# PENETAPAN ORDE PERKOTAAN

### ADA 3 CARA

- ı. <u>Variabel penduduk</u>
- II. Perbandingan persentase keluar
- III. Gabungan beberapa variabel

#### VARIABEL PENDUDUK

- a. Metode Christaller
- b. Metode Rank Size Rule
- c. <u>Metode Zipf</u>

#### METODE CHRISTALLER

- Perbandingan jumlah penduduk antara kota orde lebih tinggi dengan kota setingkat lebih rendah adalah3 kali lipatnya.
- Penduduk kota orde lebih tinggi = 3 X
  penduduk kota orde lebih rendah

| Kota orde | Jumlah penduduk<br>(jiwa) |
|-----------|---------------------------|
| I         | 135 000                   |
| II        | 45 000                    |
| Ш         | 15 000                    |
| IV        | 5000                      |

#### METODE RANK SIZE RULE

#### Rumus

$$P_n = P_1 X R_n^{-1}$$

Jumlah penduduk kota ke n adalah 1/n dari jumlah penduduk kota orde tertinggi (orde I =P1)

#### Keterangan

P<sub>n</sub> = jumlah penduduk kota orde ke n

P<sub>1</sub> = jumlah penduduk kota terbesar di wilayah tersebut (orde I)

R<sub>n</sub><sup>-1</sup> = orde kota dengan pangkat -1 atau 1/Rn

- Kota orde I, jumlah penduduk 135000 jiwa.
- $\bullet$  P<sub>2</sub> = 135000X(2)<sup>-1</sup>
- $P_2 = 135000 \times 1/2 = 67500$
- Dst
  →

# CONTOH (LANJUTAN)

| Orde kota | Rumus          | Jumlah penduduk<br>(jiwa) |
|-----------|----------------|---------------------------|
| I         |                | 135000                    |
| II        |                | 67500                     |
| III       | 135000 X (1/3) | 45000                     |
| IV        | 135000 X (1/4) | 33750                     |
| V         | 135000 X (1/5) | 27000                     |
| VI        | 135000 X (1/6) | 22500                     |

#### METODE ZIPF

#### RUMUS

$$P_n = \frac{P_1}{m^q}$$

P<sub>n</sub> = jumlah penduduk kota ranking ke n

P<sub>1</sub> = jumlah penduduk kota ranking terbesar

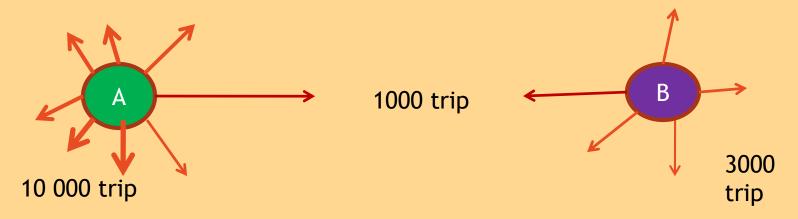
n = orde (ranking) kota tersebut

q = sebuah pangkat

- Kota terbesar (orde I) dengan jumlah penduduk = 135 000 jiwa
- Kota terkecil (orde IV) dengan jumlah penduduk = 5000 jiwa
- $\circ \rightarrow q$ ?

$$P_{n} = \frac{P_{1}}{P_{n}} \rightarrow 5000 = \frac{135\ 000}{4^{q}} \rightarrow$$

## LANJUTAN


| Kota<br>Orde | Rumus                                                         |                  | Jumlah Penduduk<br>(Jiwa) |
|--------------|---------------------------------------------------------------|------------------|---------------------------|
| I            | Pn = $\frac{135.000}{n^{2.377}} = \frac{135000}{1^{2.377}} =$ | 135000           | 135000                    |
| II           |                                                               | 135000           | 25989                     |
| III          | $Pn = \frac{135.000}{n^{2.377}} = \frac{135000}{3^{2.377}} =$ | 135000<br>13,618 | 9913                      |
| IV           | Pn = =                                                        | 135000<br>26,983 | 5003                      |

#### PERBANDINGAN % KELUAR

- Ada Kota ORDE LEBIH TINGGI
- Ada Kota ORDE LEBIH RENDAH
- Ada HINTERLAND
- Jumlah trip keluar = ?
- Jumlah trip masuk = ?satuan SMP (satuan mobil penumpang)

Persen trip keluar pada pasangan kota menentukan perbedaan orde

- Kota A dan Kota B
- Trip keluar Kota A rata-rata 10 000 trip perhari, ke Kota B sebanyak 1000 trip
- Trip keluar Kota B rata-rata 3000 trip per hari, ke Kota A sebanyak1000 trip



## CONTOH (LANJUTAN)

- % keluar Kota A ke B
- $\odot$  (1000/10000) x 100% = 10%
- % keluar Kota B ke A
- $\odot$  (1000/3000) x 100% = 33.3%
- Persen trip keluar lebih rendah → orde kota lebih tinggi.

#### GABUNGAN BEBERAPA VARIABEL

- A. Faktor jumlah penduduk
- B. Faktor banyaknya fasilitas
- c. Faktor tingkat aksesibilitas

#### FAKTOR JUMLAH PENDUDUK

- Jumlah orde (kelas) berdasarkan jumlah kota yang diamati
- Ada rumus Sturges :
- n = jumlah kota yang diamati.
- k = jumlah kelas (orde)

- Bila kota terkecil dengan penduduk 1012 jiwa
- Penduduk kota terbesar = 151 000 jiwa
- $\bullet$  k = 1 + 3.3 log 32 = 1 + 3.3 (1.5)=1 + 4.95= 5.95  $\approx$  6
- Interval kelas?
- $\odot$  (151000-1012) : 6 = 149988 : 6 = 24998  $\approx$
- 25 000

# CONTOH (HASIL)

| ORDE | HITUNG (INTERVAL)          | INTERVAL JML PENDUDUK |
|------|----------------------------|-----------------------|
| I    | 151.000 - 25.000 = 126.000 | 126.001 - 151.000     |
| II   | 126.000 - 25.000 = 101.000 | 101.001 - 126.000     |
| III  | 101.000 - 25.000 = 76.000  | 76.001 - 101.000      |
| IV   | 76.000 - 25.000 = 51.000   | 51.001 - 76.000       |
| V    | 51.000 - 25.000 = 26.000   | 26.001 - 51.000       |
| VI   |                            | 1.001 - 26.000        |

#### FAKTOR BANYAKNYA FASILITAS

- Banyaknya fasilitas ≈dengan jumlah penduduk
- Fasilitas di-inventarisir, contoh :
  - 1. pasar, luas, jumlah pedagang
  - Pertokoan
  - 3. Fasilitas pendidikan
  - 4. Fasilitas kesehatan
- Dengan pembobotan

### TINGKAT AKSESIBILITAS

Berdasarkan kemudahan mencapai kota

## HASIL

#### MANFAAT

#### Penetapan ranking perkotaan :

- Ranking perkotaan merupakan penyusun struktur ruang di wilayah tersebut
  - → Arus pergerakan
  - → Pusat kegiatan
- Untuk bahan penyusunan program
  - →Besar / jenis fasilitas
- Untuk meramalkan bagian mana dari wilayah yang akan cepat berkembang
- Untuk monitoring