
Software Engineering, Analysis, and

Design Concepts

Teknik Informatika – Universitas Komputer Indonesia

List of Material

• Introduction of Software Engineering

• SDLC and Process Model

• Analysis and its principles

• Design and its principles

• Object Oriented Analysis and Design (OOAD)

Software Engineering, Analysis,

and Design Concepts
2

Introduction of Software

Engineering

Software Engineering, Analysis,

and Design Concepts
3

What is Software?

• Software is a product
 Transforms information - produces, manages,

acquires, modifies, displays, or transmits information

 Delivers computing potential of hardware and
networks

• Software is a vehicle for delivering a product
 Controls other programs (operating system)

 Effects communications (networking software)

 Helps build other software (software tools &
environments)

Software Engineering, Analysis,

and Design Concepts
4

What is Software?

Software Engineering, Analysis,

and Design Concepts
5

Hardware Software

 Manufactured

 Wears out

 Built using

components

 Relatively

simple

 Developed/

 engineered

 Deteriorates

 Custom built

 Complex

Manufacturing VS Development

• Once a hardware product has been manufactured, it is difficult or

impossible to modify. In contrast, software products are routinely

modified and upgraded.

• In hardware, hiring more people allows you to accomplish more work,

but the same does not necessarily hold true in software engineering.

• Unlike hardware, software costs are concentrated in design rather

than production

Software Engineering, Analysis,

and Design Concepts
6

Wears VS Deteriorates

Software Engineering, Analysis,

and Design Concepts
7

Criteria of Good Software

1. Maintainability

 Software must evolve to meet changing needs

2. Dependability

 Software must be trustworthy

3. Efficiency

 Software should not make wasteful use of system resources

4. Usability

 Software must be usable by the users for which it was designed

Software Engineering, Analysis,

and Design Concepts
8

Software Myth

– Affect managers, customers (and other non-technical
stakeholders) and practitioners

– Are believable because they often have elements of
truth,

but …
– Invariably lead to bad decisions,

therefore …
– Insist on reality as you navigate your way through

software engineering

Software Engineering, Analysis,

and Design Concepts
9

Software Myth

• If we get behind schedule, we can add more

programmers and catch up.

• A general statement about objectives is

sufficient to begin building programs.

• Change in project requirements can be easily

accommodated because software is flexible.

Software Engineering, Analysis,

and Design Concepts
10

Software Myth

• If we get behind schedule, we can add more

programmers and catch up.

• A general statement about objectives is

sufficient to begin building programs.

• Change in project requirements can be easily

accommodated because software is flexible.

Software Engineering, Analysis,

and Design Concepts
11

How to break those Myths?

Software Engineering, Analysis,

and Design Concepts
12

What is Software Engineering?

A historical definition:

 ―The establishment and use of sound engineering
principles in order to obtain economically software that is
reliable and works efficiently on real machines …‖ [Fritz
Bauer, at the 1st NATO Conference on Software Engineering, 1969]

IEEE definition:

 ―Software engineering is the application of a systematic,
disciplined, quantifiable approach to the development,
operation, and maintenance of software; that is, the
application of engineering to software.‖

Software Engineering, Analysis,

and Design Concepts
13

Why We Need Software Engineering?

Software Engineering, Analysis,

and Design Concepts
14

Why We Need Software Engineering?

Software Engineering, Analysis,

and Design Concepts
15

Used w. extensive
rework,
but later abandoned
20%

Used as
delivered
2%

Usable w.
rework
3%

9 software projects totaling $96.7 million: Where The Money Went

 [Report to Congress, Comptroller General, 1979]

Delivered, but
never
successfully
used
45%

Paid for,
but
not
delivered
30%

Why?

Software hurts

 Requirements

 Design

Why We Need Software Engineering?

Software Engineering, Analysis,

and Design Concepts
16

Project Success Factors

28%

49%

23%

completed on

time and on

budget

canceled

before

completion

overran original

estimates:
-Time overrun averaged 63%

- Cost overrun averaged 45%

10. Other

9. Reliable Estimates

8. Formal Methodology

7. Firm Basic Requirements

6. Standard Software Infrastructure

5. Minimized Scope

4. Clear Business Objectives

3. Experienced Project Manager

2. User Involvement

1. Executive Management Support

The CHAOS Ten

Why We Need Software Engineering?

