear, of second order, and is nonautonomous (the
voltage source E represents an input). The suspension system model of
Equation (7.2) is also a second-order equation but is nonlinear; it also is
nonautonomous (the irregular road surface provides the input). The fluid
level control model of Equation (7.5) is a pair of first-order equations
which are nonlinear (because of the nonlinear dependence of w0(t) on h1(t)

(

Multiplication of (7.20a) by cos () and (7.20b) by sin (), addition, and

7.4 State Space Representation 267

The above discussion illustrates the wide range of formats in which
CTDS conceptual models can evolve. This same variability is certainly
present in the realm of DEDS models and it’s not surprising to encounter it

x (t) = f(x(t), u(t), t)

with: x(t0) = x0

and y(t) = g(x(t)) .

(7.21a)

(7.21b)

Here x(t), u(t), and y(t) are vectors of dimension N, p, and q,
respectively, and represent the state, the input, and the output variables,
respectively, of the CTDS model. The functions f and g are likewise
vectors with dimensions that are consistent with usage. Equation (7.21a)
represents a set of N first-order differential equations and, as noted, the
initial conditions required for the solution of Equation (7.21a) are assumed
to be given. Equation (7.21b) makes provision for the situation where the
output variables of the model do not correspond directly to any of the state
variables but rather are prescribed functions of the state variables.

The existence of a state space representation for any CTDS model has
several important consequences. Among these is the fact that a very
substantial body of knowledge about equations of the form of Equation
(7.21) has evolved within the domain of applied mathematics. This
knowledge is therefore applicable for investigating the properties of CTDS
models. Included here are issues that range from the very fundamental, for
example, the question of the existence of solutions to the equations that
comprise the model, to issues that characterise the properties of the
solution, for example, stability. Exploration of these topics is, however,
beyond the scope of the considerations in this textbook. The interested
reader is encouraged to explore these topics in references such as [7.3] and
[7.4].

and w1 (t) on h2 (t)) and nonautonomous (the out flow demand represents
an input to the model). The population model example presented in Equa-

mous.

again. However, CTDS models do have a particularly important feature in
this regard; namely, that it is possible to transform all of these formats into
a standard (canonical) form. This can be written as

tion (7.12) is a pair of first order non-linear equations that are autono-

resentation for the particular CTDS model. It has two components, the

the model. Neither, however, is a unique representation for the particular

low, there often are natural choices for the state variables, x i(t) which form
the elements of the state vector, x(t).

first are the state equations, given by Equation (7.21a) and the second

CTDS that is under consideration. Nevertheless, as we shall indicate be-

component, given by Equation (7.21b), is called the output equation of

The representation given in Equation (7.21) is called a state space rep-

268 7. Modelling of Continuous-Time Dynamic Systems

there is one very practical benefit also associated with it. Recall that

generate the numerical solution of differential equations. This is a problem
that has been extensively studied in the applied mathematics literature and
an extensive body of relevant knowledge about the problem exists. But
with few exceptions, this body of knowledge addresses the problem of
solving a set of differential equations that are of the form of Equation (7.21
a) and likewise the available solution methods apply to this case. Thus the
transformation of a CTDS conceptual model into its state space
representation is an essential step for purposes of harnessing the numerical
tools for solution generation or more specifically, for carrying out
simulation activity.

7.4.2 The Transformation Process

If any CTDS conceptual model has a state space representation (i.e., can be
transformed into the form of Equation (7.21)), then this must certainly be
true for a linear model of the form:

)()()()()(

)()()()()(

01

2

2

1

1

01

2

1

1

1

tbtubtubtubtub

tatyatyatyaty

m

m

m

m

m

m

N

N

N

N

N

(7.22)

where we assume m N and that u(t) and y(t), y (t), . . . , y(N-1)(t) are

First we consider the special case where m = 0; that is, the right-hand
side of Equation (7.22) contains no derivatives of the input function u(t).
(An example of this case is provided by the electrical circuit example,
specifically Equation (7.1). The transformation here is particularly
straighforward. Let

x1(t) = y(t)

x2(t) = y (t)
 .
 .
 .
xN(t) = y(N-1)(t) .

(7.23)

The state equations are then:

In addition to important behavioural properties of a CTDS conce-
ptual model that can be explored via its state space representation,

experimentation with any CTDS model requires the means to

given. In the interest of notational convenience, we assume here that the

This general linear case is used to illustrate some features of the transfor-
mation process.

model has a single input variable u(t) and a single output variable y(t).

7.4 State Space Representation 269

)()(

)()()()()(

)()(

)()(

1

012110

32

21

txtywith

tubtxatxatxatx

txtx

txtx

NNN

(7.24(a))

(7.24(b))

The more conventional compact form for Equation (7.24) is:

)()(

)()()(

tty

tutt

T xc

bAxx

where:

)](),(),([

]0,0,0,0,1[

]1,0,0,0,0[

...

1...000

.....

.....

.....

0...100

0...010

21

1210

txtxtx

aaaa

N

T

T

T

N

x

c

b

A

The initial conditions for the state equations of (7.24) follow directly
from the assumptions following Equation (7.22) and the definitions of
Equation (7.23).

Let’s now consider the case where m > 0 in Equation (7.22). A specific
example (with m = 1) can be obtained from the automobile suspension
system model developed earlier if the nonlinear shock absorber is replaced
with a linear device. In other words, if we replace the earlier specification
for fb(t) with simply:

fb(t) = v(t), where v(t) = y (t) – u (t) ,

then Equation (7.2) can be written as

 We use the superscript T to denote the transpose of a vector or matrix.3

3

270 7. Modelling of Continuous-Time Dynamic Systems

y (t) + a1 y (t) + a0 y(t) = b1 u (t) + b0 u(t) , (7.25)

where a1 = b1 = /M, a0 = b0 = k/M.

x1(t) = y(t) and x2(t) = y (t). The state space representation then becomes:
x1 (t) = x2(t)

 x2 (t) = – a1 x2(t) – a0 x1(t) + b1 u (t) + b0 u(t)
with y(t) = x1(t) .

(7.26a)

(7.26b)

(7.26c)

The perplexing outcome here is the explicit reference to the derivative
of the input function that appears on the right-hand side of Equation
(7.26b). It is not unreasonable to imagine cases of interest where u(t) is not
differentiable at all values of t in the observation interval. Recall that for
the example that is under consideration, u(t) corresponds to the road
surface over which the automobile is travelling. A discontinuity in the road
surface could correspond to a hole in the road as shown in Figure 7.11.
Because of this discontinuity in u(t), the derivative of u (t) does not exist at
t = tb. Does this mean that Equation (7.25) cannot be solved? Fortunately
the answer is ‘No’. The dilemma that we have encountered arises because
of a poor choice of state variables.

FIGURE 7.11. Discontinuous road surface.

As an alternative candidate for the state space representation, consider:

x1 (t) = x2(t)

 x2 (t) = –a0 x1(t) – a1 x2(t) + u(t)

with y(t) = b0 x1(t) + b1 x2(t) .

(7.27a)

(7.27b)

(7.27c)

This representation certainly has the desired feature of being
independent of any derivatives of the input function, u(t). But is it a valid
representation? To confirm that it is, it must be possible to reconstruct the
original continuous system model of Equation (7.25) from Equation (7.27)
and this can, in fact, be achieved. The process involves straightforward
mathematical manipulation that includes successively differentiating
Equation (7.27c) and substitutions from Equations (7.27a) and (7.27b) to
eliminate derivatives of the state variables x1(t) and x2(t).

Suppose the procedure we outlined earlier is applied; that is, we let

t = to

Road contour u (t)

ttb

7.4 State Space Representation 271

There is, however, one further issue that needs to be addressed before
Equation (7.27) can be accepted as a useful state space representation. This
is the matter of initial conditions. Values are provided for y(t0) and y (t0)
and these have to be transformed into initial conditions for the state
variables x1 and x2 so that Equation (7.27a) and Eq. (7.27b) can be solved.
The necessary transformation can be developed using Equation (7.27c)
together with the result obtained by differentiating Equation (7.27c) and
substituting from Equation (7.27b). With t set to t0 in the resulting
equations, we get:

y(t0) = b0 x1(t0) + b1 x2(t0)

 y (t0) – b1 u(t0) = –a0 b1 x1(t0) + (b0 – a1 b1) x2(t0).

(7.28a)

(7.28b)

Equation (7.28) provides two linear algebraic equations for the two
unknowns x1(t0) and x2(t0). A sufficient condition for the existence of a
solution to these equations is that the determinant det of the coefficient
matrix on the right-hand side be nonzero. The value of the determinant is:

det = b0

2 – a1 b0 b1 + a0 b1

2 . (7.29)

For the specific case of the (linearised) automobile suspension system, a0,
a1, b0, and b1 have values previously specified (see Equation (7.25)). With
these values substituted, det = (k/M)2 and hence is nonzero. Consequently
we can conclude that Equation (7.27) is a satisfactory state space
representation for Equation (7.25) in that particular context.

det as given in
Equation (7.29) is nonzero which means that there is a possibility that the
state space representation of Equation (7.25) given by Equation (7.27) may
not be acceptable. It can, for example, be easily shown that if a1

2 = 4a0 and
a1 b1 = 2b0 then det is identically zero. It is reasonable therefore to wonder
about the existence of another state space representation that circumvents
this possible flaw. Such an alternative does exist and is given by:

x1 (t) = – a0 x2(t) + b0 u(t)
x2 (t) = x1(t) – a1 x2(t) + b1 u(t)

with y(t) = x2(t) .

(7.30a)

(7.30b)
(7.30c)

Using the same procedure outlined earlier, it can be demonstrated that
Equation (7.25) can be reconstructed from Equation (7.30) and hence
Equation (7.30) is a valid representation for Equation (7.25). The equations
for the initial conditions follow from Equation (7.30c) and Equation
(7.30b) (setting t = t0):

y(t0) = x2(t0)
 y (t0) – b1 u(t0) = x1(t0) – a1 x2(t0) .

In general, however, there is no guarantee that the value of

272 7. Modelling of Continuous-Time Dynamic Systems

The determinant of the coefficient matrix for these two algebraic equations
has the value –1 and consequently a solution for x1(t0) and x2(t0) always
exists. Specifically:

x1(t0) = y (t0) + a1 y(t0) – b1 u(t0)
x2(t0) = y(t0) .

The state space representation given in Equation (7.30) can be extended
to general case of Equation (7.22). The form of this representation is given
below.

x (t) = F x(t) + g u(t)
y(t) = hT x(t) + bN u(t) ,

where:

)](),(),([)(

]1,0,0,0,0[

,,,[

1....000

0....000

.....

.....

0....010

0....001

0....000

21

111100

1

2

2

1

0

txtxtxt

babbabbab

a

a

a

a

a

N

T

T

NNNN

T

N

N

x

h

g

F

The vector g is shown for the case where m = N in Equation (7.22). The
case where m < N is accommodated by setting bk = 0 for k = (m + 1), (m +
2), . . . , N.

Our discussion in this section about the formulation of state space

Nevertheless many of the key issues have been pointed out and a
basis for dealing with them in a broader context has been provided.

7.5 References

7.1. Brauer, F. and Soudack, A.C., (1979), Stability regions and transition
phenomena for harvested predator-prey systems, Journal of Mathematical
Biology, 8: 55–71.

7.2. Hall, C.A.S. and Day, J.W., (1977). Ecosystem Modelling in Theory and
Practice, John Wiley, New York.

N
]

representations for CTDS models has been somewhat limited in scope.

7.5 References 273

7.3. Iserles, A., (1996), A First Course in the Numerical Analysis of Differential
Equations, Cambridge University Press, Cambridge, UK.

7.4. Lambert, J.D., (1991), Numerical Methods for Ordinary Differential
Equations, Wiley, London.

Chapter 8 Simulation with CTDS Models

8.1 Overview of the Numerical Solution Process

8.1.1 The Initial Value Problem

An implicit requirement associated with modelling and simulation projects
within the realm of CTDS models is a means for solving the
differential equations embedded in the conceptual model. In very special
cases these equations can fall into a category for which closed-form
analytic solutions can be developed and this certainly has many
advantages. Far more common, however, is the case where the features of
the equations preclude such a solution approach. In such situations,
numerical approximation procedures provide the only solution alternative.
Our concern in this section is with exploring some of these numerical
procedures. More specifically, our interest focuses on the means for
solving the generic Equation (7.21a) of Chapter 7. (The companion equation
(7.21b) is not relevant here because it simply represents a functional
relationship defined on the state vector, x(t)).

Our concern, therefore, is with numerical procedures for generating the
solution of the equation

x (t) = f(x(t),t) (8.1)

over the observation interval IO = [t0, tf] where t0 , tf , and x(t0) = x0 are
assumed to be explicitly given. (Note that the explicit dependence of the
derivative function f on u(t) that appears in Equation (7.21a) has been
suppressed in this representation; the role of u(t) has been merged into the
explicit dependence on t.) In general, x and f in Equation (8.1) are vectors
of dimension N.

The problem stated above is commonly called the initial value problem
(IVP). It is distinct from a closely related problem called the boundary
value problem (BVP). In both problems at least N pieces of data about the
solution are known. In the case of the IVP these are the N components of
the N-vector x0. The situation in the case of the BVP is different because
the known values do not occur at the same value of t. The available data
could, for example, be:

276 8. Simulation with CTDS Models

x1(t0), x2(t0), x3(t0), . . . , x (t0), x +1(tf), . . . , xN(tf) ,

where 1 < N.
Although a CTDS model almost always incorporates more

than one first-order differential equation (i.e., the dimension of the state
vector x(t) is greater than 1), this higher dimensionality introduces
unnecessary notational complexity when examining numerical solution
methods. Consequently, without loss of generality, we take N = 1
throughout most of the discussion that follows.

8.1.2 Existence Theorem for the IVP

The search for a solution of any problem can be undertaken with
considerably more confidence when there is assurance that a solution to
the problem does indeed exist. With respect to the solution of Equation
(8.1) this issue has been extensively studied and substantial knowledge is
available. We summarise here some of the most significant results in this
regard.

As might be expected, it is the characteristics of the derivative function
f(x,t) which play a pivotal role in identification of existence conditions for
the solution of Equation (8.1). Our focus therefore is restricted to a
function f(x,t) that has two particular features. These are:

a) f(x,t) is defined and continuous in the strip – < x < , t0 t tf , with
t0 and tf finite

b) There exists a constant L such that for any t [t0, tf] and any two
numbers and

| f(, t) – f(, t) | L | – | .

[a) and b) are called the Lipschitz conditions and L is called the Lipschitz

Theorem A
Let f(x t) satisfy (a) and (b) and let x0 be any number. Then there exists
exactly one function X(t) with the following properties.

i. X(t) is continuous and differentiable for t [t0, tf].
ii. X (t) = f(X(t), t) for t [t0, tf].

iii. X(t0) = x0.

Remark 1
Theorem A states that under the assumed conditions on the derivative
function f(x,t), the IVP of Equation (8.1) not only has a solution, but it is
unique.

constant].

8.1 Overview of the Numerical Solution Process 277

Remark 2
Suppose f(x,t) has a continuous derivative with respect to x which is
bounded in the strip in question (see above); then assumption (a) of
Theorem A follows directly whereas (b) follows as a consequence of the
mean value theorem; hence the two assumptions of Theorem A are
satisfied.

Remark 3
Unless otherwise noted, we assume throughout the remainder of this
chapter that the conditions of Theorem A hold. Furthermore we call the
function X(t) referred to in Theorem A, the ‘true solution’ to the IVP under
consideration. In some limited circumstances, the true solution may be
available as an explicit analytic function. In such circumstances, an ‘exact’
value can be obtained for the true solution at any value of t within the
observation interval IO, at least to the extent of the precision limitations
inherent in the evaluation of the function in question.

8.1.3 What Is the Numerical Solution to an IVP?

A numerical solution to an IVP is a finite set of points; that is,

{(tn, xn); n = 0, 2, . . . , M} ,

where :

(t0, x0) is the given initial condition.
 xn is a generated numerical approximation for the true solution value at t =
tn, that is, an approximation to X(tn).
tn+1 = tn + hn for 0 n M – 1 and tM = tf.

