REGRESI NON LINIER

A. Macam-macam regresi non linier

1. Parabola kuadratik: $\hat{Y} = a + bX + cX^2$ Dengan menggunakan metode kuadrat terkecil, maka a, b, dan c dapat dihitung dari sistem persamaan:

$$\sum_{i} Y_{i} = na + b \sum_{i} X_{i} + c \sum_{i} X_{i}^{2}$$
$$\sum_{i} X_{i}Y_{i} = a \sum_{i} X_{i} + b \sum_{i} X_{i}^{2} + c \sum_{i} X_{i}^{3}$$
$$\sum_{i} X_{i}^{2}Y_{i} = a \sum_{i} X_{i}^{2} + b \sum_{i} X_{i}^{3} + c \sum_{i} X_{i}^{4}$$

2. Parabolik kubik: $\hat{Y} = a + bX + cX^2 + dX^3$ Untuk menentukan nilai a, b, c, dan d gunakan sistem persamaan berikut:

$$\sum_{i} Y_{i} = na + b \sum_{i} X_{i} + c \sum_{i} X_{i}^{2} + d \sum_{i} X_{i}^{3}$$

$$\sum_{i} X_{i} Y_{i} = a \sum_{i} X_{i} + b \sum_{i} X_{i}^{2} + c \sum_{i} X_{i}^{3} + d \sum_{i} X_{i}^{4}$$

$$\sum_{i} X_{i}^{2} Y_{i} = a \sum_{i} X_{i}^{2} + b \sum_{i} X_{i}^{3} + c \sum_{i} X_{i}^{4} + d \sum_{i} X_{i}^{5}$$

$$\sum_{i} X_{i}^{3} Y_{i} = a \sum_{i} X_{i}^{3} + b \sum_{i} X_{i}^{4} + c \sum_{i} X_{i}^{5} + d \sum_{i} X_{i}^{6}$$

3. Eksponen : $\hat{Y} = ab^X$ Besar nilai a dan b ditentukan menggunakan persamaan:

$$\log a = \frac{\sum \log Y_i}{n} - (\log b) \left(\frac{\sum X_i}{n}\right)$$
$$\log b = \frac{n(\sum X_i \log Y_i) - (\sum X_i)(\sum \log Y_i)}{n \sum X_i^2 - (\sum X_i)^2}$$

4. Geometrik: $\hat{Y} = aX^b$ Besar nilai a dan b ditentukan menggunakan persamaan

$$\log a = \frac{\sum \log Y_i}{n} - b \frac{\sum \log X_i}{n}$$

$$b = \frac{\log a = \frac{\sum \log Y_i}{n} - b \frac{\sum \log X_i}{n}}{n \sum \log X_i \log Y_i) - (\sum \log X_i)(\sum \log Y_i)}$$

$$b = \frac{n(\sum \log X_i \log Y_i) - (\sum \log X_i)(\sum \log Y_i)}{n \sum \log^2 X_i - (\sum \log X_i)^2}$$

- 5. Gompertz: $\hat{Y} = pq^{bX}$ 6. Logistik: $\hat{Y} = \frac{1}{ab^X + c}$

$$\log a = \frac{\sum \log\left(\frac{1}{Y_i}\right)}{n} - (\log b) \left(\frac{\sum X_i}{n}\right)$$
$$\log b = \frac{n\left(\sum X_i \log\left(\frac{1}{Y_i}\right)\right) - (\sum X_i) \left(\sum \log\left(\frac{1}{Y_i}\right)\right)}{n\sum X_i^2 - (\sum X_i)^2}$$

7. Hiperbola: $\hat{Y} = \frac{1}{a+bX}$ Jika \hat{Y} tidak ada yang bernilai nol, maka a dan b adalah

$$a = \frac{\left(\sum \frac{1}{Y_i}\right) \left(\sum X_i^2\right) - \left(\sum X_i\right) \left(\sum X_i \frac{1}{Y_i}\right)}{n \sum X_i^2 - \left(\sum X_i\right)^2}$$
$$b = \frac{n \sum X_i \frac{1}{Y_i} - \left(\sum X_i\right) \left(\sum \frac{1}{Y_i}\right)}{n \sum X_i^2 - \left(\sum X_i\right)^2}$$

B. Regresi Linier Ganda

Banyak data pengamatan yang terjadi sebagai akibat lebih dari dua variabel. Misalnya, rata-rata pertambahan berat daging sapi (Y) bergantung pada berat permulaan (X_1) , umur sapi ketika pengamatan dimulai dilakukan (X_2) , berat makanan yang diberikan setiap hari (X_3) dan mungkin masih ada faktor lain.