Software Engineering, Analysis,

and Design Concepts
17

Standish Group, ‗01 (www.standishgroup.com)

The CHAOS Ten The CHAOS Ten

“The definition of insanity is doing the same thing over and

over again and expecting a different result.” [Albert Einstein]

http://www.thinkarete.com/quotes/by_teacher/albert_einstein/

Why We Need Software Engineering?

Software Engineering, Analysis,

and Design Concepts
18

Work alone

20%

What do software engineers do?

Non-productive

Activities

30% Interaction

50%

programming ≠ software engineering
personal activity team activity

small, clear problem large, nebulous

problem

How to Do Software Engineering?

Software Engineering, Analysis,

and Design Concepts
19

Systems Engineering

Requirements Analysis

Project Planning

Architectural Design

Detailed Design

Implementation

Release

Maintenance

Q
u
a
lity

 A
s
s
u
ra

n
c
e

BCFH - models/languages,

processes/methodologies, tools, …

Software Lifecycle Review

SDLC and Process Model

Software Engineering, Analysis,

and Design Concepts
20

Software Development Life Cycle (SDLC)

Set of activities and their relationships to each other to

support the development of a software system.

Software Engineering, Analysis,

and Design Concepts
21

Software Development Activities

1. Gathering Requirements

2. Team Management

3. Software Design

4. Coding

5. Testing

6. Documentation

7. Software Maintenance

Software Engineering, Analysis,

and Design Concepts
22

Definition of Generic Process Model

Consist of five general activities in software

development, such as:

1. Communication

2. Planning

3. Modeling

4. Construction

5. Deployment.

Software Engineering, Analysis,

and Design Concepts
23

Process Flow

• Linear

• Iterative

• Evolutionary

Software Engineering, Analysis,

and Design Concepts
24

Linear Process Flow

Software Engineering, Analysis,

and Design Concepts
25

Iterative Process Flow

Software Engineering, Analysis,

and Design Concepts
26

Evolutionary Process Flow

Software Engineering, Analysis,

and Design Concepts
27

Prescriptive Process Model

• Waterfall Model

• V Model

• Incremental Process Model

• Evolutionary Process Model

• Specialized Process Model

• Unified Process

• Agile Methods (example: XP)

Software Engineering, Analysis,

and Design Concepts
28

Waterfall Model

1. The requirements are knowable in advance of implementation.

2. The requirements have no unresolved, high-risk implications

 e.g., risks due to COTS choices, cost, schedule, performance, safety, security,

user interfaces, organizational impacts

3. The nature of the requirements will not change very much

 During development; during evolution

4. The requirements are compatible with all the key system stakeholders‘ expectations

 e.g., users, customer, developers, maintainers, investors

5. The right architecture for implementing the requirements is well understood.

6. There is enough calendar time to proceed sequentially.

Software Engineering, Analysis,

and Design Concepts
29

Waterfall Model

Software Engineering, Analysis,

and Design Concepts
30

V Model

Software Engineering, Analysis,

and Design Concepts
31

System

Requirements

Software

Requirements

Software

Design

Software

Implementation

Unit

Testing

Integration

Testing

Software

Testing

System

Testing

system test plan

software test plan

integration plan

unit plan

Product

Release

time

User

Need

Incremental Process Model: Incremental

Software Engineering, Analysis,

and Design Concepts
32

Incremental Process Model: RAD

Software Engineering, Analysis,

and Design Concepts
33

Evolutionary Process Model: Prototyping

Software Engineering, Analysis,

and Design Concepts
34

Evolutionary Process Model: Prototyping

Software Engineering, Analysis,

and Design Concepts
35

Evolutionary Process Model: Spiral

Software Engineering, Analysis,

and Design Concepts
36

Evolutionary Process Model: Concurent

Software Engineering, Analysis,

and Design Concepts
37

Specialized Process Model: Component

Based Development

Software Engineering, Analysis,

and Design Concepts
38

Specialized Process Model: Unified Process

Software Engineering, Analysis,

and Design Concepts
39

Specialized Process Model: Agile Method

(example: Extreme Programming)

Software Engineering, Analysis,

and Design Concepts
40

Specialized Process Model: Agile Method

(example: Extreme Programming)

Software Engineering, Analysis,

and Design Concepts
41

Analysis and Its Principles

Software Engineering, Analysis,

and Design Concepts
42

What Is Requirement Analysis?