Here hn is called the step size at tn. If hn remains invariant for all values
of n, then the solution process is said to be of fixed step size, otherwise it is
of variable step size. As becomes apparent in the discussion below, the
step size is a critical parameter in the solution process. As might be
expected, its value plays a central role in the accuracy of the results
obtained. The issues associated with step-size selection are the following:
if the step size is to be fixed, then how should the value be selected and if
it is to be variable, then what is the procedure for making changes? These
are not easy questions to answer but some insight is provided in the
discussion that follows. Decisions relating to step-size have to be made by
the user of most simulation environments for CTDS models;
consequently some familiarity with the underlying issues is essential.

The various notions discussed above are illustrated in Figure 8.1.

278 8. Simulation with CTDS Models

x

x x

x
x

x x
x

x

x

x

x

xx

x

x

xx

x
x

x

x

x

xx

x

x

xn

hn

True solution

through (t0, x0)

X(t)

x0

t0 tn tn+1 ttf

X(tn)

FIGURE 8.1. Numerical solution to an IVP.

An important feature of Figure 8.1 is the implication that the numerical
solution rarely coincides with the true solution. In fact, it is only at the
starting point t = t0 where there is certainty that the numerical value is
identical to the true value. All other numerical values are, in general,
different from the true value. This difference, that is, the error, has two
basic origins:

a) Truncation (or discretisation) error.

 –This is a property of the solution method.

b) Round-off error.

 –This is a property of the computer program used to implement the
solution method.

It arises because of the finite precision in number

 representation.

Although not apparent from Figure 8.1, it is important to appreciate that
with all numerical solution methods, each new solution estimate is
generated using information from previously generated solution values; in
other words it is constructed from data that may already have significant
error. This somewhat disturbing fact sets the stage for the propagation of
error that, in turn, can lead to instability. In other words, there is the
possibility that the size of the error will grow, in an unbounded manner, as
new solution values are generated.

Stability is one of several important attributes that can be associated
with any solution method. Others are:

8.1 Overview of the Numerical Solution Process 279

 Order (this is closely related to the notion of truncation error introduced
earlier).

 Accuracy (this is a reference to the correspondence between the true
solution and the numerical solution).

 Local efficiency (this is a measure of the computational effort required
to move the generated solution forward from t = tn to t = tn+1; it is
typically measured in terms of the number of evaluation of the
derivative function f).

In the discussion that follows, we explore these various matters that
have vital importance to the simulation phase of a modelling and
simulation study within the CTDS realm.

8.1.4 Comparison of Two Preliminary Methods

The Euler Method
The Euler method is the most fundamental of the wide range of approaches
that are available for the numerical solution of the IVP. The underlying
concept is shown in Figure 8.2.

hn

True solution through (tn, xn)

xn

t0 tn tn+1

t

xn+1

Local truncation error

FIGURE 8.2. The Euler method.

The assumption in Figure 8.2 is that the solution process has progressed
to t = tn and the solution value generated at t = tn is xn. We denote by fn the
slope of the true solution through the point (tn, xn); that is,

280 8. Simulation with CTDS Models

fn = f(xn, tn) .

The solution approximation at t = tn+1 = tn + hn associated with the Euler
method is:

xn+1 = xn + hn fn . (8.2)

Although the approach here is intuitively appealing, it can also be viewed as
an approximation arising from the definition of a derivative, namely, from the
definition that:

x (t) =
dt

dx
 =

0
lim

)(-)(txtx
 .

The update formula of Equation (8.2) is then obtained by ignoring the
requirement for to approach zero and by making the following
associations: t = tn, = hn, x(tn) = xn, x(tn + hn) = xn+1 and (tn) = fn.

The Modified Euler Method (or Trapezoidal Rule)
The Euler method ‘moves forward’ on the basis of a single derivative
function evaluation. This value (namely, f(xn, tn)) is the slope of the true
solution that passes through the solution estimate (tn ,xn). But because (tn,
xn) is not generally on the desired solution (the one through (t0, x0)) it is
reasonable to conjecture that some other slope value might be a better
choice. The Modified Euler method creates such an alternate choice by first
evaluating the derivative function at the solution estimate produced by the
Euler method and then taking an average of the two slope values that are
thus available. More specifically,

Take an Euler step to produce the value pn+1 = (xn + hn fn) at t = tn+1.
Let Fn+1 = f(pn+1, tn+1).
Choose the solution estimate at t = tn+1 to be:

xn+1 = xn + hn (fn + Fn+1)/2. (8.3)

One difference between solution estimates from the Euler and the
Modified Euler methods (given by Equations (8.2) and (8.3), respectively)
is that the former requires only one derivative function evaluation whereas
the latter requires two. It is natural, therefore, to expect some advantage
from the added effort. An advantage is certainly present and it is realised in
terms of superior error performance, at least at the level of local behaviour.
This feature can be explored by examining the Taylor series expansion of
the true solution of Equation (8.1) that goes through the point (tn, xn). As
earlier, we denote this particular solution by Xn(t). A Taylor series
expansion gives:

Xn(tn +) = Xn(tn) + Xn (tn) + ½ 2 Xn (tn) + O(3). (8.4)’’

x

8.1 Overview of the Numerical Solution Process 281

But:

Xn(tn) = xn

and

Xn (tn) = f(Xn(tn), tn) = f(xn, tn) = fn .

Then, if we set = hn in Equation (8.4), we get:

X(tn+1) = nx 1 + O(hn) ,

where E
nx 1 is the Euler solution estimate of Equation (8.2). This result

demonstrates that the Euler method has a local truncation error that is of order
hn

2 which in turn implies that the Euler method is a first-order method.
A similar analysis with the Modified Euler method gives the result that:

X(tn+1) = nx 1 + O(hn

3) ,

where ME
nx 1 is the solution estimate provided by Equation (8.3). Thus the

n

3

method is a second-order method. This, in particular, demonstrates that the
additional derivative function evaluation required by the Modified Euler
method provides the benefit of realising a higher-order method.

The order of a solution method is one of its most important
characterising features. As illustrated above, this feature relates to the
nature of the error between the solution value produced by the method over
a single step relative to the true solution, when both begin at a common
starting point. This error estimate evolves from the Taylor series expansion
of the true solution around the starting point and reflects the degree of
correspondence between the series expansion and the generated solution
value.

A practical interpretation of the meaning of a solution method of order r
is that such a method generates solution values that have zero error for the

second-order method will produce
 exact solution values for the IVP:

x (t) = a1 + 2 a2 (t – t0); x(t0) = a0

because the solution to this equation is the quadratic function:

x(t) = a0 + a1 (t – t0) + a2 (t – t0)
2 .

local truncation error of the Modified Euler method is of order h and the

case where the true solution is a polynomial of order r or less (provided
 zero round-off error is assumed). Thus a

ME

E 2

282 8. Simulation with CTDS Models

8.2 Some Families of Solution Methods

The most common numerical solution methods for the IVP fall into two
broad classes. We examine each of these in turn beginning with the Runge–
Kutta family.

8.2.1 The Runge–Kutta Family

There are two representations for the Runge–Kutta family and these are
referred to as explicit and implicit representations. We restrict our
considerations to the explicit representation. The explicit s-stage Runge–
Kutta formula is given below:

xn+1 = xn + h
i

s

1

bi gi , (8.5)

where:
g1 = f(xn, tn)
g2 = f(xn + h a21 g1 n 2)
g3 = f(xn + h (a31 g1 + a32 g2), tn + c3 h)
 .
 .

gs = f(xn + h (as1 g1 + as2 g2 + . . . as s-1 gs-1), tn + cs h) .

Remarks

 The s-stage formula requires s evaluations of the derivative function f to
advance one step (of length h) along the t-axis.

 The s-stage formula has S = (s2 + 3s – 2)/2 free parameters, namely, the
collection of bi s, aij s, and ck s. Numerical values for these parameters
are determined by a procedure that undertakes to establish an
equivalence between the computed value xn+1 and the first r terms in a
Taylor series expansion for the true solution X(t) passing through (tn,
xn). This creates a formula of order r. It is always true that r s. In
essentially all cases, there are many ways to select values for the S
parameters in order to achieve a formula of order r s.

 The general formula given in Equation (8.5) is explicit because the
solution value xn+1 evolves directly without the need for the resolution
for further numerical issues. Observe also that no past solution
information is needed to generate xn+1. As we show in the discussion
that follows, these features are not always provided by other methods.

t + c h ,

, , ,

8.2 Some Families of Solution Methods 283

It is interesting to observe that both methods introduced earlier in
Section 8.1.4 are members of the Runge–Kutta family. The first-order
Euler method corresponds to the case where s = 1, and b1 = 1 and the
second-order Modified Euler method corresponds to the case where s = 2,
b1 = b2 = 1/2, a21 = c2 = 1. An alternate second-order method, frequently
called the Heun form, is given by s = 2, b1 = 1/4, b2 = 3/4, a21 = c2 = 2/3.

Third- and fourth-order Runge–Kutta formulas are often used and a
representative of each of these classes is provided below. The third-order
formula given below is often called the Heun form.

xn+1 = xn +
4

1
 h [g1 + 3 g3]

g1 = f(xn, tn)

g2 = f(xn +
3

1
 h g1, tn +

3

1
 h)

g3 = f(xn +
3

2
 h g2, tn +

3

2
h) .

The fourth-order formula given below is often called the Kutta (or the
‘classic’) form.

xn+1 = xn +
6

1
 h [g1 + 2 g2 + 2 g3 +g4]

g1 = f(xn , tn)

g2 = f(xn +
2

1
h g1, tn +

2

1
 h)

g3 = f(xn +
2

1
h g2, tn +

2

1
 h)

g4 = f(xn + h g3, tn + h) .

8.2.2 The Linear Multistep Family

Specific methods in this family are constructed from the following generic
formula,

k

i

k

i
iniinin

1 0
111 fhxx , (8.6)

where fj = f(xj , tj). Notice that an essential difference from the Runge–Kutta
family is the reliance on past values of the numerical solution and on the
slope of the solution at those values, that is, on the derivative function f
evaluated at those past values. Several special cases can be identified:

284 8. Simulation with CTDS Models

a) If k = 1, then we have a single-step method (reliance on past values
is restricted to values at the current time point tn.

0

0 0, then we have an implicit/closed/corrector method.

The implicit case (0 0) gives rise to a ‘circular’ situation where the
generation of the solution value, that is, xn+1, requires data that directly depend
on xn+1, namely, fn+1. This introduces an accessory problem that needs to be
addressed before a practical solution procedure is realised.

It is important also to observe here that the dependence of linear
multistep methods on past solution values implies a fundamental
shorcoming, namely, a ‘start-up’ problem. Past solution values are needed
to initiate the solution procedure and these can only be obtained by
reliance on some ancillary method that is not similarly constrained.
Typically Runge–Kutta methods are used in practice to provide these
preliminary values.

8.2.2.1 Predictor–Corrector Methods

The predictor–corrector methods represent the standard implementation
approach for the linear multistep family. The underlying idea is to first use an
explicit formula to project forward (i.e., to predict) a solution value estimate
and then, as a second refinement (or corrector) step, an implicit formula is
used to create a tentative solution value. This tentative value may or may not
be accepted; in the latter case one or more iterations may follow. This
procedure, in effect, deals with the underlying issue introduced by the
implicit formula.

Values for the coefficients in a linear multistep formula of order r are
established via the same approach used to develop specific members of the
Runge–Kutta family, namely, by establishing an equivalence between the
computed value xn+1 and the first r terms in a Taylor series expansion for
the true solution X(t) passing through (tn, xn). As an example, we give the
formulas for the Adams fourth-order predictor–corrector process:

Predictor (Adams–Bashforth)

xn+1 = xn + h(55 fn – 59 fn-1 + 37 fn-2 – 9 fn-3)/24 . (8.7a)

Corrector (Adams–Moulton)

xn+1 = xn + h (9 fn+1 + 19 fn – 5 fn-1 + fn-2)/24 . (8.7b)

Notice that the predictor is an explicit formula whereas the corrector is
implicit. The associated procedure is summarised below.

b) If = 0, then we have an explicit/open/predictor method; if

8.3 The Variable Step-Size Process 285

b) Use Equation (8.7b) to generate:)(
1

c
nx (with)p(

1+nx used to compute fn+1).

If |)(
1

c
nx –)(

1
p

nx | < then xn+1 =
)(
1

c
nx

c) Replace)(
1

p
nx with)(

1
c

nx and repeat from step (b).

Here is a predefined operational parameter that provides accuracy
control; its value is usually set by the user. Note also that if the error check

n+1

is generated after only two derivative function evaluations (assuming past
derivative values have been stored). This is a significant improvement over
the four evaluations required by a fourth-order Runge–Kutta method. In
other words this predictor–corrector method is potentially significantly
more efficient (in terms of derivative function evaluations) than a Runge–
Kutta method of like order. This can have important consequences in a
simulation project where the conceptual model has many equations and/or
the derivative functions are particularly complex.

8.3 The Variable Step-Size Process

Thus far our discussion has implicitly assumed that the step-size h used in the
numerical solution procedure for the IVP remains invariant. Such solution

and simulation projects that have a CTDS context.
 Such procedures can, however, be inefficient because the nature of the
 solution may be such that a small value of h is required only over a minor
 portion of the observation interval whereas larger values can be used
 elsewhere without the danger of compromised solution quality. This gives
 rise to the need for automatic step-size adjustment.

The realisation of such a variable step-size procedure needs to address
two basic issues: how to determine when a step-size change is needed
(either increase or decrease) and how to carry out a meaningful change in
the value of the step-size. It is reasonable to assume that the criterion for
step-size change ought to be based on the size of the local truncation error
(or an estimate of this error, say, Eest) relative to some (user-specified) error
tolerance Etol.

The specification of a variable step-size process within such a context can
be summarised as shown in Figure 8.3. Each repetition of the process moves
the solution forward by one time step and each begins with the current
solution value (tn ,xn) and a nominal step-size hn.

; otherwise do step (c).

at step (b) is successful on the first iteration then the new solution value x

procedures are certainly widely used in the simulation (i.e. experimentation)
phase of modelling

a) Use Equation (8.7a) to generate:)(
1

p
nx .

286 8. Simulation with CTDS Models

FIGURE 8.3. The variable step-size process.

Several of the steps in Figure 8.3 require some elaboration and this is
provided below.

Step 2: Obtaining an estimate for the local truncation error is a key
aspect of the variable step-size process. A variety of approaches has
emerged but for the most part their comprehensive development depends
on the exploration of issues in numerical mathematics that are beyond the
scope of this textbook (the interested reader can find relevant discussion in
[8.5, 8.14]). The general nature of a few of these approaches is provided in
the brief summaries given in the discussion that follows.

a) The half-step approach
The idea here is to obtain two estimates for the solution at time tn+1: the first
obtained on a single step with step-size hn and the other obtained using two
half-steps, each of size hn/2 . If we denote these two solution estimates xn+1

and x*

n+1, respectively, then (with certain assumptions) it can be shown that
a reasonable estimate of the local truncation error at tn+t is:

Eest = r (x*

n+1 – xn+1) ,

where r = 2r /(2r – 1) and r is the order of the solution method. A notable
feature of this approach is that it has general applicability inasmuch as it is
not linked to any particular solution method. Clearly a significant
disadvantage is a substantial efficiency penalty because there is a threefold
increase in the number of derivative function evaluations that would
otherwise be required to advance the solution by one step.

b) The embedded approach
A good illustration of this approach is provided by the Runge–Kutta–
Fehlberg method that is given in Equation (8.8). The underlying idea here
is the development of two Runge–Kutta formulas that differ in order by

1. Compute a solution estimate xn+1 at tn+1 = tn + hn

2. Compute Eest, an estimate of the magnitude of the local truncation
error at xn+1

3. Compute Etol, the upper bound for the admissible value for Eest

4. If Eest > Etol, then
4.1 reduce the value of hn

else
4.2 accept the solution estimate xn+1 and set tn+1 = tn + hn

4.3 compute a “best estimate” for the next step-size, hn+1

4.4 replace n+1 with n
5. Repeat from step 1

8.3 The Variable Step-Size Process 287

one and can be constructed from a shared collection of derivative function
evaluations. In the Runge–Kutta–Fehlberg method two solution estimates
xn+1 and x*

n+1 of order 4 and 5, respectively, are produced at each step. Their
difference (x*

n+1 – xn+1) provides a good estimate of the local truncation error
in the lower-order result. Notice that six derivative function evaluations are
required and if the fourth-order result is used, then there is a 50% overhead
incurred here in obtaining the error estimate, relative to the ‘classic’ fourth-
order Runge–Kutta formula given earlier.