Akan ditentukan hubungan antara Y dan $X_1, X_2, ..., X_k$ sehingga didapat regresi Y atas $X_1, X_2, ..., X_k$. Yang akan ditinjau di sini hanyalah garis regresi sederhana ialah yang dikenal dengan regresi linier ganda. Model tersebut ditaksir oleh:

$$\hat{Y} = a_0 + a_1 X_1 + a_2 X_2 + \dots + a_k X_k$$

 $\hat{Y}=a_0+a_1X_1+a_2X_2+\cdots++a_kX_k$ Koefisien-koefisien a_0,a_1,\ldots,a_k ditentukan dengan menggunakan metode kuadrat terkecil.

Untuk regresi linier ganda dua variabel bebas:

$$\hat{Y}=a_0+a_1X_1+a_2X_2$$

maka untuk mengetahui koefisien-koefisiennya harus menyelesaikan persamaan-persamaan berikut:

$$\sum_{i} Y_{i} = a_{0}n + a_{1} \sum_{i} X_{1_{i}} + a_{2} \sum_{i} X_{2_{i}}$$

$$\sum_{i} Y_{i}X_{1_{i}} = a_{0} \sum_{i} X_{1_{i}} + a_{1} \sum_{i} X_{1_{i}}^{2} + a_{2} \sum_{i} X_{1_{i}}X_{2_{i}}$$

$$\sum_{i} Y_{i}X_{2_{i}} = a_{0} \sum_{i} X_{2_{i}} + a_{1} \sum_{i} X_{1_{i}}X_{2_{i}} + a_{2} \sum_{i} X_{2_{i}}^{2}$$
persamaan (*)

Untuk regresi linier ganda tiga variabel beba

$$\hat{Y} = a_0 + a_1 X_1 + a_2 X_2 + a_3 X_3$$

Maka untuk mengetahui koefisien-koefisiennya harus menyelesaikan persamaan-persamaan berikut:

$$\sum_{\substack{Y_i X_1}_i = a_0 \sum X_1}_{i} X_1 + a_1 \sum_{\substack{X_1}_i + a_2 \sum X_2}_{i} X_2 + a_3 \sum_{\substack{X_2}_i + a_3 \sum X_1}_{i} X_3 \\ \sum_{\substack{Y_i X_2}_i = a_0 \sum X_2}_{i} X_2 + a_1 \sum_{\substack{X_1}_i X_2}_{i} X_2 + a_2 \sum_{\substack{X_2}_i + a_3 \sum X_2}_{i} X_2 \\ \sum_{\substack{Y_i X_3}_i = a_0 \sum X_3}_{i} X_3 + a_1 \sum_{\substack{X_1}_i X_3}_{i} X_3 + a_2 \sum_{\substack{X_2}_i X_3}_{i} X_2 \\ \sum_{\substack{X_2}_i X_3}_{i} X_3 + a_3 \sum_{\substack{X_2}_i X_3}_{i} X_3 \\ \sum_{\substack{X_2}_i X_3}_{i} X_3 + a_3 \sum_{\substack{X_2}_i X_3}_{i} X_3 \\ \sum_{\substack{X_2}_i X_3}_{i} X_3}_{i} X_3 \\ \sum_{\substack{X_2}_i X_3}_{i} X_3 \\ \sum_{\substack{X_2}_i X_3}_{i} X_3 \\$$

Sistem persamaan (*) dan (**) dapat disederhanakan sedikit, apabila diambil $x_1=X_1-\overline{X_1}$, $x_2=X_2-\overline{X_1}$ $\overline{X_2}$, $x_3 = X_3 - \overline{X_3}$ dan $y = Y - \overline{Y}$ maka persamaan regresi linier ganda dua variabel bebas menjadi:

$$y = a_1 x_1 + a_2 x_2$$

Koefisien a_1 dan a_2 dapat dihitung dengan persamaan

$$\sum_{i} y_i x_{1i} = a_1 \sum_{i} x_{1i}^2 + a_2 \sum_{i} x_{1i} x_{2i}$$
$$\sum_{i} y_i x_{2i} = a_1 \sum_{i} x_{1i}^2 x_{2i} + a_2 \sum_{i} x_{2i}^2$$

sedangkan persamaan regresi linier ganda tiga variabel bebas, menjadi:

$$y = a_1 x_1 + a_2 x_2 + a_2 x_2$$

dan koefisien-koefisiennya dihitung meng

$$\sum_{i} y_{i}x_{1i} = a_{1} \sum_{i} x_{1i}^{2} + a_{2} \sum_{i} x_{1i}x_{2i} + a_{3} \sum_{i} x_{1i}x_{3i}$$

$$\sum_{i} y_{i}x_{2i} = a_{1} \sum_{i} x_{1i}x_{2i} + a_{2} \sum_{i} x_{2i}^{2} + a_{3} \sum_{i} x_{2i}x_{3i}$$

$$\sum_{i} y_{i}x_{3i} = a_{1} \sum_{i} x_{1i}x_{3i} + a_{2} \sum_{i} x_{2i}x_{3i} + a_{3} \sum_{i} x_{3i}^{2}$$

Selain menggunakan persamaan di atas untuk mencar ien regresi linier dua variabel bebas dapat juga digunakan:

$$a_{1} = \frac{a_{0} = \overline{Y} - a_{1}\overline{X_{1}} - a_{2}\overline{X_{2}}}{(\sum x_{1i}^{2})(\sum x_{1i}y_{i}) - (\sum x_{1i}x_{2i})(\sum x_{2i}y_{i})} \frac{(\sum x_{1i}^{2})(\sum x_{2i}y_{i}) - (\sum x_{1i}x_{2i})(\sum x_{2i}y_{i})}{(\sum x_{1i}^{2})(\sum x_{2i}y_{i}) - (\sum x_{1i}x_{2i})(\sum x_{1i}y_{i})} \frac{(\sum x_{1i}^{2})(\sum x_{2i}y_{i}) - (\sum x_{1i}x_{2i})(\sum x_{1i}y_{i})}{(\sum x_{1i}^{2})(\sum x_{2i}^{2}) - (\sum x_{1i}x_{2i})^{2}}$$

Koefisien a_1 merupakan perubahan rata-rata Y unutuk setiap perubahan satuan dalam variabel X_1 apabila X_2, X_3, \dots, X_k semua dianggap tetap, begitu juga a_2 merupakan perubahan rata-rata Y unutuk setiap perubahan satuan dalam variabel X_2 apabila X_1, X_3, \dots, X_k semua dianggap tetap dan begitu seterusnya. Jelas bahwa di sini setiap koefisien hanya memberikan gambaran parsial apa yang terjadi pada Y untuk perubahan X yang berhubungan dengan koefisien dimaksud. Karenanya, koefisienkoevisien $a_1, a_2, ..., a_k$ disebut pula koefisien regresi parsil.

Untuk regresi linier ganda variabel, maka ukuran kekelirua yang digunakan adalah:

$$s_{y.1,2,...,k}^2 = \frac{\sum (Y_i - \widehat{Y}_i)^2}{n - k - 1}$$

 $s_{y.1,2,\dots,k}^2 = \frac{\sum \left(Y_i - \widehat{Y}_l\right)^2}{n-k-1}$ dimana Y_i = nilai data hasil pengamatan dan \widehat{Y}_l = nilai harapan yang didapat dari persamaan regresi.

C. Indeks Determinasi

Akan ditinjau seberapa kuat hubungan antara variabel-variabel itu terjadi. Secara umum, untuk pengamatan yang terdiri atas dua variabel X dan Y, kita tinjau hal berikut.

Misalkan persamaan regresi Y atas X, tidak harus linier, yang dihitung dari sampel, berbentuk: $\hat{Y} = f(x)$. Jika regresinya linier, maka f(X) = a + bX dan jika parabola, maka $f(X) = a + bX + cX^2$ dan seterusnya. Apabila $ar{Y}$ menyatakan rata-rata untuk data variabel Y, maka kita dapat membentuk jumlah kuadrat total, $JK_{tot} = \sum (Y_i - \bar{Y})^2$ dan jumlah kuadrat residu, $JK_{res} = \sum (Y_i - \hat{Y}_i)^2$ dengan menggunakan harga-harga \widehat{Y}_i yang didapat dari regresi $\widehat{Y} = f(X)$.