• Requirements analysis

• specifies software‘s operational characteristics

• indicates software's interface with other system elements

• establishes constraints that software must meet

• Requirements analysis allows the software engineer (called an analyst or

modeler in this role) to:

• elaborate on basic requirements established during earlier requirement engineering

tasks

• build models that depict user scenarios, functional activities, problem classes and their

relationships, system and class behavior, and the flow of data as it is transformed.

Software Engineering, Analysis,

and Design Concepts
43

What Is Requirement Analysis?

Software Engineering, Analysis,

and Design Concepts
44

Requirement

Engineering
Design System

I am ANALYSIS

stage!!!

What Is Requirement Analysis?

Software Engineering, Analysis,

and Design Concepts
45

FOCUS ON WHAT

NOT HOW!!!!

Steps in Requirement Analysis

1. Identification

2. Understanding

3. Analysis

4. Reporting

Software Engineering, Analysis,

and Design Concepts
46

Analysis Modelling Approach

1. Structured Analysis

2. Object-oriented analysis

Software Engineering, Analysis,

and Design Concepts
47

Analysis Model

Software Engineering, Analysis,

and Design Concepts
48

Domain Analysis

• Define the domain to be investigated.

• Collect a representative sample of applications in

the domain.

• Analyze each application in the sample.

• Develop an analysis model for the objects.

• In terms of data modeling, function/process

modeling, behavioral modeling, etc.

Software Engineering, Analysis,

and Design Concepts
49

Rules of Thumb Analysis

• Focus on requirements that are visible within the problem/business domain

• Each element of the reqs should add to an overall understanding of SW reqs

and provide insight into the information domain, function, and behavior of the

system

• Delay infrastructure and non functional models until design (bedakan dengan

kebutuhan non fungsional)

• Minimize coupling

• Be certain that the reqs model provides value to all stakeholder

• Keep the model as simple as it can be

Software Engineering, Analysis,

and Design Concepts
50

Data Modeling

• examines data objects independently of

processing

• focuses attention on the data domain

• creates a model at the customer‘s level of

abstraction

• indicates how data objects relate to one another

Software Engineering, Analysis,

and Design Concepts
51

Principles that Guide Practice

• Divide and conquer

• Understand the use of abstraction

• Strive for consistency

• Focus on the transfer of information

• Build software that exhibit effective modularity

• Look for patterns

• When possible, represent problems & solutions from Different

perspectives

• Remember that someone will maintain the software

Software Engineering, Analysis,

and Design Concepts
52

Principles that Guide Process

• Be agile

• Focus on quality in every step

• Be ready to a adapt

• Build an effective team

• Establish mechanisms for comm. & coordination

• Manage change

• Asses risk

• Create work products that provide value for others

Software Engineering, Analysis,

and Design Concepts
53

Communication Principles (1)

• Listen

• Prepare before you communicate

• Someone should facilitate the activity

• Face-to-face comm. is the best

• Take notes and document decisions

• Strive for collaboration

Software Engineering, Analysis,

and Design Concepts
54

Communication Principles (2)

• Stay focus; modularize your discussion

• If something is unclear, draw a picture

• (a) once you agree to something, move on. (b) if you can‘t

agree to something, move on. (c) if a feature/function is

unclear and cannot be clarified at the moment, move on

• Negotiation is not a game. It works best when both parties win

Software Engineering, Analysis,

and Design Concepts
55

Modeling Principles (1)

• The primary goal is to build software, not create models

• Don‘t create more models than you need

• Strive to produce the simplest model

• Build models in a way that makes them amenable (menerima)

to change

• Be able to state an explicit purpose for each model that is

created

• Adapt the models you develop to the system at hand

Software Engineering, Analysis,

and Design Concepts
56

Modeling Principles (2)

• Try to build useful models, but forget about building perfect

models

• Don‘t become dogmatic about the syntax of the model. If it

communicates content succesfully, representation is

secondary

• If your instincts tell you a model isn‘t right eventhough it seems

okay on paper, you probably have reason to be concerned

• Get feedback as soon as you can

Software Engineering, Analysis,

and Design Concepts
57

Design and Its Principles

Software Engineering, Analysis,

and Design Concepts
58

Bad Design

Software Engineering, Analysis,

and Design Concepts
59

Good Design

• Implement all of the explicit requirements

• Readable and understandable for coder/tester

• Provide a complete picture of the software:

data, functional, behavior

Software Engineering, Analysis,

and Design Concepts
60

But How to Make Good Design?