654311
*

1

543216

43215

3214

213

12

1

65431
*

1

54311

55

2

50

1

75240

2197

4275

128

360

1

)
2

1
),

40

11

4104

1859

2565

3544
2

27

8
((

)),
4104

845

513

3680
8

216

439
((

)
13

12
),729672001932(

2197
(

)
8

3
),93(

32
(

)
4

,
4

(

),(

55

2

50

9

56430

28561

12825

6656

135

16

5

1

4104

2197

2565

1408

216

25

ggggghxxE

htggggghxfg

htgggghxfg

htggg
h

xfg

h
tgg

h
xfg

h
tg

h
xfg

txfg

ggggghxx

gggghxx

nnest

nn

nn

nn

nn

nn

nn

nn

nn

(8.8)

c) A predictor–corrector approach
As the name suggests, this approach is specific to predictor–corrector
methods. With suitable assumptions, the underlying analysis shows that a
reasonable estimate of the local truncation error at tn+t has the form:

Eest = r (xn+1 – x*

n+1) ,

where xn+1 and x*

n+1 are the corrector and predictor values, respectively
(necessarily of the same order), and the constant r is dependent on the
order of the method.

Step 3: A standard format for the bound on the local truncation error is:
Etol = (K1 + K2 |xn+1|) where K1 and K2 are user-specified parameters. The
first term (K1) provides an ‘absolute’ contribution to the tolerance bound
and the second term (K2 |xn+1|) provides a relative contribution; that is, if the
solution value itself is large, then the error tolerance increases.

288 8. Simulation with CTDS Models

Step 4.1: The result of the analysis leading to a meaningful formula for
reducing the value of hn is surprising simple (the analysis itself, however,
is outside the scope of our present interest; relevant discussion can be
found in [8.14]). The general form of the update formula is:

n
r

est

tol
n h

E

E
ch 1

1

)(, (8.9)

where r is the order of the solution value xn+1 and c is a ‘safety factor’ that
is typically incorporated (a common value is 0.9). A reduction in size
results because Eest > Etol at Step 4.1.

Step 4.3: The situation represented at this step corresponds to the case
where Eest Etol. This can be interpreted as reflecting a step-size that is
overly conservative and therefore could possibly be increased on the
subsequent phase of the solution process. The underlying analysis shows

n

8.4 Circumstances Requiring Special Care

Thus far in this chapter we have explored features of the most important
numerical tools commonly used to solve the IVP and hence to carry out
simulation studies with CTDS models. As with all tools these likewise have
inherent limitations and restrictions on their applicability and it is prudent for
tool users to be aware of these. Our goal in this section is to provide some
insight into this important topic.

8.4.1 Stability

The notion of stability is concerned with the existence of upper bounds on the
magnitude of the step-size h used in the solution-generating process. In-depth
investigation of this important feature is, of necessity, carried out in the
context of linear systems because extensive analysis is possible only in this
restricted context. Nevertheless these results can often be extended to the
general case of nonlinear models by observing that linear approximations can
be constructed for nonlinear models around any particular point on the
solution trajectory. Although relevance of such approximations is restricted to
a small region about the chosen point, useful insights into behaviour can
nevertheless be obtained.

that the appropriate update formula for h is again given by Equation (8.9).

8.4 Circumstances Requiring Special Care 289

The essential point can be illustrated by considering the following
simple linear IVP.

u (t) = – c1 u(t) + v(t); u(0) = 1

v (t) = –c2 v(t); v(0) = 2 ,
(8.10)

where c1 and c2 are positive constants. It can be easily verified (e.g., by direct
substitution) that the true solution of Equation (8.10) is:

u(t) = (1+)exp(–c1t) – exp(–c2t)

v(t) = – 2exp(–c2t) ,

where = 2/(c1 + c2). Observe that both u(t)and v(t) approach 0 as t
independent of the specific values chosen for c1, c2, 1, and 2.

Suppose now that a fixed step-size Euler method is applied to generate a
numerical solution to Equation (8.10). The iterative process that results can
be expressed as

un+1 = un + h (– c1 un + vn) = (1 – c1h) un + h vn

vn+1 = vn + h (– c2 vn) = (1 – c2h) vn .

Clearly if the numerical solution is to have any credibility whatsoever, a
fundamental requirement is that both un 0 and vn 0 as n . The
necessary and sufficient conditions for this to occur are:

 |1 – c1h| < 1; that is, –1 < (1 – c1h) < 1

and |1 – c2h| < 1; that is, –1 < (1 – c2h) < 1 ,

which, in turn, implies: h < min[2/c1, 2/c2]. In other words, there is a very
practical constraint on how large a value can be assigned to the step-size h. If
this upper bound is exceeded, then the numerical solution is simply unstable
and has no relationship to the true solution.

This result clearly raises several important questions; for example, are
all solution methods subject to such step-size constraints and is there
anything special (generalisable) about the nature of the specific constraint
obtained above? With respect to the first of these questions, it is certainly
true that such a constraint does exist for all members of the Runge–Kutta
family. However, the constraint does not apply to all solution methods.
This can be illustrated by considering a method called the backward Euler
method which is a special case of the linear multistep family given in Eq.
(8.6). This method is a single-step implicit method (k = 1 and 0 0). The
updating formula for the backward Euler method is:

xn+1 = xn + f(xn+1, tn+1) .

290 8. Simulation with CTDS Models

When this formula is applied to our test case of Equation (8.10), the
iterative process that results is:

)1(

)1)(1()1(

2

1

211

1

hc

v
v

hchc

vh

hc

u
u

n
n

nn
n

It is easy to conclude here that the necessary and sufficient conditions to
ensure that both un 0 and vn 0 as n are:

|1 + c1h| > 1 and |1 + c2h| > 1.

Both these conditions are satisfied for any (positive) value of h (recall our
original assumption that both c1 and c2 are positive). Hence we have an
example of a method that does not place a bound on the size of the step-size
h.

Let’s return now to our earlier observation of the instability that results
when an unacceptably large value of step-size is used to solve Equation
(8.10) with the Euler method. Are there more general conclusions that can
be identified? The answer most certainly is ‘Yes’. To proceed, we
generalise our test case to an IVP that is the set of N linear first equations;
that is,

x (t) = A x(t) (8.11)

with x(t0) = x0. We assume here the simplest case where the N × N coefficient
matrix A has real, distinct, and negative eigenvalues.1 In this circumstance, it
can be shown that the true solution of Equation (8.11) approaches zero
independent of the initial value x0. If the Euler method is used to generate the
solution of Equation (8.11) then it can be demonstrated that the stability
requirement (namely, the requirement that the computed solution likewise
approaches zero), is h < 2/| max| where max is the largest (in absolute value) of
the eigenvalues of A. We leave as an exercise for the reader to confirm that
our earlier stability conclusion for the special case of Equation (8.10) is
entirely consistent with this general result. (Hint: show that the eigenvalues of
the coefficient matrix in Equation (8.10) are –c1 and –c2.)

The general result above is restricted to the most fundamental of the
methods in the Runge–Kutta family. One might reasonably wonder about
the nature of the stability requirement for other members of this family.

1 The eigenvalues of the N × N matrix A are the N solutions, 1, 2, . . . , N

to the equation det(I – A) = 0, where det() represents the determinant.

8.4 Circumstances Requiring Special Care 291

This is a topic that has been extensively investigated in the numerical
mathematics literature and information can be found in textbooks such as
[8.8], [8.9], and [8.12]. In this regard, we note that the stability bound for
the fourth-order Kutta form given earlier is h < 2.78/| max| under the
assumed conditions on the coefficient matrix A in Equation (8.11).

8.4.2 Stiffness

Stiffness is a property of some CTDS models. It is of particular importance
because it interacts with the step-size constraint that is intrinsic to many
numerical solution methods in a manner that seriously deteriorates the
efficiency of the solution process. The background prerequisites for a
comprehensive presentation of the topic are substantial and hence its
treatment is beyond the scope of this textbook. Nevertheless, the essential
nature of the problem can be readily illustrated by examining a
straightforward example. (The interested reader is encouraged to explore the
issue in the numerical mathematics literature, e.g., [8.5].)

Consider the following two simple linear CTDS models.

Model A:
u’(t) = – u(t) + 2; u(0) = 0

v’(t) = – v(t) + 2; v(0) = 0 . (8.12)

Model B:
p’(t) = – 500.5 p(t) + 499.5 q(t) + 2; p(0) = –0.1

q’(t) = – 499.5 p(t) – 500.5 q(t) + 2; q(0) = 1 .
(8.13)

It is easy to confirm (e.g., by direct substitution) that the solution to Equation
(8.12) is:

u(t) = v(t) = 2 (1 – exp(– t)) (8.14)

and that the solution to Equation (8.13) is:

p(t) = u(t) – (t)

q(t) = v(t) + (t) ,

where (t) = 0.1 exp(–1000 t). Observe that the solutions to Equations
(8.12) and (8.13) are essentially identical for t > 0.02 because (t) has
almost vanished.

It’s now important to consider what might constitute a reasonable value
for the right boundary of the observation interval IO for these two simple
models (the left boundary has already been set to 0). This can easily be
inferred from Equation (8.14) from which it is apparent that the solution in

292 8. Simulation with CTDS Models

increases. Inasmuch as this term has effectively vanished after t = 10, a
reasonable choice for the right boundary of IO is 10. In other words, it is
unlikely that an interest in the behaviour of either of these models would
extend beyond t = 10.

Let’s now examine what impact the stability constraint of a numerical
solution method would have. On the basis of our earlier considerations,
let’s assume a constraint of the form h < K/| max| where K could be in the
range between 2 and 3. To proceed we require the eigenvalues of the two
linear models given in Equations (8.12) and (8.13). For model A it is easily
seen that the two eigenvalues of the coefficient matrix are both equal to –1.
For model B it can be demonstrated that the eigenvalues are –1 and –1000.
The surprising result that now flows from the stability constraint is that
even though the true solutions for both models are ‘almost’ identical (at
least for t > 0.02) a maximum step-size of K would be permitted in
studying model A whereas the step-size would have to be restricted to less
than K/1000 when studying model B! Apart from the computational
burden that is thus imposed upon the investigation of model B, the
unavoidable roundoff errors that could accumulate during the relatively
large number of steps needed to traverse the observation interval could
seriously deteriorate solution quality. The study of model A would not
encounter either of these difficulties.

This rather unexpected result has its origins in the wide separation
between the largest and smallest eigenvalues of model B. This property is
called stiffness. As might be expected, it has been extensively studied in
the numerical mathematics literature and a considerable body of
knowledge about it has emerged, for example, [8.7] and [8.5]. These
studies are often in the context of linear systems because of the
convenience of analysis that linearity provides. The phenomenon
nevertheless does arise in nonlinear systems which can always be linearly
approximated in suitably small regions. The underlying difficulty arises
simply because the smallest (in magnitude) eigenvalue generally
determines the right boundary of the observation interval whereas the
largest (in magnitude) eigenvalue can introduce a size constraint on the
step-size h. As we have illustrated above, these two effects have
conflicting and undesirable impacts on the numerical solution process.

It needs to be stressed, however, that solution methods specifically
designed to accommodate stiffness have been developed and should be
used in any simulation experiment where there is a possibility that the
CTDS model may exhibit stiffness (see, e.g., [8.5]). These methods do
involve additional computational overhead and are not recommended for
general usage.

both cases is dominated by the term exp(–t) which tends towards zero as t

8.4 Circumstances Requiring Special Care 293

curiosities intended mainly to provide a platform for mathematical
analysis. It is easy to demonstrate that this is not the case. Consider, for
example, the automobile suspension system that was introduced in Section

y (t) + 2 y (t) + y(t) = 2 u (t) + u(t) ,

where (kg/sec) is the stiffness parameter of the shock absorber. The state
variable representation of Equation (7.17) becomes:

x1 (t) = – x2(t) + u(t)
x2 (t) = x1(t) – 2 x2(t) + 2 u(t)

with y(t) = x2(t) .

It can be easily established that the two eigenvalues 1 and 2 of the
coefficient matrix are the solutions to the algebraic equation:

 2 + 2 + 1 = 0 ;

that is, 1 = – + sqrt(2 – 1) and 2 = – – sqrt(2 – 1). Now assume that
is large; in particular, that it is much greater than 1. With this assumption the
value –2 is a reasonable approximation for 2. To obtain a helpful
approximation for 1 we note that for small , a first-order Taylor series
approximation for the function R z z

R(z +) = R(z) + 0.5 /R(z) .

Consequently (bearing in mind the assumption that is much larger than 1):

sqrt(2 – 1) = sqrt(1 – 1/ 2) [sqrt (1) – 0.5/(2 sqrt(1))] = – (0.5/)

and so an approximate value for 1 is –0.5/ . Thus when the shock
absorber constant is large (relative to the spring constant k), there is a
significant spread between the two eigenvalues; in particular, | 2/ 1| = 4 2

 = 15).
In practical terms, a large value for (relative to k) means that a ride over

an uneven road surface would be very bumpy for the passengers in the
automobile because the suspension system would appear to be very stiff. The
need to investigate such a circumstance could very well arise if the project
goals included assessment of an automobile’s dynamic behaviour in extreme
conditions, such as evaluation of the impact of a shock absorber failure which
could correspond to becoming very large, hence the need to deal with a
CTDS model that has the stiffness property.

One might be tempted to conjecture that stiff systems are no more than

7.2.2 and subsequently linearised in Equation (7.25). Suppose we assign

and the mass, respectively; then Equation (7.25) becomes: constant
the specific values k = 0.5 (newtons/m) and M = 0.5 (kg) to the spring

() = sqrt() is:

(which, for exampLe equals 900 when

294 8. Simulation with CTDS Models

A meaningful and generally accepted formal definition of stiffness has
proved to be elusive. Instead it is simply regarded as a property of CTDS
models that imposes upon some numerical solution procedures the
requirement for an unusually small step-size over a substantial portion of
the observation interval. As we have demonstrated above, in the special
case of a linear system whose coefficient matrix has distinct real
eigenvalues, this property is present when there is a significant spread
between the smallest and the largest eigenvalues.

8.4.3 Discontinuity

CTDS models frequently contain discontinuities. Unless special precautions
are taken in handling these, it is almost certain that the solution trajectories
that are obtained will be flawed. In some cases these flawed solutions may
still be adequate within the context of the goals of the modelling and
simulation project whereas in other cases these flaws cannot be tolerated and
specialised numerical procedures need to be used.

Two of the examples previously considered have embedded
discontinuities: namely the bouncing ball project (Section 2.2.4) and the
pilot ejection project (Section 7.3). In the case of the bouncing ball, the
discontinuity occurs each time the ball strikes the ice surface and bounces.
The bounce really corresponds to an instantaneous change in both the
horizontal and the vertical velocities of the ball. The latter case is
especially severe inasmuch as both the direction and magnitude of the
ball’s vertical velocity changes. In the case of the model for the pilot
ejection project, the discontinuity occurs at the moment when the pilot/seat
leaves the rails. At that moment there is an instantaneous change in the rate
of change of both the horizontal and vertical velocities of the pilot/seat
(while on the rails both Vx

’(t) and Vy

’(t) are zero but this changes
instantaneously at the moment when the pilot/seat leaves the rails).

A discontinuity occurs when one or more state variables or the
derivatives of state variables undergo an instantaneous change. Such an
occurrence is usually called an ‘event’. Events fall into two categories,
namely, time events and state events. The distinguishing feature of a time
event is that the time at which it occurs is explicitly known. The time of
occurrence of a state event is known only implicitly through some
functional specification that involves the state variables. For example, in
the case of the bouncing ball there is a sequence of state events and the
time of occurrence of each corresponds to the condition y = 0 (vertical
displacement is zero; i.e., the ball is striking the ice surface).

8.4 Circumstances Requiring Special Care 295

difficulty that, as we outline below, is otherwise present. More specifically,
if it is known that a time event occurs at t = t* then the obvious practical
approach is simply to execute the solution procedure up to t = t*, carry out
the change(s) associated with the event, and then continue the solution
either to the next time event or to the right boundary of the observation
interval, whichever occurs first. This approach preserves the integrity of
the solution and requires only a minor disruption in the normal flow of the
solution procedure. Handling time events, therefore, is relatively
straightforward.