Besaran yang ditentukan oleh rumus

$$I = \frac{\sum (Y_i - \overline{Y})^2 - \sum (Y_i - \widehat{Y}_i)^2}{\sum (Y_i - \overline{Y})^2}$$

Atau

$$I = \frac{JK_{tot} - JK_{res}}{JK_{tot}}$$

dinamakan indeks determinasi yang mengukur hubungan antara variabel X dan Y. Jika titik pencar semakin dekat dengan garis regresi, maka harga I makin dekat ke 1. Sebaliknya jika titik-titik pencar semakin jauh dari garis regresi maka harga I makin dekat ke nol, $0 \le I \le 1$.

D. Korelasi dalam Regresi Linier

Apabila garis regresi yang terbaik sekumpulan data berbenyuk linier, maka derajat hubungannya akan dinyatakan dengan r dan biasa dinamakan *koefisien korelasi*. Untuk regresi linier Y dan X dalam hal ini I diganti oleh r^2 dan diperoleh:

$$r^{2} = \frac{\sum (Y_{i} - \bar{Y})^{2} - \sum (Y_{i} - \hat{Y}_{i})^{2}}{\sum (Y_{i} - \bar{Y})^{2}}$$

 r^2 dinamakan *koefisien determinasi* atau *koefisien penentu*. Dinamakan demikian karena 100 r^2 % dari variasi yang terjadi dalam variabel takbebas Y dapat dijelaskan oleh variabel bebas X dengan adanya regresi linier Y atas X. Harga $\sqrt{1-r^2}$ dinamakan *koefisien aliensi* atau *koefisien perenggangan*. Harga $1-r^2$ sendiri dinamakan *koefisien non determinasi*.

Koefisien korelasi r $\tan saja$ didapat dengan jalan mengambil akar dari r^2 .

Pada indeks determinasi dapat dilihat $0 \le r^2 \le 1$ sehingga untuk koefisien korelasi didapat hubungan $-1 \le r \le +1$. Harga r menyatakan

Hubungan $-1 \le r \le \pm 1$. Harga i menyatakan	
r = -1	Hubungan linier sempurna tak langsung.
	Titik-titik yang ditentukan oleh (X_i, Y_i) seluruhnya terletak pada garis regresi dan harga X
	besar berpasangan dengan Y kecil dan X kecil berpasangan dengan Y besar
r = +1	Hubungan linier sempurna langsung.
	Titik-titik yang ditentukan oleh (X_i, Y_i) seluruhnya terletak pada garis regresi dan harga X
	besar berpasangan dengan Y besar dan X kecil berpasangan dengan Y kecil
r < 1	Korelasi tak langsung atau korelasi negatif
r > 1	Korelasi langsung atau korelasi positif
r = 0	Tidak terdapat hubungan linier antara variabel X dan Y
r < 1 $r > 1$	Titik-titik yang ditentukan oleh (X_i,Y_i) seluruhnya terletak pada garis regresi dan harga besar berpasangan dengan Y besar dan X kecil berpasangan dengan Y kecil Korelasi tak langsung atau korelasi negatif Korelasi langsung atau korelasi positif

Untuk keperluan perhitungan koefisien korelasi r berdasarkan sekumpulan data (X_i, Y_i) berukuran n dapat digunakan rumus:

$$r = \frac{n\sum X_iY_i - (\sum X_i)(\sum Y_i)}{\sqrt{\left\{n\sum X_i^2 - (\sum X_i)^2\right\}\left\{n\sum Y_i^2 - (\sum Y_i)^2\right\}}}$$

Bentuk lain dapat pula digunakan:

$$r = \sqrt{1 - \frac{s_{y.x}^2}{s_y^2}}$$

dengan $s_{\nu,x}$ = kekeliruan baku taksiran dan s_{ν} = simpangan baku untuk variabel Y.

Jika persamaan regresi linier Y atas X telah ditentukan dan sudah didapat koefisien arah,b, maka koefisien determinasi, r^2 , dapat ditentukan oleh rumus:

entukan oleh rumus:
$$r^2 = \frac{b\{n\sum X_iY_i - (\sum X_i)(\sum Y_i)\}}{n\sum Y_i^2 - (\sum Y_i)^2}$$

atau dapat juga menggunakan formula:

$$r = \frac{bs_x}{s_y}$$

dengan s_x simpangan baku untuk variabel X dan s_y simpangan baku untuk variabel Y.

Jika b_1 adalah koefisien arah regresi Y atas X dan b_2 adalah koefisien arah regresi X atas Y untuk data yang sama, maka

$$r^2 = b_1 b_2$$

Rumus ini menyatakan bahwa koefisien korelasi r adalah rata-rata ukur daripada koefisien-koefisien arah b_1 dan b_2 .