Software Engineering, Analysis,

and Design Concepts
61

Good Design: Technical Criteria (1)

• Architecture: (1) recognizable styles, (2) good design

characteristic component, (3) can be implemented in the

evolutionary fashion

• Modular

• Contain distinct representation of data, architecture, interfaces,

and components

• Data structures recognizable data patterns

Software Engineering, Analysis,

and Design Concepts
62

Good Design: Technical Criteria (2)

• Components with independent functional characteristics

• Interfaces to simplify connection between components and the

external environment

• Repeatable method and is derived by information from

analysis

• Notation effectively communicate its meaning

Software Engineering, Analysis,

and Design Concepts
63

Design Principles (1)

• The design process should not suffer from ‗tunnel vision.‘

• The design should be traceable to the analysis model.

• The design should not reinvent the wheel.

• The design should ―minimize the intellectual distance‖ [DAV95]

between the software and the problem as it exists in the real

world.

• The design should exhibit uniformity and integration.

• The design should be structured to accommodate change.

Software Engineering, Analysis,

and Design Concepts
64

Design Principles (2)

• The design should be structured to degrade gently, even when

aberrant data, events, or operating conditions are

encountered.

• Design is not coding, coding is not design.

• The design should be assessed for quality as it is being

created, not after the fact.

• The design should be reviewed to minimize conceptual

(semantic) errors.

Software Engineering, Analysis,

and Design Concepts
65

Design Concepts

• abstraction — data, procedure, control

• architecture — the overall structure of the software

• patterns — ―conveys the essence‖ of a proven design solution

• modularity — compartmentalization of data and function

• information hiding — controlled interfaces

• functional independence — high cohesion and low coupling

• refinement — elaboration of detail for all abstractions

• refactoring — improve design without effecting behavior

Software Engineering, Analysis,

and Design Concepts
66

Design Concepts

Software Engineering, Analysis,

and Design Concepts
67

Modularity Trade Off

Software Engineering, Analysis,

and Design Concepts
68

 of modules

 cost of

 software

number of modules

module
integration

cost

module development cost

Phases in The Design Process

Software Engineering, Analysis,

and Design Concepts
69

Design Quality Attributes

Software Engineering, Analysis,

and Design Concepts
70

Cohesion

• A measure of how well a component 'fits together'

• A component should implement a single logical

entity or function

• Cohesion is a desirable design component

attribute as when a change has to be made, it is

localized in a single cohesive component

• Various levels of cohesion have been identified

Software Engineering, Analysis,

and Design Concepts
71

Cohesion Level (1)

• Coincidental cohesion (weak)

 Parts of a component are simply bundled together

• Logical association (weak)

 Components which perform similar functions are grouped

 For example:

 output text to screen

 output line to printer

 output record to file

 Seems ok

 Problem is it carries out a range of similar but different actions

 No single well defined action

Software Engineering, Analysis,

and Design Concepts
72

Cohesion Level (2)

• Temporal cohesion (weak)

 Components which are activated at the same time are grouped

 For example:

 clear screen

 open file

 Initialise total

 again not related

 solution is to make initialization module all otherspecialised modules:

call init_terminal

call init_files

call init_calculations

Software Engineering, Analysis,

and Design Concepts
73

Cohesion Level (3)

• Procedural cohesion (weak)
The elements in a component make up a single control
sequence

• Communicational cohesion (medium)
All the elements of a component operate on the same
data e.g. display and log temperature

• Sequential cohesion (medium)
The output for one part of a component is the input to
another part

Software Engineering, Analysis,

and Design Concepts
74

Cohesion Level (4)

• Functional cohesion (strong)
 optimal type of cohesion

 performs a single well-defined action on a single
data object

 e.g. calculate average

 Each part of a component is necessary for the
execution of a single function

• Object cohesion (strong)
Each operation provides functionality which allows
object attributes to be modified or inspected

Software Engineering, Analysis,

and Design Concepts
75

Coupling

• A measure of the strength of the inter-connections between

system components

• Loose coupling means component changes are unlikely to

affect other components

• Shared variables or control information exchange lead to tight

coupling

• Loose coupling can be achieved by state decentralization (as

in objects) and component communication via parameters or

message passing

Software Engineering, Analysis,

and Design Concepts
76

Tight Coupling

Software Engineering, Analysis,

and Design Concepts
77

Loose Coupling

Software Engineering, Analysis,

and Design Concepts
78

Object Oriented Analysis and

Design (OOAD)