It is interesting to observe that in the case of the pilot/seat model, the
simple analysis that yields Equation (7.19) effectively transforms the
apparent state event into a time event. Because of the constant velocities
that prevail while the seat is on the rails, the time when the seat leaves the
rails is easily determined to be tE = Yr/(Vrcos r). Furthermore there is
nothing in the goals of the project that necessitates trajectory information
prior to tE and consequently the situation becomes even more
straightforward; that is, simply initiate the numerical solution at the event
time tE (or more precisely, incrementally beyond the event time).

The circumstances in the case of the bouncing ball are quite different;
the state events that occur at the bounces cannot be circumvented. What
then is the numerical issue that emerges? To address this question we need
to reflect on the program code requirements that are necessitated by the
discontinuity. As the following discussion points out, to deal with the state
event the simulation model itself must now acquire a facet that is beyond
the simple programming of the algebraic expressions that constitute the
derivative functions of the model.

The basic requirement here is clearly a means for locating the
occurrence of the state event so that the changes associated with it can be
carried out. This is usually achieved by the introduction of switch
functions. One such function is created for each state event that needs to be
accommodated in the CTDS model. The key requirement in defining these
switch functions is to capture, in a simple way, the implicit specification of
the time of occurrence of the state event. A standard approach is to define
the switch function so that its algebraic sign changes when the state event
occurs. In other words the zero of the switch function signals the
occurrence of the state event. For example, in the case of the bouncing ball
model, an appropriate switch function is 1(t) = y1(t) (recall that y1(t)
represents the vertical position of the ball above the ice surface). In the

The fact that the time of occurrence of a time event is known is very
significant because it enables a simple circumvention of the numerical

296 8. Simulation with CTDS Models

detection procedure (which resolves the detection problem) is to identify
an interval in which it is certain that at least one zero crossing of a switch
function occurs. With this interval as its input, the location procedure then
has the task of locating the time of the leftmost of these crossings; this
constitutes the solution of the location problem.

To correctly deal with known discontinuities, a CTDS simulation model
should incorporate, in some form or another, the equivalent of the
following pseudocode. Step 1 in this code corresponds to the detection
procedure and steps 2 and 3 correspond to the location procedure. This
code needs to be executed at the completion of each successive time-step
over the course of the underlying solution procedure. For definiteness, let’s
assume that the current solution step has moved the solution from t = ta to
t= tb.

1. For each i in the range 1 through m, determine if i signals the
occurrence of event i and if so place i in .

2. For each i determine ti

* such that i(ti

*) = 0 and place ti

* in .
3. Determine t**, the least value in .
4. Restart the solution process at t = ta and solve to t**.
5. Carry out the changes required at the event(s) occurring at t**.
6. Continue the solution process from t**.

Correct and robust implementation of the pseudocode outlined above is
not a trivial undertaking because the resolution of both the detection
problem and the location problem requires considerable care. Various
approximations are typically accepted but these can introduce substantial
error and/or numerical misbehaviour.

Consider, for example, the bouncing ball model; in this case m = 1
because there is only one state event that needs to be monitored and 1(t) =
y1(t). It is reasonable to conjecture that in the neighbourhood of an event
time t*, 1(t) would have the form shown in Figure 8.3 where we assume
that ta and tb are adjacent solution points resulting from a fixed step-size
solution process. The signal for the occurrence of the state event (the
bounce) could be taken simply to be the observation that 1(ta) and 1(tb)
have opposite algebraic signs. Having thus established that a state event
has occurred, we now need to identify t*, the time of its occurrence. A
gross, but very convenient, assumption is simply to take t* = tb. Because the
solution process is currently at tb, it is very straightforward to modify the

general case, we assume the existence of m such switch functions

1 2

m

There are in fact two distinct problems that need to be solved. These are
called the detection problem and the location problem. The task of the

associated with the CTDS model being studied; for example, (t), (t), . . . ,
(t).

8.4 Circumstances Requiring Special Care 297

specification’ included with the project description and possibly some
latitude is permitted. Note, in fact, that the experiments with the bouncing
ball carried out in Annex A3 are undertaken with these same rough
approximations.

The approach taken above in handling the location problem is certainly
primitive (namely, taking t* = tb). In the case where the switch function

1(t) can safely be assumed to have the form shown in Figure 8.4, (i.e., a
single crossing between ta and tb) a relatively simple bisection procedure
can be used to solve the location problem in a more credible manner. The
idea is simply to half the length of the interval that is known to contain the
point of zero crossing on each of a sequence of iterations. This sequence
ends either when the interval length is reduced to a sufficiently small size
or until the value of 1 at the midpoint of the current interval is sufficiently
close to zero. A specification of this bisection procedure based on the latter
termination criterion is given below:

tc = (ta + tb)/2
while (| 1(tc)| >)

if (1(ta)* 1(tc) < 0) tb = tc

else ta = tc

tc = (ta + tb)/2
endwhile
t* = tc .

Here is a parameter that controls the accuracy of the final result that is
generated. It should also be appreciated that each evaluation of 1, (at time
tc) requires that the underlying solution procedure re-solve the model
equations from time ta to time tc. Computational overhead has clearly
increased!

The procedure outlined above significantly compromises the accuracy
of the solutions for the ball’s trajectory and hence the accuracy of the
results obtained for the underlying modelling and simulation project. But
this is not to say that the results are unacceptable. There was no ‘accuracy

values of horizontal velocity (x2) and vertical velocity (y2) to reflect the
changes required by the state event. As a final and entirely artificial change
to reflect the intended reality, y1 can also be set to zero.

298 8. Simulation with CTDS Models

ta

tbt*
t

1(t)=y1(t)

FIGURE 8.4. Locating the state event for the bouncing ball.

Note also that in general, there is no assurance that there is only a single
zero crossing in the interval identified by the detection procedure. For
example, the behaviour of a switch function (but not the one we have been
discussing for the bouncing ball) might have the form shown in Figure 8.5.
Because there are multiple zeros in the interval the bisection method
outlined above would be an inappropriate choice for the location

The situation in handling discontinuities acquires a different (but
nonetheless challenging) perspective when a variable step-size procedure
is used as the equation-solving tool.

Some interesting investigations of this challenging numerical problem in

provided). A current and comprehensive discussion can be found in Cellier
and Kofman [8.2].

procedure. A more robust approach would need to be formulated.

handling CTDS models with discontinuities can be found in [8.1], [8.3],
[8.6], and [8.13] (a variety of interesting example problems is likewise

8.4 Circumstances Requiring Special Care 299

t

(t)

ta tb

FIGURE 8.5. A switch function with multiple crossings.

8.4.4 Concluding Remarks

The main purpose of the discussion in Section 8.4 has been to demonstrate
that the numerical tools required to carry out the simulation phase of a
modelling and simulation project in the CTDS domain need to be used with
some degree of caution. There are potential pitfalls and these are not always
made clear to the users of the many simulation software products that are
available in the marketplace. What may appear to be interesting dynamic
behaviour in a CTDS model may simply be the reflection of numerical
anomalies.

Mechanisms to detect such anomalies and bring them to the attention of
the user are rarely provided. Thus it is important for the user to be alert and to
have reasonable background knowledge and insight in order to be able to
assess curious behaviour that may arise. Unfortunately there are very few
guaranteed checks that can be applied to reveal the existence of problems.
Nevertheless, one simple option that is always worth considering is the use of
an alternate solution method whenever there is some reason to suspect that
the numerical solution process is being compromised. Large inconsistencies
in the results obtained provide a reasonable signal of underlying difficulty.

300 8. Simulation with CTDS Models

It is appropriate finally to stress also that robust solution methods for
efficiently handling the differential equation of a CTDS conceptual model
continue to evolve, especially in a modelling and simulation context.
Readers interested in exploring such developments will find relevant topics
in the recent work of Cellier and Kofman [8.2].

In this regard it is particularly interesting to note the work described by
Kofman and Junco [8.10] and further elaborated in [8.2]. Traditional
numerical methods for ODEs discretise the time axis as the underlying
mechanism for driving the solution forward. The work referenced above
takes the alternate approach of discretising the state space. This introduces
an entirely new landscape which is, in particular, well suited to a unified
treatment (at the computational level) of models that have DEDS and
CTDS components.

8.5 Options and Choices in CTDS Simulation Software

A wide variety of software products/environments is available for carrying

CTDS realm. Some of these are commercial
 products (e.g., Dymola [8.4]) whereas others are in the public domain
 (e.g., Open Desire [8.11])). By and large, each has a relatively distinctive
 manner for specifying the conceptual model that is to be studied and
 often has, as well, many distinctive capabilities. Such distinctive
 capabilities (e.g., matrix inversion, eigenvalue calculation, discontinuity
 handling, animation, etc.) can be especially relevant to a particular
 project and thus provide a basis for making a selection from among
 available alternatives.

From the discussion in Sections 8.2 through 8.4 it is reasonable to
suggest that a practical requirement for any CTDS simulation product is a
solution engine that provides a variety of numerical solution methods. This
is especially important when the conceptual model is large (many
differential equations) and/or complex (i.e., derivative function evaluation
is time consuming) because in such cases solution efficiency can become a
matter of concern. The availability of solution method alternatives gives
the user the option of making tradeoffs between computational overhead
and accuracy.

Quite apart from a choice from among solution methods, there are still
decisions to be made with respect to embedded parameters. The most
fundamental, of course, is the step-size h. In the absence of other
guidelines or insights, a rule-of-thumb often used when the solution
method is of fourth-order, is to assign h the value 10-3|I0| (where |I0| is the
length of the observation interval). In the case where a predictor–corrector

 simulation project in the
out the simulation (i.e. experimentation) phase of any modelling and

8.6 The Safe Ejection Envelope Project Revisited 301

method has been selected, the parameter that provides some accuracy
control (see Section 8.2.2.1) may be available for assignment by the user.
When a variable step-size method is selected, several associated
parameters typically emerge (e.g., the error tolerance parameters K1 and K2

introduced in Section 8.3) and these must be assigned meaningful values
by the user.

Making prudent value choices for these various embedded parameters is
not an easy matter for a novice because very little guidance is available.
Fortunately, with ‘well-behaved’ conceptual models it is usually a
noncritical task. However with ill-behaved situations these value
assignments can have a significant impact and improper assignments may
even jeopardise the success of the modelling and simulation project.

8.6 The Safe Ejection Envelope Project Revisited

In Chapter 7 a CTDS conceptual model was formulated to provide the data
required to establish the safe ejection envelope for a pilot forced to

horizontal aircraft velocities, the least altitude at
 which the ejection mechanism will yield an ejection trajectory that avoids
 the aircraft’s tail assembly by a suitable margin of safety. The conceptual
 model is given by Equation (7.19) with initial conditions given by Equation
 (7.17).

The envelope we seek is, in fact, a graph of (Va, H*) pairs where H* is
the least ‘safe altitude’ associated with the horizontal velocity Va. The
procedure makes use of the fact that if ejection at a particular altitude is
unsafe (i.e., results in a trajectory that does not clear the tail assembly by a
sufficient distance) then increasing the altitude will eventually locate a safe
value. This is a consequence of the fact that the drag force due to air
density diminishes as altitude increases.

A procedure for generating the data required to create a graph of the
form shown in Figure 7.6 is given in Figure 8.6. This procedure assumes

of Equation (7.19). Several parameters have been introduced to define the
boundaries of the study; these are summarised in Table 8.1.

abandon a disabled fighter aircraft. Briefly, the objective is to determine
for each of a range of

the existence of a verified simulation program based on the conceptual model

302 8. Simulation with CTDS Models

An Open Desire simulation program that carries out this task is given in
Figure 8.7. The resulting safe ejection envelope is given in Figure 8.8
(however, some enhancement of the original Open Desire presentation has
been carried out).

FIGURE 8.6. Generating the envelope data.

Va Vstart

H Hstart

repeat
 while (miss < Sf)

* H H + h

* solve ode’s of the model from t=tE to t=t* where
 t* is first occurrence of Xp(t

*) Va t
* – BT

* miss = Yp(t
*) – HT

 endwhile
a

Va Va + v

until (Va > Vlimit)
Plot the collected (Va, H) pairs

TABLE 8.1. Parameters used in the safe ejection envelope study.

Parameter Interpretation Value
Vstart Initial horizontal velocity 100 ft/sec
Hstart Initial altitude 0 ft
Vlimit Largest horizontal velocity 950 ft/sec

Increment in altitude 500 ft
Increment in velocity 50 ft/sec

h

v

2

2 An overview of this particular simulation environment can be found in
Annex 3. Readers unfamiliar with Open Desire are urged to review Annex
3 in order to better appreciate the simulation program in Figure 8.7.

*

*record (V , with H)H*H

8.6 The Safe Ejection Envelope Project Revisited 303

---Safe Ejection Envelope Project

--

---CONSTANTS

g=32.2 | ---acceleration due to gravity (ft/sec^2)

m=7 | ---mass of pilot and seat (slugs)

BT=30 | ---horizontal displacement of tail section (ft)

HT=12 | ---vertical height of tail section (ft)

Cdhat=5 | ---drag coefficient (ft-sec^2)

Sf=8 | ---safety factor for avoiding tail (ft)

thetaD=15 | ---angle of ejection rails (degrees)

thetaR=thetaD*(PI/180) | ---angle of ejection rails

 (radians)

Vr=40 | ---seat velocity while on rails (ft/sec)

Yr=4 | ---vertical height of rails (ft)

Va=100 | ---initial aircraft (horizontal)velocity

 (ft/sec)

H=0 | ---initial aircraft altitude (ft)

---TABLE: Relative Air Density, RHO, versus altitude

dimension RHO[24]

data 0,1E+3,2E+3,4E+3,6E+3,1E+4,1.5E+4,2E+4,3E+4,4E+4

data 5E+4,6E+4, 2.377E-3,2.308E-3,2.241E-3

data 2.117E-3,1.987E-3,1.755E-3,1.497E-3, 1.267E-3

data 0.891E-3,0.587E-3,0.364E-3,0.2238E-3

---Storage Arrays for crossplot data

dimension VaV[20],HV[20]

---EXPERIMENT

read RHO

t=Yr/(Vr*cos(thetaR))

 ---left hand end of observation interval

TMAX=3 | ---right-hand end of observation interval

irule=3 | ---fixed stepsize RK4

DT=0.004 | ---integration step size

Xp=(Va-(Vr*sin(thetaR)))*t

---horizontal position when leaving rails

Yp=Yr | ---vertical position when leaving rails

Vx=Va-Vr*sin(thetaR)

---horizontal velocity when leaving rails

Vy=Vr*cos(thetaR) |---vertical velocity when leaving rails

---setup display for pilot trajectories

display W300,80

display 2 | display A | display R

display C17 | display N11

NN=1000 | scale=1

knt=0

FIGURE 8.7. Open Desire simulation program for safe ejection envelope.

304 8. Simulation with CTDS Models

FIGURE 8.7. Open Desire program for safe ejection envelope (continued).

---main loop follows

write "Va ";"H ";"Miss "¡"Time"

repeat

 drun | miss=(Yp-HT) | stop=t | reset

 while miss<Sf

 H=H+500

 drun | miss=(Yp-HT) | stop=t | reset

 end while

 write Va;" ";H;" ";miss;" ";stop

 knt=knt+1 | VaV[knt]=Va | HV[knt]=H

 Va=Va+50 | Vx=Vx+50 | Xp=Xp+50*t

 until Va>950

write '>>>type "go" to continue' | STOP

--

---OUTPUT(the safe ejection envelope (H vs Va))

--

display F | NN=knt

drun ENVELOPE

--

DYNAMIC

--

HplusYp=H+Yp | func rho=RHO(HplusYp | ---compute air

 density

PSI=(Cdhat*rho*sqrt(Vx*Vx+Vy*Vy))/m

d/dt Xp=Vx | d/dt Yp=Vy

d/dt Vx=-PSI*Vx | d/dt Vy=-PSI*Vy-g

--

OUT

XTail=Va*t-BT

term XTail-Xp

term -Yp

--

---OUTPUT(pilot trajectories)

SQ=((XTail-Xp)+15)/15 | SYp=0.075*Yp-1

 ---scaling for trajectories

dispxy SQ,SYp

--

label ENVELOPE

get Va=VaV

get H=HV

SVa=0.002*Va-1 | SH=0.000025*H-0.999 | ---scaling for

 envelope

dispxy SVa,SH

8.7 Exercises and Projects 305

FIGURE 8.8. The safe ejection envelope.