Software Engineering, Analysis,

and Design Concepts
79

Object Oriented Concepts

Key concepts:

 Classes and objects

 Attributes and operations

 Encapsulation and instantiation

 Inheritance

Software Engineering, Analysis,

and Design Concepts
80

Class

• object-oriented thinking begins with the definition of

a class, often defined as:

template, generalized description, ―blueprint‖ ...

describing a collection of similar items

• a metaclass (also called a superclass) establishes

a hierarchy of classes

• once a class of items is defined, a specific instance

of the class can be identified

Software Engineering, Analysis,

and Design Concepts
81

Class

Software Engineering, Analysis,

and Design Concepts
82

external entities

things organizational units

places

structures

class name

attributes:

operations:

external entities (printer, user, sensor)

things (e.g, reports, displays, signals)

occurrences or events (e.g., interrupt, alarm)

roles (e.g., manager, engineer, salesperson)

organizational units (e.g., division, team)

places (e.g., manufacturing floor)

structures (e.g., employee record)

Encapsulation (Information Hiding)

Software Engineering, Analysis,

and Design Concepts
83

method
1

data

method
2

method
4

method
5

method
6

method
3

A method is invoked via message passing.
An executable procedure that is encapsulated in a class and is
designed to operate on one or more data attributes that are
defined as part of the class.

Achieves ―information hiding‖

The object encapsulates both data and the logical

procedures required to manipulate the data

Class Hierarchy

Software Engineering, Analysis,

and Design Concepts
84

Chair Table Desk ‖Chable"

Piece Of Furniture (superclass)

subclasses of the

Scenario Based Modeling (Use Case)

“[Use-cases] are simply an aid to defining what exists
outside the system (actors) and what should be
performed by the system (use-cases).”

Ivar Jacobson

• a scenario that describes a ―thread of usage‖ for a
system

• actors represent roles people or devices play as the
system functions

• users can play a number of different roles for a given
scenario

Software Engineering, Analysis,

and Design Concepts
85

Developing Use Case

• What are the main tasks or functions that are performed by the

actor?

• What system information will the the actor acquire, produce or

change?

• Will the actor have to inform the system about changes in the

external environment?

• What information does the actor desire from the system?

• Does the actor wish to be informed about unexpected

changes?

Software Engineering, Analysis,

and Design Concepts
86

Use Case Diagram

Software Engineering, Analysis,

and Design Concepts
87

Activity Diagram

Software Engineering, Analysis,

and Design Concepts
88

Swimlane Diagram

Software Engineering, Analysis,

and Design Concepts
89

Class Based Modeling

• External entities that produce or consume information

• Things that are part of the information domain

• Occurrences or events

• Roles played by people who interact with the system

• Organizational units

• Places that establish context

• Structures that define a class of objects

Software Engineering, Analysis,

and Design Concepts
90

Class Selection Criteria

• Retained information

• Needed services

• Multiple attributes

• Common attributes

• Common operations

• Essential requirements

Software Engineering, Analysis,

and Design Concepts
91

Identifying Class

Software Engineering, Analysis,

and Design Concepts
92

Potential class Classification Accept / Reject

homeowner role; external entity reject: 1, 2 fail

sensor external entity accept

control panel external entity accept

installation occurrence reject

(security) system thing accept

number, type not objects, attributes reject: 3 fails

master password thing reject: 3 fails

telephone number thing reject: 3 fails

sensor event occurrence accept

audible alarm external entity accept: 1 fails

monitoring service organizational unit; ee reject: 1, 2 fail

Class Diagram

Software Engineering, Analysis,

and Design Concepts
93

System

program()

display()

reset()

query()

modify()

call()

systemID

verificationPhoneNumber

systemStatus

delayTime

telephoneNumber

masterPassword

temporaryPassword

numberTries

Class name

attributes

operations

Class Diagram

Software Engineering, Analysis,

and Design Concepts
94

CRC Modeling

Software Engineering, Analysis,

and Design Concepts
95

Class Responsibilities

• Distribute system intelligence across classes.

• State each responsibility as generally as possible.

• Put information and the behavior related to it in the same

class.

• Localize information about one thing rather than distributing it

across multiple classes.

• Share responsibilities among related classes, when

appropriate.