8.7 Exercises and Projects

means of demonstrating the earth’s rotation. Implementations of the
Foucault pendulum can be found in science museums throughout the
world. The special feature of this pendulum is that the pivot point can
turn and consequently the plane in which the swinging bob moves can

rotation, the plane of the swing will continuously change. Because of a
complex interaction of forces, the rate at which the plane of the swing
changes is dependent on the latitude where the observer is located.

hours for a complete rotation of 360 degrees (i.e., angular rate of 2
radians per hour) and this period decreases as the observer moves

8.1 The Foucault pendulum was proposed in 1851 by Léon Foucault as a

For example, at either of the poles (= ±90 degrees), it requires 24

change in both the x- and y-directions. In fact, because of the earth’s

/24

306 8. Simulation with CTDS Models

toward the equator (= 0) where the angular rate is zero. The
equations that govern this behaviour (with the assumption that air
friction effects can be ignored) are:

x (t) - 2 sin() y (t) + K2 x(t) = 0

y (t) + 2 sin() x (t) + K2 y(t) = 0 ,

where represents the earth’s rotational velocity (7.3 radian/sec) and
K = g/L where g is the acceleration due to gravity and L is the
pendulum length (necessarily large, e.g., 50 meters) and is the
latitude of the observer.

a) Formulate a modelling and simulation project based on the
conceptual model given above, to determine the angular velocity
(radians per hour) of the pendulum’s plane of swing for each of the
following values of latitude, : 5, 10, 15, . . . , 80 and 85 degrees.
(Hint: Observe the graph that results when x(t) is plotted against
y(t)).

b) Determine from a search in the available literature (e.g., the Web),
what the relation should be and confirm the validity of the results
obtained in part (a).

8.2 A bumblebee colony represents an example of a ‘stratified population’,
that is, one in which the total population is made up of different forms
of the same species. Only impregnated females survive the winter to
found a new colony in the spring. She prepares a simple nest and
begins laying eggs at the rate of 12 eggs per day. The lifecycle is as
follows.

a) An egg takes 3 days to hatch and what emerges is a larva.
b) The larva grows for 5 days and then turns into a pupa.
c) The pupa exists for 14 days and then turns into an adult/worker.
d) The adult lives for 5 weeks.

Formulate a modelling and simulation project whose goal is to
obtain insight into how the population of the colony reacts to the
death of the queen bee. Suppose, in particular, that the queen dies
after T0 days. As a result the population of the colony will eventually
diminish to zero. Suppose this happens T1 days after the death of the
queen. The value of T1 depends on the size of the population at the
time T0 which in turn depends on T0 itself. Using an appropriate CTDS
model, obtain sufficient data to produce a graph of T1 versus T0 with
T0 in some suitable range that adequately illustrates the pertinent
aspects of the behaviour of interest.
Note that there are four state variables associated with the colony;

namely,

8.7 Exercises and Projects 307

b) Nr(t), the larva population at time t
c) Np(t), the pupa population at time t
d) Na(t), the adult population at time t.

In formulating the model, assume that t has the units of days. The fact that
an egg exists for 3 days means that 1/3 of the egg population moves from
the egg population to the larva population each day. Similarly 1/5 of the
larva population moves out of the larva population each day. As a
consequence, two of the four equations of the conceptual model are:

)(
5

1
)(

3

1
)(

)(
3

1
12)(

tNtNtN

tNtN

rer

ee

8.3 In this project we consider the motion of two masses moving
horizontally on frictionless surfaces as shown in Figure 8.9. Mass m1 is
a block that rolls (without friction) on a horizontal surface and mass m2

is a wheel that rolls on top of mass m1 (again without friction). Each of
these masses is individually connected with a spring to a vertical wall.
The spring that connects m1 has a spring constant of k1 and the spring
that connects m2 has a spring constant of k2. We assume that up until
t = 0 this system has been resting in an equilibrium state. The lengths of
the two springs are such that at equilibrium the wheel rests at the
midpoint of the block whose width is 2w. We take m1 = m2 = 5 kg, k1 =
k2 = 15 Newton/meter and w = 1.6 meter.

If we let x1(t) and x2(t) represent the horizontal positions of the two
masses relative to their respective equilibrium positions, then the
CTDS conceptual model for the system is:

)()(5.1)(5.0

)()()5.0()(5.0

221222

1112122

txkixmixm

txkixmmixm

At t = 0 the block is moved to the right by a distance = 1.5 meters
and then released (the wheel on the other hand remains at its
equilibrium position); thus, x1(0) = , x2(0) = 0, 0tx0,tx)()(21 .
The goal of this modeling and simulation project is to gain insight into
the circumstances that cause the wheel to fall off the surface of the
block.

a) Ne(t), the egg population at time t

308 8. Simulation with CTDS Models

values for the various parameters). Carry out experiments to
determine these regions.

c) Determine how the regions found in part (b) are affected by
changes in the value of .

FIGURE 8.9. Rolling masses.

a) Determine if the wheel will fall off the block for the parameter
values and the initial conditions that are given.

b) It is reasonable to assume that there are regions in the (positive)
k1–k2 plane for which the ball will fall off the block and conversely
regions where the wheel will not fall off the block (with the given

8.4 In this study a proposed system for halting an aircraft that might
otherwise overshoot the runway during its landing manoeuvre is to be
investigated. The system has particular utility in the context of an
aircraft carrier. The configuration of the upper half of the system is

below the center line.

shown in Figure 8.10. The complete system is symmetric about the center
line; that is, an identical configuration to that shown in Figure 8.10 exists

m1

k1

k2

2w

x2(t)

x1(t)

m2

8.7 Exercises and Projects 309

FIGURE 8.10. Schematic representation of aircraft arresting mechanism.

The springs shown as k1 and k2 are fictitious. They are intended to
represent the elastic properties of the steel cables which are the
connecting members. In particular, this means that these springs
cannot be compressed. If, for example, y2 becomes less than y3 the
cable connecting the piston and the moving carriage simply goes
limp.

An appropriate analysis of the elements of the system yields the
following conceptual model.

)()()(

0

))()((
)(

)()(2)(

0

2))(2)((
)(

)()(

)(

)(
)(sin

)(sin)(2)(

233

32322

2

2122

21211

1

22

1

22

11

tftftym

otherwise

yyfortytyk
tf

tftftym

otherwise

yyfortytyk
tf

htxhty

txh

tx
t

ttftxm

d

y3(t)

Piston (mass = m3)

k2

y2(t)

k1

Moving carriage
(mass = m2)

Center line

h

x(t)
L

h+y1(t)

D

(t)

Barricade

310 8. Simulation with CTDS Models

The force fd(t) is a consequence of the shock absorber effect of the
piston which is moving through a cylinder filled with water. Its value
is dependent on the square of the velocity)(3 ty ; that is, fd(t) = k3

)(2

3 ty . The drag coefficient k3 furthermore is dependent on y3 and its

value, as established from experimental data, is given in Table 8.2.

TABLE 8.2. Drag coefficient of the piston.

y3 (Meters) k3 (Newtons/(m/sec)2)

0 1720
9 1340
18 1100
37 1480
46 1480
55 1480
64 1720
73 1960
82 2500
86 3000
90 3650
93 4650
95 5400
100 7800

The values of the various constants in the model are summarized in
Table 8.3.

TABLE

Constant Value

m1 25,000 kg
m2 1300 kg
m3 350 kg
k1 115,000 Newtons/m
k2 430,000 Newtons/m
h 30 m
L 15 m
D 300 m

8.3. Summary of constants.

8.8 References 311

The specific system to be investigated has a relatively solid
barricade located D = 300 meters from the contact point (x = 0) which

than 5 m/sec when it strikes the barricade. There are two specific
issues that need to be investigated. The first is to determine V*, where
V* is the largest initial velocity of the aircraft such that its velocity,
when the front of the aircraft strikes the barrier will not exceed 5
m/sec. In addition, it is of interest to obtain some insight into the
relationship between this maximum initial velocity and the mass of

*

versus aircraft mass (m1) for m1 in the range 20,000 kg to 30,000 kg.

8.8 References

8.1. Birta, L.G., Ören, T.I., and Kettenis, D.L., (1985), A robust procedure for
discontinuity handling in continuous system simulation, Transactions of the
Society for Computer Simulation, 2: 189–205.

8.2. Cellier, F.E. and Kofman, E., (2006), Continuous System Simulation,
Springer-Verlag, New York.

8.3. Ellison, D., (1981), Efficient automatic integration of ordinary differential
equations with discontinuities, Mathematics and Computation in Simulation,
23: 12–20.

8.4. Elmquist, H., (2004), Dymola – Dynamic modeling language, user’s manual,
Version 5.3, DynaSim AB, Research Park Ideon, Lund, Sweden.

8.5. Gear, C.W., (1971), Numerical Initial Value Problems in Ordinary
Differential Equations, Prentice-Hall, Englewood Cliffs, NJ.

8.6. Gear, C.W. and Osterby, O., (1984), Solving ordinary differential equations
with discontinuities, ACM Transactions on Mathematical Software, 10: 23–
44.

8.7. Hairer, E. and Wanner, G., (1996), Solving Ordinary Differential Equations
II: Stiff and Differential-Algebraic Problems, 2nd edn., Springer-Verlag,
Berlin.

8.8. Iserles, A., (1996), A First Course in the Numerical Analysis of Differential
Equations, Cambridge University Press, Cambridge, UK.

8.9. Kincaid, D. and Cheng, W., (2002), Numerical Analysis: Mathematics of
Scientific Computing, 3rd edn., Brooks/Cole, Pacific Grove, CA.

8.10. Kofman, E. and Junco, S., (2001), Quantized state systems: A DEVS
approach for continuous system simulation, Transactions of the SCS, 18(3):
123–132.

8.11. Korn, G.A., (1998), Interactive Dynamic-system Simulation Under Windows
95 and NT, Gordon Breach , London.

will bring the aircraft to a full stop provided it is not traveling faster

the aircraft. For this purpose, it is required to obtain a graph of V

8.12. Lambert, J.D., (1991), Numerical Methods for Ordinary Differential
Equations, Wiley, London.

312 8. Simulation with CTDS Models

8.13. Shampine, L.F., Gladwell, I., and Brankin, R.W., (1991), Reliable solutions
of special event location problems for ODEs, ACM Transactions on
Mathematical Software, 17: 11–25.

8.14. Watts, H.A., (1984), Step-size control in ordinary differential equation
solvers, Transactions of the Society for Computer Simulation, 1: 15–25.

Chapter 9 Optimisation

9.1 Introduction

Optimisation studies are frequently embedded within the goals of a
modelling and simulation project. In some cases this optimisation aspect
may simply be a preliminary requirement in the development of the model
that is to be subsequently used in the simulation study. In other cases it
may constitute the main aspect of the project goals. We refer to these two
alternatives as the model refinement problem and the strategy formulation
problem, respectively.

As an example of the model refinement problem, consider a situation
where there exists a general model of how a particular drug that is required
in the treatment of some illness, dissipates through the human body.
However, before the model can be used it must be adapted (‘calibrated’) to
the particular patient undergoing treatment. In other words, the values for
various parameters within the model have to be established so that it ‘best
fits’ the patient. This could be achieved by minimising the difference
between one or more of the model’s output variables and clinical data
obtained from the patient. Once optimised in this sense, the model is
available for use by the physician to assist in establishing a proper
continuing dosage level for the drug.

As an example of the strategy formulation problem, consider a model of
a chemical process which has been developed using known properties of
the chemical kinetics that are involved in the process. Suppose one of the
model’s outputs represents the cost of production over the period defined
by the observation interval. A goal of a modelling and simulation project
might be to determine a minimum value for this output by the optimum
selection of parameters embedded within an operating policy that is
represented by one of the inputs to the model.

It can be reasonably assumed that in both these examples the system
under investigation is a continuous-time dynamic system. In fact, our
considerations throughout this chapter are restricted to this domain. This is
not to suggest that optimisation studies cannot be undertaken with models
from the DEDS domain. However, the tools required for handling the
optimisation task in that domain need to deal with the inherent stochastic

314 9. Optimisation

nature of DEDS models. This superimposes another level of complexity
that is beyond the scope of our considerations in this textbook.
Nevertheless, a variety of approaches for handling the problem has been
developed and descriptions can be found in the literature (e.g., [9.4],
[9.16], [9.23], and [9.28]). A comprehensive overview of a range of

heuristic search procedures that they use, can be found in [9.12].

obtained from the optimisation process generally need to be treated with
some caution. For example, they are rarely precise enough to permit
decisions to be confidently made at a detailed design level. Nevertheless

essential aspects of the modelling and simulation activity.

9.2 Problem Statement

There exist two groups of relevant variables when an optimisation problem
is superimposed on a model of a continuous-time dynamic system. As in
our previous considerations with the CTDS domain, there is the N-vector x

in fact, is the set of first-order differential equations:

x (t) = f(x(t), t)

with x(t0) = x0 and, as well, with a specified observation interval I0 = [t0, tf].

optimally selected. The presence of the parameter vector p, needs to be
reflected in the specification of the model and this can be simply achieved
by rewriting our model as:

x (t) = f(x(t), t; p) .

To guide the selection of the best value for the parameter vector p, there
is necessarily associated with the problem a scalar, real-valued criterion
function which we denote J = J(p). The objective, then, is to find a value
p* for p which yields an extreme value for J. This may be either a
maximum or a minimum but for definiteness in our discussions, we
assume the latter (note that the maximisation of J is equivalent to the
minimisation of –J). Thus we seek to find p* (the minimising argument)
such that:

the results obtained can provide valuable insight which, after all, is an

= x(t) which we use to represent the state vector for the model. The model,

We now introduce the m-vector of parameters p, whose values are to be

It is frequently convenient to explicitly indicate the dependence of the
state vector x on the parameter vector p by writing it as x(t;p).

It is also fair to suggest that in the DEDS environment, the results

commercially available optimisation packages, their vendors, and the

9.2 Problem Statement 315

J(p*) J(p) for all p .

In general, not all possible m-vectors are permitted candidates for p*
and consequently the minimisation of J could be restricted to a particular
subset of admissible values which is denoted . Such restrictions may be
explicit; for example, the first component p1, of p must be positive.
Alternately, the restrictions may be implicitly defined via a collection of
functional constraints; for example, j(x(t; p)) 0 for j = 1, 2, . . . , c1 and

j(x(t; p)) = 0 for j = c1 + 1, c1 + 2, . . . , c2. Such a functional constraint
would arise, for example, in the case of a manufacturing process where the
tensile strength of a plastic material that is being produced is compromised
if the rate of cooling at a particular phase of the process is excessive. In
such a circumstance only those values of p that do not create the
unacceptable cooling conditions would be allowed.

As might be expected, the existence of restrictions on the permitted
values for p (the constrained problem) introduces additional complexity
upon the solution task. One approach that can be effectively used is called
the penalty function method. Here the constraints are manipulated into a
special form and appended to the criterion function to produce an
‘augmented’ criterion function whose basic feature is that it penalises
violation of the constraints. The minimisation of this augmented criterion
function is therefore undertaken without the burden of having to explicitly
restrict the search space. The constrained problem is thus transformed into
an unconstrained problem (more correctly, there is a requirement for the
solution of a sequence of unconstrained problems). In other words, this
approach allows the constrained problem to be treated with the same
numerical tools as the unconstrained problem. Elaboration of this approach
as well as other methods for handling the constrained optimisation

The specific form of the criterion function J evolves from the nature of
the problem to be solved. The only requirement is that J(p) have a real
scalar value for each value of the m-vector p. Note, however, that because
the parameter vector p is embedded in a CTDS conceptual
model the evaluation of J, for any given p, requires the
solution of a set of differential equations. This is, in principle,
of no particular consequence for any optimisation process, however, it can
have significant practical consequences in terms of computational
overhead.

problem can be found in [9.3], [9.8], and [9.10].

316 9. Optimisation

Some typical forms for the criterion function J are:

(a) J = g(x(tf; p))

(b) J =));t((
1

j px
s

j

g

(c) J = dttg
ft

t0

));((px .