Software Engineering, Analysis,

and Design Concepts
96

Class Types

• Entity classes, also called model or business classes, are extracted

directly from the statement of the problem (e.g., FloorPlan and

Sensor).

• Boundary classes are used to create the interface (e.g., interactive

screen or printed reports) that the user sees and interacts with as the

software is used.

• Controller classes manage a ―unit of work‖ [UML03] from start to

finish. That is, controller classes can be designed to manage

 the creation or update of entity objects;

 the instantiation of boundary objects as they obtain information from

entity objects;

 complex communication between sets of objects;

 validation of data communicated between objects or between the user

and the application.

Software Engineering, Analysis,

and Design Concepts
97

Class Collaboration

• Relationships between classes:

 is-part-of — used when classes are part of an

aggregate class.

 has-knowledge-of — used when one class must

acquire information from another class.

 depends-on — used in all other cases

Software Engineering, Analysis,

and Design Concepts
98

Class

Diagram

Software Engineering, Analysis,

and Design Concepts
99

Top: Multiplicity

Bottom: Dependencies

Behavioral Modeling

The behavioral model indicates how software will respond to external events or stimuli. To create the

model, the analyst must perform the following steps:

• Evaluate all use-cases to fully understand the sequence of

interaction within the system.

• Identify events that drive the interaction sequence and

understand how these events relate to specific objects.

• Create a sequence for each use-case.

• Build a state diagram for the system.

• Review the behavioral model to verify accuracy and consistency.

Software Engineering, Analysis,

and Design Concepts
100

State Representation

• In the context of behavioral modeling, two different characterizations of states

must be considered:

 the state of each class as the system performs its function and the state of

the system as observed from the outside as the system performs its function

• The state of a class takes on both passive and active characteristics [CHA93].

 A passive state is simply the current status of all of an object‘s attributes.

 The active state of an object indicates the current status of the object as it

undergoes a continuing transformation or processing.

Software Engineering, Analysis,

and Design Concepts
101

Identifying State

• A use-case is examined for points of information exchange.

• The homeowner uses the keypad to key in a four-digit

password. The password is compared with the valid password

stored in the system. If the password in incorrect, the control

panel will beep once and reset itself for additional input. If the

password is correct, the control panel awaits further action.

Software Engineering, Analysis,

and Design Concepts
102

State Diagram

Software Engineering, Analysis,

and Design Concepts
103

The State of The System

• State — a set of observable circum-stances that

characterizes the behavior of a system at a given time

• state transition — the movement from one state to

another

• Event — an occurrence that causes the system to

exhibit some predictable form of behavior

• Action — process that occurs as a consequence of

making a transition

Software Engineering, Analysis,

and Design Concepts
104

Sequence Diagram

Software Engineering, Analysis,

and Design Concepts
105

Analysis into Design

Software Engineering, Analysis,

and Design Concepts
106

Design System Elements

• Data elements

 Data model --> data structures

 Data model --> database architecture

• Architectural elements

 Application domain

 Analysis classes, their relationships, collaborations and behaviors are
transformed into design realizations

 Patterns and ―styles‖ (Chapter 10)

• Interface elements

 the user interface (UI)

 external interfaces to other systems, devices, networks or other
producers or consumers of information

 internal interfaces between various design components.

• Component elements

• Deployment elements

Software Engineering, Analysis,

and Design Concepts
107

Interface Elements

Software Engineering, Analysis,

and Design Concepts
108

Cont rolPanel

LCDdisplay

LEDindicat ors

keyPadCharact er ist ics

speaker

wirelessInt erf ace

readKeySt roke()

decodeKey ()

displaySt at us()

light LEDs()

sendCont rolMsg()

Figure 9 .6 UML int erface represent at ion for Co n t ro lPa n e l

KeyPad

readKeyst roke()

decodeKey()

< < int erface> >

WirelessPDA

KeyPad

MobilePhone

Component Elements

Software Engineering, Analysis,

and Design Concepts
109

SensorManagement
Sensor

Deployment Diagram

Software Engineering, Analysis,

and Design Concepts
110

References

1. Roger S. Presmann, Software Engineering, 6th edition.

2. Kendall, System Analysis and Design, 7th edition.

3. Ian Sommerville, Software Engineering, 8th Edition

4. PPT of Roger S. Pressman (chung and zheng)

5. PPT of Kendall

6. Saiful Akbar, Handouts PPL – ITB, 2011

Software Engineering, Analysis,

and Design Concepts
111