In each of these cases g is some scalar function of its argument x. An
example where (a) would be an appropriate choice is provided by the
bouncing ball problem that was considered earlier (see Section 2.2.4).
Recall that the task is to find an initial release angle which results in the
ball falling through a hole in the ice surface. The release angle represents
the parameter (there is only one) and g could be selected to be the square
of the distance between the point where the ball strikes the surface and the
location of the hole. The implicit assumption that the problem has a
solution means that g has a minimum value of zero; that is, the ball falls
through the hole. A successful search for the release angle that minimises g
will therefore provide the solution to the problem.

A criterion function of the form shown in (b) could have relevance to
the model refinement problem outlined earlier. The calibration process in
question could, for example, be based on the manner in which blood sugar
is absorbed following an injection of insulin. In this case, the s time points,
tj, j = 1, 2, . . . , s that are referenced could be the points in time where
blood sugar measurements are taken from the patient and the function g
could be the absolute value of the difference between the measured
data
variable of the model. Finding values for the set of model parameters that
yield a minimum value for J would then correspond to the calibration
process.

The criterion function form shown in (c) maps directly onto a classic
control system design problem. The feedback controller for a continuous
time dynamic system (e.g., an aircraft autopilot) typically has several
parameters whose values need to be chosen in a way that, in some sense,
optimises system performance. A frequently used performance measure is
‘integral-square-error’, that is, the integral of the square of the deviation
between a desired system output and the output that actually occurs

of finding best values for the controller parameters would be based on
using the model in the minimisation of a criterion function of the form
shown in (c). In this case g = (y – ŷ)2 where y is the output of interest

when the system has a prescribed input. Assuming that a CTDS concep-
tual model is available for the system and its controller, the goal

from the patient and the value acquired by some particular output

9.2 Problem Statement 317

(some function of the model’s state vector x) and ŷ is the desired value
for y.

As might be expected, the difficulty of the minimisation task is very
much dependent of the geometric nature of the criterion function J(p). In
particular, there is the very serious issue of multiple local minima.
Most minimisation procedures are unable to distinguish such ‘false’
minima and consequently may converge upon such a point, thereby
yielding an erroneous result. Another geometric feature that is poorly
accommodated by most procedures is the existence of a ‘long’ gently
sloping valley. Such a situation can cause premature termination of a
minimisation procedure and the presentation of an inferior result.
Unfortunately these difficult circumstances are not uncommon.

By way of illustration we show in Figure 9.1 a representative criterion
function that is dependent on two parameters.1 The multiplicity of local
extreme values and the existence of sloping valleys are apparent.

FIGURE 9.1. A response surface for a two-dimensional criterion function.

1 Figure 9.1 has been taken from Pinter et al. [9.19] with the permission of the

authors.

318 9. Optimisation

9.3 Methods for Unconstrained Minimisation

The discussion in Section 9.2 has stressed that optimisation problems
embedded in the goals of a modelling and simulation project in the CTDS
domain are essentially the same as the ‘classical’ problem that is treated in
the numerical optimisation literature. There is, however, one important
distinctive feature, namely, that the evaluation of the criterion function at
any particular argument value p requires the solution of a set of differential
equations (i.e., the conceptual model). This can, at least in principle, simply
be regarded as part of the computational overhead.

A wide range of methods for dealing with the unconstrained function
minimisation problem have been developed. A comprehensive review of
these is well beyond the scope of our interest in this textbook. Our intent
here is simply to provide an introduction to some of the basic ideas upon
which these methods are based. It is strongly recommended that the reader
who needs to carry out an optimisation study probe deeper into the topics
that are introduced in the discussion that follows. Relevant information can
be found in the numerous textbooks that deal specifically with numerical

There is a variety of ways for categorising the relatively large number of
available function minimisation methods. Perhaps the most fundamental is
whether gradient information is required by the procedure. Methods not
requiring gradient information are often referred to as heuristic methods
because their basis of operation is primarily based on intuitive notions. In
the two sections that follow, we outline a representative member of both
the heuristic and the gradient-dependent categories.

9.3.1 The Nelder–Mead Simplex Method

The Nelder–Mead method first appeared in the optimisation literature in
1965 (see [9.14]) and continues to be of practical value and of theoretical

need for gradient information hence it can be classed as a heuristic method.
In a modeling and simulation context, this is especially significant as becomes
apparent in our discussion in Section 9.3.2.

The process begins with the specification of a regular simplex which is
defined in terms of (m + 1) points in m-space (recall that our parameter
vector p is a vector of m dimensions). When m = 2, the simplex is a
triangle. The defining points for the initial simplex are part of the
initialisation procedure. Generally a (priming) point p0 which represents a
‘best’ solution estimate is prescribed; the remaining m points of the initial
simplex are generated by a simple procedure that uses the priming point.

optimisation (e.g., [9.5], [9.8], [9.15], [9.18]).

interest [9.11], [9.24]. One of its features is the absence of any

9.3 Methods for Unconstrained Minimisation 319

The minimisation procedure consists of a sequence of operations
referred to as reflection, expansion, and contraction. Each step begins with
a reflection operation which is then followed by either an expansion
operation or a contraction operation. These operations produce a sequence
of simplexes that change shape and move through the m-dimensional
parameter space until (one hopes) they encompass, and then contact upon,
the minimising argument p*.

Let {p0, p1, p2, . . . , pm} be the vertices of the current simplex. Let pL be
the vertex that yields the largest value for J, pG be the vertex that yields the
next largest value for J, and pS be the vertex that yields the smallest value
for J. Correspondingly, let JL = J(pL), JG = J(pG), and JS = J(pS). The
centroid of the simplex with pL excluded is given by:

pC =
m

1
])[(

0

L
m

k

k
pp .

A reflection step (Figure 9.2a) is carried out by reflecting the worst
point pL about the centroid, to produce a new point pR , where

pR = pC + (pC – pL) .

Here is one of three user-assigned parameters associated with the
procedure; the requirement is that > 1 and it is typically chosen to be 1.
One of three possible actions now take place depending on the value of JR

= J(pR). These are:

i. If JG > JR > JS, then pR replaces pL and the step is completed.
ii. If JR < JS then a new ‘least point’ has been uncovered and it is

possible that further movement in the same direction could be
advantageous. Consequently an expansion step (Figure 9.2b) is
carried out to produce pE where

pE = pC + (pR – pC) (> 1 and is typically 2) .

E J E

S

L E L

with pR. In either case, the step is completed.

R > JG then a contraction step is made to produce the point pD

where

pD = pC + (p~ – pC) (0 < < 1 and is typically 0.5) .

Here p~ is either pR or pL depending on whether JR is smaller or larger
than JL (see Figures 9.2c and d). If JD = J(pD) < JG then the step ends.
Otherwise the simplex is shrunk about pS by halving the distances of
all vertices from this point and then the step ends.

Either of two conditions can termination the search procedure. One is
based on the relative position of the vertices of the current simplex; that is,

 If J = (p) < J then p is replaced with p ; otherwise p is replaced

iii. If J

320 9. Optimisation

if they are sufficiently closely clustered then pS can be taken as a
reasonable approximation of the minimising argument p*. Alternately, the
termination can be based on the variation among the values of the criterion
function J at the vertices of the simplex. If these values are all within a
prescribed tolerance, then again pS can be taken as a reasonable
approximation of the minimising argument p*.

p
S

p
L

p
G

p
R

pC

FIGURE 9.2a. Reflection step.

p
S

p
L

p
G

p
R

pC

pE

FIGURE 9.2b. Expansion step.

p
S

p
L

p
G

p
R

pCpD

FIGURE 9.2c. Contraction step (JL < JR).

9.3 Methods for Unconstrained Minimisation 321

p
S

p
L

p
G

p
R

pC pD

FIGURE 9.2d. Contraction step (JR < JL).

9.3.2 The Conjugate Gradient Method

We begin this section with a brief review of the notion of the gradient,
specifically, the gradient of the criterion function J = J(p). Inasmuch as p
is a vector of dimension m, the gradient of J is likewise a vector of
dimension m. The kth component of this vector is the partial derivative of J
with respect to pk, that is, with respect to the kth component of p. The
gradient of J(p) is denoted Jp(p). Suppose, for example, that J(p) = 10(p2 –
p1

2)2 + (1 – p1)
2. Then,

)(20

))1(2)(40(

J

J

)(
2
12

1
2
121

2

1

pp

pppp

dp

p
pJp .

two reasons:

a) If p is a point in m-space, then the negative gradient vector

evaluated at p has the property
greatest decrease in the function J. In other words, for suitably
small but fixed , J(p + v) is smallest when

b) When J is continuously differentiable, a necessary (but not
sufficient) condition for p* to be a local minimum for the function
J(p) is that Jp(p*) = 0.

v = – J (p). p

that it points in the direction of

The gradient vector is especially relevant in function minimisation for

322 9. Optimisation

A concept that has played an important role in the development of
numerical minimisation procedures is that of conjugate directions. The
concept relates to a specified symmetric positive definite matrix A of
dimension m. Specifically, a set of (m) nonzero m-vectors (or
equivalently, ‘directions’) r0, r1, . . . , r -1 is A-conjugate if (rj)T A rk = 0 for j

k and j, k = 0, 1, . . . , (– 1).
A-conjugate directions have a variety of interesting properties which

include the feature that any such collection of directions is linearly
independent. There is one property that is especially relevant from the
point of view of function minimisation but before outlining it, the notion of
a linear or line search needs to be introduced.

Suppose p is a given point in m-space and r is a given m-vector
(direction). For any positive value of the scalar , the m-vector (p + r)
can be regarded as a point in m-space reached by moving a distance of
away from p in the direction r

-. Suppose now that J is a given scalar
valued criterion function whose value depends on the m-vector p, that is, J
= J(p) and suppose we substitute (p + r) for p. Because both p and r

are fixed, J becomes simply a function of the scalar and consequently we
can write J = J(). Furthermore, it is reasonable to assume that there is a
value of (which we denote *) that yields a minimum value for J().
Finding the value of * is called the line (or linear) search problem. In
effect, the line search problem corresponds to locating a minimum of J in a
specific plane (or ‘slice’) of the parameter space. This is illustrated in
Figure 9.3. Note the possible existence of multiple local minima.

α

J(α)

α∗

FIGURE 9.3. Illustration of the line (linear) search problem.

9.3 Methods for Unconstrained Minimisation 323

The following result is the essential property of conjugate directions
from the point of view of function minimisation.

The CD Lemma

namely, when = m, there must exist an index K m such that pK = p*, the
minimising argument of J. This follows from the linear independence of
the m-vectors r0, r1, . . . , rm-1 and outcome (i) of the CD Lemma. More
specifically, (i) states that the gradient of J at pK (i.e., Jp(p

K)) is orthogonal
 to each of a set of m linearly independent m-vectors which, in turn, implies
that Jp(p

K) must be zero (recall that the zero m-vector is the only one
 that can be simultaneously

of the assumed special structure of J, the
 condition Jp(p

K) = 0 is both necessary and sufficient for pK = p*, the
minimising argument of J. Note that the case where K = m is a ‘worst’
case; for certain choices of the initial point p0, it can occur that K < m. In
 other words, the minimising argument of J will be located in at most m steps
 of the procedure.

The fundamental prerequisite for implementing any function
minimisation method that is based on conjugate directions is, of course, the
availability of the necessary set of directions. Furthermore it must be borne

Let:

J(p) = ½ pT A p + bT p + c with A symmetric and positive definite
and p an m-vector
p0 be a given initial point

0 1 -1, (m) be a set of A-conjugate
directions
the kth k 1

2

k-1 along rk-1 pk

 = pk-1 + * rk-1

where J(pk) = min J(pk-1 + rk-1).

Then:

i) p

k

p

k T j

ii) the same point pk is reached independent of the order in which the
directions rj are used in the sequence of line searches.

important because any criterion function has a quadratic approximation in
a sufficiently small neighbourhood around its minimum. Consequently any
implications flowing from this Lemma are relevant in such a

There is, in fact, one especially important consequence of the Lemma,

orthogonal to each of a set of m linearly inde-
pendent m-vectors). Because

neighbourhood.

 -

the m-vectors r , r , . . . r

point, p in the sequence p , p , . . . p be generated by
; that is,

J (p) has the property that (J (p)) r = 0 for j = 0, 1, . . . (k--1)

The general quadratic form for the criterion function, J(p), considered in

carrying out a line search from p

the CD Lemma is clearly very specialised. Nevertheless the Lemma is

324 9. Optimisation

in mind that any such approach is, at least in principal, relevant only to the
minimisation of a quadratic function because the directions are, after all,
‘A-conjugate’ where A is the matrix that defines (at least in part) the
specific quadratic function of interest. Thus the whole undertaking may
appear somewhat pointless inasmuch as the minimum of a quadratic
function can easily be obtained without the need for a numerical search
process. (For the quadratic criterion function assumed in the CD Lemma
above, the minimising argument is given by p* = –A-1 b.)

The escape from this apparent dilemma is via the observation made
earlier that any criterion function has a quadratic approximation in some
suitably small region around its minimising argument p*. Thus if a
minimisation process can move into this region then the properties of the
conjugate directions will result in rapid convergence upon p*. But it needs
to be appreciated that in the general case, the specific quadratic function is
never known hence any practical conjugate directions method needs to
internally generate directions that will ultimately be A-conjugate even
though there is no knowledge of the characterising matrix, A. Although
this may appear to be a formidable task, numerous such procedures have
been developed. The family of conjugate gradient methods is included
among these procedures.

The original function minimisation procedure in the conjugate gradient
family was proposed by Fletcher and Reeves [9.7]. The kth step in the
procedure (k 1) begins with the current estimate of the minimising
argument pk-1 and a search direction rk-1. There are two tasks carried out
during the step. The first generates a new estimate for the minimising
argument denoted pk, where

pk = pk-1 + * rk-1 and J(pk) = min J(pk-1 + rk-1).

In other words, pk is the result of a line search from pk-1 in the direction
rk-1.

The second task carried out on the kth step is the generation of a new
search direction, denoted rk, where

rk = – Jp(p
k) + k-1 rk-1 with k-1 =

||)(||

||)(||
1k

k

pJ

pJ

p

p .

Euclidean length of v which is given by vT v).
For the first step in this procedure, (i.e., when k = 1), p0 is an initial

‘best’ estimate of the minimising argument and r0 = – Jp(p
0). The sequence

of steps ends when some predefined termination criterion is satisfied (e.g.,

(In the above, for an m-vector v we use || v || to represent the square of the

9.3 Methods for Unconstrained Minimisation 325

a point pk is located at which the length of the gradient vector; i.e.,
sqrt(||Jp(p

k

The significant feature of this procedure is that when the criterion
function J(p) is quadratic then the search directions r0, r1, . . . , rk that are
generated are A-conjugate. Consequently it follows from the CD Lemma
that the minimising argument of J will be located in at most m steps (or m
line searches).

A number of variations on this original procedure have been proposed.
Several of these have suggested alternate values for k-1 and others have
tried to better accommodate the reality of nonquadratic criterion functions.
For example, Polack and Ribière [9.20] have proposed

k-1 =
||)(||

))()(())((

1

1

k

kkTk

pJ

pJpJpJ

p

ppp ,

and Sorenson [9.25] recommends

k-1 =
))()(()(

))()())((

11

1

kkTk

kkTk

pJpJp

pJp(JpJ

pp

ppp .

It’s perhaps worth observing that if k-1 is set to zero, then the procedure
outlined above becomes the classic steepest descent process. The practical
performance of that approach, however, is poor and its selection is not
recommended, especially in view of the far superior alternatives that are
conveniently available.

Suggestions have also been made for ‘restarting’ the conjugate gradient
procedure in some cyclic fashion, in other words, abandoning the
collection of search directions that have been generated and reinitiating the
procedure (which usually means choosing the negative gradient as the
search direction). The procedure’s m-step property when applied to a
quadratic function suggests that after a cycle of m-steps (or line searches),
the procedure could be reinitialised. Although the natural choice for the
restart direction is the negative gradient, Beale [9.1] has shown that the
finite termination property on the quadratic function can be maintained
even when the first search direction is not the negative gradient. Based on
this observation, a restart strategy that incorporates a novel specification
for the search directions was proposed. The approach suggested by Beale
was further developed by Powell [9.21].

The line search problem is one which, on first glance, appears
deceptively simple to resolve (see Figure 9.3). After all, there is only a
single parameter that needs to be considered and it is usually known that
the minimising value of is positive. There is even an easily established
orthogonality condition that the minimizing argument * must satisfy;

 namely,

)||), is sufficiently small.

326 9. Optimisation

 (Jp(p
k-1 + * rk-1))T rk-1 = 0 .

Nevertheless, obtaining an accurate solution to the problem can be a
challenging numerical task. Note also that there is an implicit requirement
for efficiency because a line search problem needs to be solved on each
step of the procedure and indeed, the solution of these subproblems
consumes a substantial part of the computational effort in solving the
underlying criterion function minimisation problem.

A variety of approaches can be considered for solving the line search
problem. The first that usually comes to mind is a polynomial fitting
process. For example, by evaluating J() at three ‘test’ values of , it is
possible to obtain a quadratic approximation for J whose minimum can be
readily determined. That value can be taken as an approximation (albeit
rather crude) for *. Various refinements of this approach are clearly
possible, for example, obtaining a new quadratic approximation using ‘test
points’ that are in the region of the previous minimum or incorporating a
higher order polynomial (possibly cubic).

If it can be assumed that there is available a known interval Î which
contains * and that J() is unimodal in Î2 then an interval reduction
technique can be used. This involves the judicious placement of points in a
sequence of intervals of decreasing length where decisions to discard
portions of each interval in the sequence are made on the basis of the
relative size of J() at the selected points. The decisions that are made
ensure that the retained interval segment contains *. The process ends
when the current interval length is sufficiently small and then its midpoint
is typically chosen to be *. Arguments based on maximising the
usefulness of each evaluation of J give rise to the placement of points in a
manner that is related either to the golden section ratio or to the Fibonacci
sequence. A discussion of the underlying ideas can be found in [9.6].

The significance and practical value of carrying out exact line searches
is a topic that has received considerable attention in the optimisation

when the line search is not exact the Fletcher–Reeves formula could generate a
search direction rk that is not a descent direction. A variety of conditions
has been proposed for terminating the line search when a sufficient
decrease has occurred in the value of the criterion function (e.g., the Wolfe
conditions [9.27]). Many of these are outlined in [9.17].

important feature of the optimisation problem that has specific relevance

2 Within the present context, this implies that while is in Î, J() always increases

as moves to the right from * and likewise J() always increases as moves to
the left from *.

literature (e.g. [9.2] and [9.3]). It can, for example, be easily shown that

We end the discussion in this Section by addressing a distinctive and

to the CTDS realm that is of interest in this textbook.

9.4 An Application in Optimal Control 327

The conjugate gradient method (and indeed a large number of other
powerful numerical optimisation methods) requires the gradient of the
criterion function. In our case the criterion function J is not an analytic
function for which required derivative information can be obtained simply

Recall that the kth component of the gradient vector Jp, evaluated at the

)()(
lim

0

e

p

JJ

p

J
k

k

 ,

where ek is the kth column of the m × m identity matrix. The obvious
numerical approximation to this formal definition is:

)()(e

p

JJ

p

J k

k

 ,

where is a suitably small positive scalar. With this approach, each of the
m components of the gradient vector can be individually approximated.
Determination of Jp() requires m J
evaluation corresponds to a small perturbation in one of the components of
the reference point . (We assume here that the value of J at the reference
point , i.e., J(), is already known.) Selecting the most appropriate value
for the perturbation requires careful consideration because ‘small’ is a
highly ambiguous notion. If, for example, is ‘too small’ then the result
obtained can become hopelessly corrupted by numerical noise.
Nevertheless, with proper care the approach can usually be sufficiently
accurate to enable an effective implementation of a conjugate gradient
minimisation procedure or, indeed, the implementation of any procedure
requiring gradient information.

We note nevertheless that one particular case that would merit special
caution in this respect is the circumstance where a discontinuity is known
to exist in the conceptual model. As pointed out in the discussion in
Section 8.4.3, dealing with such models has inherent numerical difficulties
and the errors introduced could undermine the success of the gradient
approximation outlined above.

9.4 An Application in Optimal Control

Typically an optimal control problem involves the determination of the
time trajectory for one or more control inputs to a continuous-time

by differentiation. Consequently some alternate approach is required.

specific point p = , is (by definition) given by:

 evaluations of where each such

328 9. Optimisation

dynamic system in a manner that minimises a prescribed criterion function.
This problem appears, on first glance, to be beyond the scope of our
interest in this chapter because the determination of entire time trajectories
was never part of the intended considerations. We note, however, that a
substantial body of literature relating to the solution of this generic

results that have emerged is the Pontriagin minimum principle. This, in
particular, provides a basis for transforming the optimal control problem
into a boundary value problem which can then be reformulated as a
function minimisation problem. In this section we illustrate this process
with a straightforward example.

Our concern in this example is with the control of a first-order
irreversible exothermic chemical reaction carried out in a stirred tank
reactor. Control of the process is achieved by injecting coolant through a
valve into a cooling coil inserted into the reactor. The conceptual model is
based on characterising the perturbations around a steady-state condition.
It is relatively simple but highly nonlinear. The model is given in Equation
(9.1):

)()(1)(

)()())(21()(

22

11

tRtxtx

t StRtxtx
(9.1)

where
R(t) = 0.5 + (x2(t) + 0.5)exp(y(t))

y(t) =
2)(

)(25

1

1

tx

tx

S(t) = u(t) (x1(t) + 0.25) .

Here x1(t) and x2(t) represent deviations from steady-state temperature
and concentration, respectively, and u(t) is the control input. We take x1(t0)
= 0.05 and x2(t0) = 0 and for convenience we assume that t0 = 0. The
objective is to rapidly return the reactor to steady-state conditions (x1 = x2 =
0) while at the same time avoiding excessive usage of coolant. Choosing
u(t) to minimise the following function reflects these objectives:

P = dttutxtx))(1.0)()((22
2

1

0

2
1 .

The application of the minimum principle gives rise to an auxiliary set
of differential equations; namely,

)(1 tv = v1(t) (2 + u(t)) – Q(t) (v1(t) – v2(t)) – 2 x1(t)

)(2 tv = v2(t) – (v1(t) – v2(t))exp(y(t)) – 2 x2(t) ,
(9.2)

problem is available (see, e.g., [9.13], [9.26]) and among the important

9.5 Exercises and Projects 329

where

Q(t) =
2

1

2

)2)((

))(()5.0)((50

tx

tyexptx

and

u(t) = 5 v1(t) (x1(t) + 0.25) .

1

2

The difficulty that arises here is that initial conditions are given for x1(t)
and x2 t t v1(t)
and v2(t) are specified at t = 1. In other words there is a need to solve a
two-point boundary value problem. Such problems have been extensively
studied in the numerical mathematics literature and a variety of methods is
available. One approach is to recast the problem as a criterion function
minimisation problem within the class considered in this chapter.

In this reformulation, the CTDS model of interest is the group of four

conditions:

x1(0) = 0.05, x2(0) = 0, v1(0) = p1, v2(0) = p2 ,

where p1 and p2 are parameters. The values of we seek for p1 and p2 are

J(p1, p2) =)1()1(2
2

2
1 vv .

Then, provided that the minimisation process yields a minimum value of

The approach which is illustrated in this example has general
applicability to a wide range of optimal control problems and is, at least in
principle, equally applicable to boundary value problems in general.

9.5 Exercises and Projects

9.1 The general quadratic function of dimension m can be written as:

J(p) = ½ pT A p + bT p + c ,

where p is an m-vector, A is an m × m positive definite symmetric matrix,
and b is a m-vector. Consider the point po and a search direction r. Show

()9.3a

()

() (i.e., conditions at = 0) whereas the boundary conditions on

9.3b

 v (1) = The solution to Equations (9.1) and (9.2) (for the case where
v (1) = 0) provides the necessary conditions for the optimality of u(t) as
prescribed in Equation (9.3b).

differential equations given by Equations (9.1) and (9.2) together with
Equation (9.3). We assume the set of initial

the solution to the original optimal control problem.

those which yield a minimum value for the criterion function:

zero for J (implying v1 2(1)), the value of u(t) which results will be (1) = 0 = v

330 9. Optimisation

that if * solves the line search problem in the direction r from the point po,
that is, * has the property that

J(po + *r) = min J(po + r) ,

then

rAr

pr

T

p
T J)(0

* .

9.2 Develop a computer program that implements an efficient line search
procedure which is based on the golden section search. Details about this

//en.wikipedia.org/wiki/Golden_section_search). Test your program on a
variety of quadratic functions by comparing your results with the analytic
result given in Problem 9.1.

9.3 The bouncing ball project was introduced in Chapter 2 (Section
2.2.5). The goal is to find a release angle 0 that results in the ball’s
trajectory entering the hole in the ice surface. This task can be formulated
as a line search problem in the following way. Consider the criterion
function J(0) = (H – kx̂)2 where H is the location of the hole and kx is the
ball’s horizontal position when the k th collision with the ice surface
occurs. J has a minimum value of zero when kx̂ = H, that is, when the ball

 bounce . Because the criterion function J

0

The solution requirements also stipulate that there must be at least one
bounce before the ball passes through the hole; that is, k > 1. This can be
handled (somewhat inelegantly) by first finding a value for 0 for which
the second and third bounces straddle the hole. This value can then be used
as the starting point for the line search process.

Embed a syntactically compatible version of the program developed in
Problem 9.2 into the Open Desire simulation model for the bouncing ball
given in Figure A3.6 and make appropriate changes in the Experiment segment
of the program so that it finds a suitable value for 0.

9.4 Probably the most intuitively appealing approach for locating the
minimising argument of a criterion function J(p) is a succession of line
searches along the co-ordinate axes. This implies that the searches are
along the directions e1, e2, . . . , em where ek is the kth column of the m × m
identity matrix (ek is an m-vector whose entries are all 0 except for the
entry in the kth position which is 1). One notable feature of this procedure

 depends only on a scalar parameter (namely
problem is one-dimensional (hence a line search problem).

ˆ

,), the minimisation
falls through the hole on the k th

approach can be found in [9.10] or [9.22] or at the Wikipedia site:

,

 ,

9.5 Exercises and Projects 331

(usually called the univariate search) is that it does not require gradient
information. It can be viewed as a series of iterations where each iteration
begins at the point po and ends at the point pm which is the point that is
reached after a sequence of m line searches along the co-ordinate axes. The
procedure is illustrated in Figure 9.4 for the two-dimensional case.

p
0

p
1

p2(p0)

p
1

*
2

*
2

*
1

*
1

p1

p2

End of first iteration :

this point becomes p
0

for the next iteration

End of second iteration

p
2
(p

0
)

FIGURE 9.4. The univariate search in two dimensions.

The procedure for the univariate search can be written in the following
way. Choose a value for the termination parameter and an initial estimate
p̂ for the minimising argument of J and set pm = p̂ .

m termination of the repeat/until loop is

the accepted
 estimate for the

repeat
k = 0
po pm

while (k < m)
k k + 1
Find *

k

k-1 + *

k ek) = min J(pk-1 + ek)

pk pk-1 + *

k ek

endwhile

Jmax max(|J(po)|, |J(pm)|))

until
max

0)()(

J

JJ m
pp

minimising argument.
 value of p upon

 such that J(p

The

332 9. Optimisation

Show that the univariate procedure will converge to the minimising
argument of the general quadratic function given in Problem 9.1 if exact
line searches are carried out.

HINT: Consider what must be true if the procedure makes no progress
on some particular iteration and then use the fact that the only m-vector
that can be simultaneously orthogonal to m orthogonal m-vectors is the
zero vector.

In many situations the performance of the univariate procedure outlined
in Problem 9.4 can be significantly improved by incorporating a slight
modification. This simply involves an additional line search in the
direction s = (pm – po). This modified procedure (which we call the
extended univariate search) is illustrated in Figure 9.5.

p0

p1

p2

p
1

p
3
(p

0
)

p1

p2

p
2

p
3
(p

0
)

FIGURE

a) Modify the procedure given in Problem 9.4 so that it represents the
extended univariate search as described above.

b) Formulate an argument that demonstrates that the extended univariate
search will also locate the minimising argument of the general
quadratic function.

9.5 a) Write a program that implements the univariate search procedure as

 b) Test the effectiveness of the program using the following two test
problems.

i. J(p) = 100(p2 – p1

2)2 + (1 – p1)
2.

ii. J(p) = (p1 + 10p2)
2 + 5(p3 – p4)

2 + (p2 – 2p3)
4 + 10(p1 – p4)

4 .

that was developed in Problem 9.2.

 9.5. The extended univariate serach in two dimensions.

presented in Problem 9.4. Incorporate the line search program

9.6 References 333

Use initial estimates (0,1) and (1,0) for test problem (i) and initial
estimates (1, 0, 1, 0) and (–1, 0, 0, 1) for test problem (ii). The minimum
value of the criterion function for both test problems is zero. The
termination parameter should be set to a value no larger than 10-5.

9.6 Repeat Problem 9.5 for the case of the extended univariate search.

9.7 Develop an Open Desire simulation program to solve the optimal
control problem that is outlined in Section 9.4. Use a syntactically
compatible version of the extended univariate search program developed
for Problem 9.6 to solve the criterion function minimisation problem. Use
(2, 2) as an initial estimate of the minimising argument of the criterion
function.

9.6 References

9.1. Beale, E.M.L., (1972), A derivation of conjugate gradients, in F.A. Lottsma
(Ed.), Numerical Methods for Non-Linear Optimization, Academic Press,
London, pp. 39–43.

9.2. Al-Baali, (1985), Descent property and global convergence of the Fletcher-
Reeves method with inexact line search, IMA Journal on Numerical
Analysis, 5: 121–124.

9.3. Bertsekas, D.P., (1996), Constrained Optimization and Lagrange Multiplier
Methods, Athena Scientific, Nashua, NH.

9.4. Bhatnager, S. and Kowshik, H.J., (2005), A discrete parameter stochastic
approximation algorithm for simulation optimization, Simulation, 81(11).

9.5. Bonnans, J.F., Gilbert, J.C., Lemaréchal, C., and Sagastizabal, C.A., (2003),
Numerical Optimization: Theoretical and Practical Aspects, Springer-
Verlag, Berlin.

9.6. Cormen, T.H., Leisserson, C.E., and Rivest, R.L., (1990), Introduction to
Algorithms, MIT Press, Cambridge, MA.

9.7. Fletcher, R. and Reeves, C.M., (1964), Function minimization by conjugate
gradients, Computer Journal, 7: 149–154.

9.8. Fletcher, R., (1987), Practical Methods of Optimization, 2nd edn., John
Wiley, New York.

9.9. Gilbert, J. and Nocedal, J., (1992), Global convergence properties of
conjugate gradient methods for optimization, SIAM Journal on
Optimization, 2: 21–42.

9.10. Heath, M.T., (2000), Scientific Computing, An Introductory Survey, 2nd
edn., McGraw-Hill, New York.

9.11. Lagarias, J.C., Reeds, J.A., Wright, M.H., and Wright, P.E., (1998),
Convergence properties of the Nelder-Mead simplex method in low
dimensions, SIAM Journal of Optimization, 9: 112–147.

9.12. Law, A.M. and Kelton, D.W., (2000), Simulation Modeling and Analysis,
(3rd edn.), McGraw-Hill, New York.

334 9. Optimisation

9.13. Lewis, F.L. and Syrmos, V.L. (1995), Optimal Control, 2nd edn., John
Wiley and Sons, New York.

9.14. Nelder, J. and Mead, R., (1965), A simplex method for function
minimization, Computer Journal,, 7: 308–313.

9.15. Nocedal, J. and Wright, S.J., (1999), Numerical Optimization, Springer-
Verlag, New York.

the 2002 Winter Simulation Conference, pp. 79–84.
9.17. Oretega, J.M. and Rheinboldt, W.C., (1970), Iterative Solution of Nonlinear

9.18. Pedregal, P., (2004), Introduction to Optimization, Springer-Verlag, New
York.

.
9.20. Polack, E. and Ribière, G., (1969), Note sur la Convergence de Méthodes

de Directions Conjuguées, Revue Française d’Informatique et de
Recherche Opérationnelle, 16: 35–43.

9.21. Powell, M.J.D., (1978), Restart procedures for the conjugate gradient
method, Mathematical Progress, 12: 241–254.

9.22. Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., (1999),
Numerical Recipes in C, The Art of Scientific Computing, 2nd edn.,
Cambridge University Press, Cambridge, UK.

9.23. Rubinstein, R. and Shapiro, A., (1993), Discrete Event Systems: Sensitivity
Analysis and Stochastic Optimization by the Score Function Method, John
Wiley, New York.

9.24. Rykov, A., (1983), Simplex algorithms for unconstrained optimization,
Problems of Control and Information Theory, 12: 195–208.

9.25. Sorenson, H.W., (1969), Comparison of Some Conjugate Directions
Procedures for Function Minimization, J Franklin Institute, vol. 288, pp.
421–441.

9.26. Seierstad, A. and Sydstaeter, K., (1987), Optimal Control Theory with
Economic Applications, North Holland, Amsterdam.

9.27. Wolfe, P., (1969), Convergence conditions for ascent methods, SIAM
Review, 11: 226–235.

9.28. Zabinsky, Z.B., (2003), Stochastic Adaptive Search for Global
Optimization, Kluwer Academic, Dordrecht.

9.19. Pinter, Janos D., Linder, David and Chin, Paulina (2006), Global

9.16. Olafason, S. and Kim, J. (2002), Simulation optimization, in Proceedings of

Equations in Several Variables, Academic Press, New York.

Optimization Methods and Software, vol 21(4), pp. 565--582.
Optimization toolbox for maple: an introduction with illustrative applications,

INDEX

A

ABCmod framework, 99-122
Examples, 122-134, 153-161

Accreditation, 17, 50
Action: see Activity construct
Action Sequence: see Activity construct
Activity construct

Action, 100, 112, 113, 114
Action Sequence, 113, 114, 118, 132,

138, 160
Activity, 96, 100, 106, 108, 110, 114,

132, 133, 161, 177, 191, 202
Extended Activity, 111, 112, 114, 121,

135, 139-142, 188, 208-210
Extended Triggered Activity, 112-114,

143
Triggered Activity, 110, 111, 114, 132,

135, 187, 189, 191, 193, 194, 205
Assumption R, 33-35
Attribute, 32, 34, 101-105, 126-128, 134,

137, 157, 200, 217
see also GPSS parameter

Attribute tuple, 102, 104, 127, 166, 196
see also GPSS Transaction

Autocorrelation, 68, 69, 234, 374
Autocorrelation plot, 67-69
Automobile suspension system, 251-253,

269-271, 293

B

Balking, 9, 149
Behaviour generation, 6, 26, 29, 36, 247,

251
Bins, 73, 76, 77
Bonferroni inequality, 242, 243
Bootstrapping, 163, 177, 181, 383
Bouncing ball, 37-40, 294-298, 316, 423-

329
Boundary value problem (BVP), 275, 328,

329

Bounded horizon study, 64, 65, 219-225,

233

C

cei: see Entity
Code of ethics, 17
Common random numbers (CRN), 235,

239-242
Conceptual model: see Model
Confidence interval: see Output analysis
Constant, 28, 96, 125, 136, 156, 173, 178,

414
Continuous time dynamic system (CTDS),

32, 55, 215, 247-250, 313, 314, 413
Correlated data, 67, 68, 70
Correlation positive, 67, 346
Covariance, 345, 373
Credibility, 17, 22, 46-52, 226
CYGWIN: see Open Desire

D

Data model: see Model
Data modelling, 50, 59-84, 109, 114, 256
Data module, 119, 120, 130, 131, 159,

174, 178, 180
DEDS: see Discrete event dynamic system
Deterministic model: see Model
Dining philosophers, 143
Discontinuity, 270, 294, 295, 301, 327,
Discrete event dynamic system (DEDS),

27, 30, 32, 34, 44, 55, 249, 250, 267,
300, 313, 314, 335

Distributed parameter system, 249, 250
Distribution, 65, 66, 72, 75, 84, 87, 178,

218
Bernoulli distribution, 346, 347
beta distribution, 84, 361, 362
binomial distribution, 347
chi-square distribution, 75-77, 80, 358,

359

435

450 Index

Erlang distribution, 357, 358
empirical distribution, 66, 81-83, 409
exponential distribution, 73-78, 88, 178,

353-355, 358
gamma distribution, 67, 69, 75-79, 355-

358
normal distribution, 75, 90, 359, 360

364, 366-371
Poisson distribution, 347, 348, 355
Student t-distribution, 221, 233, 239,

370-372
triangular distribution, 84, 352, 353,

361
uniform distribution, 84, 87, 178, 350-

352, 361, 385
Documentation, 11, 22, 51, 52
Domain sequence: see Input
DSOV: see Output
Duration, 100, 104, 107-114, 121, 183,

188, 196
Dynamic model: see Model
Dynamic system, 4, 23, 29, 54

E

Elapsed-time reflectors, 101
Entity, 24-28, 96-106

aggregate entity, 96, 105, 127, 128,
157, 197

consumer entity class, 96, 99, 102,
126,157, 189

consumer entity instance (cei), 96, 100-
104, 111, 152, 178, 189, 197, 385

consumer entity set, 96, 97
endogenous entity, 25, 27
exogenous entity, 25, 27, 28, 30, 162
group entity, 96, 104, 127, 157, 175,

197
queue entity, 25, 96, 103, 128, 157,

175, 197
resource entity, 25, 96, 99, 105, 127,

134, 137, 175, 197
service entity, 99, 100, 197

Event, 95, 96, 108
conditional event, 108, 109
event notice, 162-171
future event, 152, 162, 180, 185
starting event, 108, 114
scheduled event, 108, 109
terminating event, 109, 114

Event scheduling simulation model, 152-
153, 161, 165, 173, 178

Experimental frame, 5

F

Fluid level control, 253-255,
Future event list (FEL), 162-165

see also: Event, event notice
Future event name, 162, 180, 185
Future event routine (FER), 162-165, 174-

178
see also: Event, future event

G

Gas station, 8, 9, 27,
GPSS, 44, 196, 377-411

chain, 378, 382
current event chain (CEC), 196, 382,

383
future event chain (FEC), 196, 382, 383
Facility, 378, 382-384
parameter, 197, 381
process, 197, 385
segment, 197, 378, 385
structural entity, 197, 377
structure diagram, 197, 384
Transaction, 196, 377, 381

GPSS Blocks, 196, 377
ADVANCE, 198-199, 203, 207-209
ASSIGN, 198-200, 203, 204, 206, 207
BUFFER, 205, 207, 210
BVARIABLE, 205
CLOSE, 212
DISPLACE, 209-210
ENTER, 197-199, 205-206
GENERATE, 197-199, 200, 206-207,

212
LINK, 200, 202-204, 206
LEAVE, 198-199, 202-203, 206
OPEN, 211-212
SAVEVALUE, 208-209, 212
TERMINATE, 197-198, 203-204, 206,

212
TEST, 198-199, 202-203, 205, 207, 210
UNLINK, 202-204, 207
WRITE, 198-199, 202-203, 206, 211-

212
GPSS World, 378, 385, 393, 408

 Index 451

Granularity, 10, 48

H

Historical overview, 15
analogue computer, 15, 16

I

Independent random variable, 345, 346
Initial conditions, 63, 226, 267, 271
Initial value problem (IVP), 275, 276, 282
Input

domain sequence, 114-118, 128, 138,
158, 163

range sequence, 114-117, 128, 138, 158
timing map, 116, 117

Input entity stream, 28, 30, 113, 116-118,
128, 138, 158

Input variable, 30, 31, 36, 116, 118
characterizing sequence, 114-116

Interval estimation, 221-222, 366-372
Intervention, 110, 114, 121

interruption, 111, 122, 135, 139, 187-
188, 194-195, 209-210

pre-emption, 111, 121, 209
Inverse transform method: see Random

variate generation
IVP: see Initial value problem (IVP)

J

Java, 166
abstract class, 166
collections framework, 166

Java classes, cern.colt, 81, 174, 222
Empirical, 81-82
EmpiricalWalker, 186
Exponential, 178-180, 186
MerseenneTwister, 81-82
Uniform, 178-180, 186

Java classes, collections framework
ArrayBlockingQueue, 175
ConcurrentLinkedQueue, 175, 179, 186
DelayQueue, 175
HashSet, 175, 178-179, 186
LinkedBlockingQueue, 175
LinkedHashSet, 175
PriorityBlockingQueue, 175
PriorityQueue, 166-167, 169-170, 175
SynchronousQueue, 175

Java classes, event scheduling
ESAttributeList, 167, 169, 170, 175,

178, 181-182
ESOutputSet, 167, 169-170, 172
EvSched, 166-169, 179, 186

Java classes, JMX
AttributeList, 169, 170, 175

Java classes, simulation models
KojoKitchen, 178-180, 183, 222-223
PortVer2, 186

Java methods, collections framework
add, ConcurrentLinkedQueue, 181
add, HashSet, 179, 184, 187
peek, ConcurrentLinkedQueue, 182,

184
poll, ConcurrentLinkedQueue, 182, 184
poll, PriorityQueue, 171, 173
remove, HashSet, 179, 184
size, ConcurrentLinkedQueue, 188
size, HashSet, 179, 184, 187

Java methods, cern.colt
nextDouble, Empirical, 82
nextDouble, Exponential, 182
nextDouble, Uniform, 184, 187

Java methods, event scheduling
addEventNotice, EvSched, 167-169,

181-184, 185, 187, 188
clearSet, ESOutput, 169-170, 236
computeTrjDSOV, ESOutput, 169-170,

172, 235-236
computePhiDSOV, ESOutput, 169-170,

172, 235-236
doubleValue, ESAttributeList, 169,

184, 188
esAttributeListValue, ESAttributeList,

169, 187
get, ESOutput, 169-170
implicitStopCondition, EvSched, 167-

169, 171, 173
indexOfName, ESAttributeList, 169-

170
initEvSched, EvSched, 167-169, 171
intValue, ESAttributeList, 169-170,

187, 188
processEvent, EvSched, 167-169, 171,

173, 180-182, 187
put, ESOutput, 169-170, 183-184, 185
removeEventNotice, EvSched, 167-

169, 188
rewindSet, ESOutput, 169-170

452 Index

runSimulation, EvSched, 167-169, 171,
173, 180, 182, 223, 236

setIntValue, ESAttributeList, 169-170,
187, 188

setTimef, EvSched, 167-169, 235-236
Java methods, JMX

add, AttributeList, 182
indexOf, AttributeList, 170

Java methods, lang
compareTo, Comparable, 169-170

K

Kojo’s Kitchen, 153-161, 178-184, 222-
225

L

Lipschitz condition, 276
Lotka-Volterra equations, 257

M

Mean: see Ouput analysis, point estimate
Method of batch means, 234
Minimisation: see Optimisation
Model, 6-7, 21-22, 54-56

conceptual model, 42-43, 249-266, see
also: ABCmod framework

data model, 27, 50, 55, 59, 62, 65-84,
98, 104, 109, 114, 117, 119-120,
128, 130, 138, 158, 159, see also:
Random variate generation

deterministic model, 54, 250
dynamic model, 22, 29-33, 54-56
simulation model, 43-45
simulation model, event scheduling,

152, 173-189
simulation model, process oriented,

152, 189, 199-212
stochastic model, 12, 54

Module
data module, 81, 119-120, 130, 159,

174
standard module, 119-120, 174
user-defined module, 120-121, 131,

160, 174
Monte Carlo simulation, 11-13

N

Numerical integration
Euler method, 279-280
Heun form, 283
linear multi-step family, 283-285
modified Euler method, 280-281
predictor-corrector methods, 284-285
Runge-Kutta family, 282-283
variable step-size, 285-288

O

Observation interval, 23-24, 130, 159, 226
Open Desire, 248, 303-305, 414-448

CYGWIN, 413, 444
emacs editor, 445-447

Operational phases, 45-46
Optimal control, 327-329
Optimisation, 53, 313-314

A-conjugate directions, 322-325
conjugate directions, 322-324
conjugate gradient method, 321-327
gradient, 321, 323, 327
line search, 322, 325-326
Nelder-Mead simplex method, 318-321
unimodal function, 326

Output variable, 33
derived scalar output variable (DSOV),

33, 35-36, 119, 129, 159, 216-219
output set, 35
point set output variable (PSOV), 33-

36, 217-218
sample set, 34-36, 63, 119, 129, 159,

217
sample variable, 33-35, 119, 129, 217
time variable, 29-30, 33, 119, 128-129,

217
trajectory set, 30, 33, 63, 119, 129, 217

Output analysis
bounded horizon study, 219-222
comparing alternatives, 237-244
confidence interval, 219, 221-222, 225,

226, 233-234
example, Kojo's Kitchen, 222-225
example, Port Project, 234-237
point estimate, 219, 220, 233-234
steady state study, 225-234

 Index 453

P

Paired-t confidence interval method, 238,
242

Parameter, distribution, 34, 75, 218, 344
Parameter, estimation, 35, 69, 71-72, 75-

79, 218-222, 365-370, 374
Parameter, model, 28, 31, 36, 37, 39, 42,

45, 126, 156, 250, 254
Path reflectors, 101
Performance measure, 35, 60, 62, 155,

238, 316
Pilot ejection project: see Safe ejection

envelope project
Point estimate: see Output Analysis
Pontriagin Minimum Principle, 328
Population dynamics, 255-258
Port project, 122-143, 185-189, 192-196,

199-211, 234-237
Precondition, 107-110
Precondition routine, 177-178, 181-182,

184
Precondition, interrupt, 113, 189, 210
Preditor-prey model: see Population

dynamics
Pre-emption: see Intervention
Process diagram, 190-196, 199, 201
Process oriented simulation model, 151-

152, 189-190, 199
Professional accreditation, 17
Project description, 9, 40-42, 96, 122, 133,

135, 154
Project goals, 1, 5, 7-8, 10, 22, 37, 123,

155
Property reflectors, 101
Property Σ: see State
Pseudorandom numbers: see Random

number generation
PSOV: see Output

Q

Quality assurance, 46, 51-54
Queue: see Entity, queue entity, see also

GPSS, chain, see also Java classes,
collections framework

R

Random number generation, 84-87
linear congruential method, 85-86
mixed congruential method, 85
multiplicative congruential method, 85-

86
Random variate generation, 87-92

inverse transform method, 81, 88-90
rejection-acceptance method, 90-92

Range sequence: see Input
Rejection-acceptance method: see Random

variate generation
Replicated simulation runs, 218-221
Replication-deletion method, 230, 233

S

Safe ejection envelope project, 258-266,
301-305

Sample set: see Output
Sample mean, see Output analysis, point

estimate
Sample variable: see Output
Scatter plot, 67-68
SCS: see Status Change Specification
Simulation model: see Model
Simulation program, 44-45
Simulation program, event scheduling,

165-172
Simulation program, process-oriented 196,

382
Simulation program, CTDS 301-305, 423-

426, 431-433
Simulation software, 16, 43-44
Simulators, 13-14
Stability, 278, 288-292
State, 31, 55

property Σ, 32-32
State space representation, 267-272
State variables, 31-33, 37, 38, 97, 106,

251, 267, 415
Status Change Specification (SCS), 108,

109, 152
Steady-state behaviour, 65, 227-229, 375
Steady-state study, 65, 225-237

454 Index

Stiffness, 291-294
Stochastic model: see Model
Stochastic process, 61-63, 373-375

autonomous, 61-64
continuous, 61-62, 375
dependent, 62-63
discrete, 373-375
homogeneous, 63-64, 123, 154, 373-

374
Strong law of large numbers, 363
Structure diagram: see GPSS
System Under Investigation (SUI), 3, 26

T

Testing, 11, 52
regression testing, 52
stress testing, 52

Tests
chi-squared test, 75-78
frequency test, 87
goodness-of-fit test, 75
poker test, 87

runs test, 87
Time advance algorithm, 162-163, 166,

171
Timing map: see Input
Trajectory set: see Output
Transient behaviour, 63, 65, 375

V

Validation, 11, 41, 43, 46-51, 257
behaviour validation, 49
face validation, 49
replicative validation, 50

Verification, 41, 43, 46-51

W

Warm-up period, 226, 229, 234
Welch’s method, 226-232, 234
World views, 59, 151-152

activity scanning, 59, 96, 151
event scheduling, 59, 151-152
process oriented, 59, 151-152

	cover-image-large.jpg
	front-matter.pdf
	front-matter_001.pdf
	fulltext.pdf
	fulltext_001.pdf
	front-matter_002.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	front-matter_003.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	back-matter.pdf

